To explore the effect of different types of articulating antibiotic-loaded cement spacers in two-stage revision for chronic hip prosthetic joint infection (PJI). A retrospective cohort study was performed involving 36 chronic PJI patients treated with different types of articulating antibiotic-loaded cement spacers between January 2014 and December 2017. The incidence of complications and the therapeutic effects of different types of antibiotic-loaded articulating cement spacers were compared.Aims
Methods
Objectives. Fractures of the proximal femur are a common clinical problem, and a number of orthopaedic devices are available for the treatment of such fractures. The objective of this study was to assess the rotational stability, a common failure predictor, of three different rotational control design philosophies: a screw, a helical blade and a deployable crucifix. Methods. Devices were compared in terms of the mechanical work (W) required to rotate the implant by 6° in a bone substitute material. The substitute material used was Sawbones polyurethane foam of three different densities (0.08 g/cm. 3. , 0.16 g/cm. 3. and 0.24 g/cm. 3. ). Each torsion test comprised a steady ramp of 1°/minute up to an angular displacement of 10°. Results. The deployable crucifix design (X-Bolt), was more torsionally stable, compared to both the dynamic hip screw (DHS, p = 0.008) and helical blade (DHS Blade, p= 0.008) designs in bone substitute material representative of osteoporotic bone (0.16 g/cm. 3. polyurethane foam). In 0.08 g/cm. 3. density substrate, the crucifix design (X-Bolt) had a higher resistance to torsion than the screw (DHS, p = 0.008). There were no significant differences (p = 0.101) between the implants in 0.24 g/cm. 3. density bone substitute. Conclusions. Our findings indicate that the clinical standard proximal fracture fixator design, the screw (DHS), was the least effective at resisting torsional load, and a novel crucifix design (X-Bolt), was the most effective design in resisting torsional load in bone substitute material with density representative of osteoporotic bone. At other densities the torsional stability was also higher for the X-Bolt, although not consistently significant by statistical analysis. Cite this article: J. D. Gosiewski, T. P. Holsgrove, H. S. Gill. The efficacy of rotational control designs in promoting torsional stability of hip
The femoral head receives blood supply mainly
from the deep branch of the medial femoral circumflex artery (MFCA).
In previous studies we have performed anatomical dissections of
16 specimens and subsequently visualised the arteries supplying
the femoral head in
55 healthy individuals. In this further radiological study we compared
the arterial supply of the femoral head in 35 patients (34 men and
one woman, mean age 37.1 years (16 to 64)) with a fracture/dislocation
of the hip with a historical control group of 55 hips. Using CT
angiography, we identified the three main arteries supplying the femoral
head: the deep branch and the postero-inferior nutrient artery both
arising from the MFCA, and the piriformis branch of the inferior
gluteal artery. It was possible to visualise changes in blood flow
after fracture/dislocation. Our results suggest that blood flow is present after reduction
of the dislocated hip. The deep branch of the MFCA was patent and
contrast-enhanced in 32 patients, and the diameter of this branch
was significantly larger in the fracture/dislocation group than
in the control group (p = 0.022). In a subgroup of ten patients
with avascular necrosis (AVN) of the femoral head, we found a contrast-enhanced
deep branch of the MFCA in eight hips. Two patients with no blood
flow in any of the three main arteries supplying the femoral head
developed AVN. Cite this article:
We aimed to determine whether cemented hemiarthroplasty
is associated with a higher post-operative mortality and rate of
re-operation when compared with uncemented hemiarthroplasty. Data
on 19 669 patients, who were treated with a hemiarthroplasty following
a fracture of the hip in a nine-year period from 2002 to 2011, were extracted
from NHS Scotland’s acute admission database (Scottish Morbidity
Record, SMR01). We investigated the rate of mortality at day 0,
1, 7, 30, 120 and one-year post-operatively using 12 case-mix variables
to determine the independent effect of the method of fixation. At
day 0, those with a cemented hemiarthroplasty had a higher rate
of mortality (p <
0.001) compared with those with an uncemented
hemiarthroplasty, equivalent to one extra death per 424 procedures.
