Third-body wear is believed to be one trigger for adverse results
with metal-on-metal (MOM) bearings. Impingement and subluxation
may release metal particles from MOM replacements. We therefore
challenged MOM bearings with relevant debris types of cobalt–chrome
alloy (CoCr), titanium alloy (Ti6Al4V) and polymethylmethacrylate
bone cement (PMMA). Cement flakes (PMMA), CoCr and Ti6Al4V particles (size range
5 µm to 400 µm) were run in a MOM wear simulation. Debris allotments
(5 mg) were inserted at ten intervals during the five million cycle
(5 Mc) test. Objectives
Methods
Wear of polyethylene is associated with aseptic loosening of orthopaedic implants and has been observed in hip and knee prostheses and anatomical implants for the shoulder. The reversed shoulder prostheses have not been assessed as yet. We investigated the volumetric polyethylene wear of the reversed and anatomical Aequalis shoulder prostheses using a mathematical musculoskeletal model. Movement and joint stability were achieved by EMG-controlled activation of the muscles. A non-constant wear factor was considered. Simulated activities of daily living were estimated from After one year of use, the volumetric wear was 8.4 mm3 for the anatomical prosthesis, but 44.6 mm3 for the reversed version. For the anatomical prosthesis the predictions for contact pressure and wear were consistent with biomechanical and clinical data. The abrasive wear of the polyethylene in reversed prostheses should not be underestimated, and further analysis, both experimental and clinical, is required.