By day one this had become one extra death per 338 procedures. Increasing
age and the five-year co-morbidity score were noted as independent
risk factors. By day seven, the cumulative rate of mortality was
less for cemented hemiarthroplasty though this did not reach significance
until day 120. The rate of re-operation was significantly higher
for uncemented hemiarthroplasty. Despite adjusting for 12 confounding
variables, these only accounted for 15% of the observed variability. The debate about the choice of the method of fixation for a hemiarthroplasty
with respect to the rate of mortality or the risk of re-operation
may be largely superfluous. Our results suggest that uncemented
hemiarthroplasties may have a role to play in elderly patients with
significant co-morbid disease. Cite this article:
We are currently facing an epidemic of periprosthetic
fractures around the hip. They may occur either during surgery or
post-operatively. Although the acetabulum may be involved, the femur
is most commonly affected. We are being presented with new, difficult
fracture patterns around cemented and cementless implants, and we
face the challenge of an elderly population who may have grossly
deficient bone and may struggle to rehabilitate after such injuries.
The correct surgical management of these fractures is challenging.
This article will review the current choices of implants and techniques
available to deal with periprosthetic fractures of the femur. Cite this article:
Pelvic discontinuity represents a rare but challenging
problem for orthopaedic surgeons. It is most commonly encountered
during revision total hip replacement, but can also result from
an iatrogentic acetabular fracture during hip replacement. The general
principles in management of pelvic discontinuity include restoration
of the continuity between the ilium and the ischium, typically with
some form of plating. Bone grafting is frequently required to restore
pelvic bone stock. The acetabular component is then impacted, typically
using an uncemented, trabecular metal component. Fixation with multiple
supplemental screws is performed. For larger defects, a so-called
‘cup–cage’ reconstruction, or a custom triflange implant may be
required. Pre-operative CT scanning can greatly assist in planning
and evaluating the remaining bone stock available for bony ingrowth.
Generally, good results have been reported for constructs that restore
stability to the pelvis and allow some form of biologic ingrowth. Cite this article:
The design of the Charnley total hip replacement follows the principle of low frictional torque. It is based on the largest possible difference between the radius of the femoral head and that of the outer aspect of the acetabular component. The aim is to protect the bone-cement interface by movement taking place at the smaller radius, the articulation. This is achieved in clinical practice by a 22.225 mm diameter head articulating with a 40 mm or 43 mm diameter acetabular component of ultra-high molecular weight polyethylene. We compared the incidence of aseptic loosening of acetabular components with an outer diameter of 40 mm and 43 mm at comparable depths of penetration with a mean follow-up of 17 years (1 to 40). In cases with no measurable wear none of the acetabular components were loose. With increasing acetabular penetration there was an increased incidence of aseptic loosening which reflected the difference in the external radii, with 1.5% at 1 mm, 8.8% at 2 mm, 9.7% at 3 mm and 9.6% at 4 mm of penetration in favour of the larger 43 mm acetabular component. Our findings support the Charnley principle of low frictional torque. The level of the benefit is in keeping with the predicted values.
The rate and mode of early failure in 463 Birmingham hip resurfacings in a two-centre, multisurgeon series were examined. Of the 463 patients two have died and three were lost to follow-up. The mean radiological and clinical follow-up was for 43 months (6 to 90). We have revised 13 resurfacings (2.8%) including seven for pain, three for fracture, two for dislocation and another for sepsis. Of these, nine had macroscopic and histological evidence of metallosis. The survival at five years was 95.8% (95% confidence interval (CI) 94.1 to 96.8) for revision for all causes and 96.9% (95% CI 95.5 to 98.3) for metallosis. The rate of metallosis related revision was 3.1% at five years. Risk factors for metallosis were female gender, a small femoral component, a high abduction angle and obesity. We do not advocate the use of the Birmingham Hip resurfacing procedure in patients with these risk factors.