Advertisement for orthosearch.org.uk
Results 1 - 20 of 60
Results per page:
Bone & Joint Open
Vol. 4, Issue 7 | Pages 478 - 489
1 Jul 2023
Tennent D Antonios T Arnander M Ejindu V Papadakos N Rastogi A Pearse Y

Aims. Glenoid bone loss is a significant problem in the management of shoulder instability. The threshold at which the bone loss is considered “critical” requiring bony reconstruction has steadily dropped and is now approximately 15%. This necessitates accurate measurement in order that the correct operation is performed. CT scanning is the most commonly used modality and there are a number of techniques described to measure the bone loss however few have been validated. The aim of this study was to assess the accuracy of the most commonly used techniques for measuring glenoid bone loss on CT. Methods. Anatomically accurate models with known glenoid diameter and degree of bone loss were used to determine the mathematical and statistical accuracy of six of the most commonly described techniques (relative diameter, linear ipsilateral circle of best fit (COBF), linear contralateral COBF, Pico, Sugaya, and circle line methods). The models were prepared at 13.8%, 17.6%, and 22.9% bone loss. Sequential CT scans were taken and randomized. Blinded reviewers made repeated measurements using the different techniques with a threshold for theoretical bone grafting set at 15%. Results. At 13.8%, only the Pico technique measured under the threshold. At 17.6% and 22.9% bone loss all techniques measured above the threshold. The Pico technique was 97.1% accurate, but had a high false-negative rate and poor sensitivity underestimating the need for grafting. The Sugaya technique had 100% specificity but 25% of the measurements were incorrectly above the threshold. A contralateral COBF underestimates the area by 16% and the diameter by 5 to 7%. Conclusion. No one method stands out as being truly accurate and clinicians need to be aware of the limitations of their chosen technique. They are not interchangeable, and caution must be used when reading the literature as comparisons are not reliable. Cite this article: Bone Jt Open 2023;4(7):478–489


The Bone & Joint Journal
Vol. 102-B, Issue 8 | Pages 1041 - 1047
1 Aug 2020
Hamoodi Z Singh J Elvey MH Watts AC

Aims. The Wrightington classification system of fracture-dislocations of the elbow divides these injuries into six subtypes depending on the involvement of the coronoid and the radial head. The aim of this study was to assess the reliability and reproducibility of this classification system. Methods. This was a blinded study using radiographs and CT scans of 48 consecutive patients managed according to the Wrightington classification system between 2010 and 2018. Four trauma and orthopaedic consultants, two post CCT fellows, and one speciality registrar based in the UK classified the injuries. The seven observers reviewed preoperative radiographs and CT scans twice, with a minimum four-week interval. Radiographs and CT scans were reviewed separately. Inter- and intraobserver reliability were calculated using Fleiss and Cohen kappa coefficients. The Landis and Koch criteria were used to interpret the strength of the kappa values. Validity was assessed by calculating the percentage agreement against intraoperative findings. Results. Of the 48 patients, three (6%) had type A injury, 11 (23%) type B, 16 (33%) type B+, 16 (33%) Type C, two (4%) type D+, and none had a type D injury. All 48 patients had anteroposterior (AP) and lateral radiographs, 44 had 2D CT scans, and 39 had 3D reconstructions. The interobserver reliability kappa value was 0.52 for radiographs, 0.71 for 2D CT scans, and 0.73 for a combination of 2D and 3D reconstruction CT scans. The median intraobserver reliability was 0.75 (interquartile range (IQR) 0.62 to 0.79) for radiographs, 0.77 (IQR 0.73 to 0.94) for 2D CT scans, and 0.89 (IQR 0.77 to 0.93) for the combination of 2D and 3D reconstruction. Validity analysis showed that accuracy significantly improved when using CT scans (p = 0.018 and p = 0.028 respectively). Conclusion. The Wrightington classification system is a reliable and valid method of classifying fracture-dislocations of the elbow. CT scans are significantly more accurate than radiographs when identifying the pattern of injury, with good intra- and interobserver reproducibility. Cite this article: Bone Joint J 2020;102-B(8):1041–1047


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 912 - 919
1 Aug 2023
Cunningham LJ Walton M Bale S Trail IA

Aims. Reverse total shoulder arthroplasty (rTSA) can be used in complex cases when the glenoid requires reconstruction. In this study, a baseplate with composite bone autograft and a central trabecular titanium peg was implanted, and its migration was assessed for two years postoperatively using radiostereometric analysis (RSA). Methods. A total of 14 patients who underwent a rTSA with an autograft consented to participate. Of these, 11 had a primary rTSA using humeral head autograft and three had a revision rTSA with autograft harvested from the iliac crest. The mean age of the patients was 66 years (39 to 81). Tantalum beads were implanted in the scapula around the glenoid. RSA imaging (stereographic radiographs) was undertaken immediately postoperatively and at three, six, 12, and 24 months. Analysis was completed using model-based RSA software. Outcomes were collected preoperatively and at two years postoperatively, including the Oxford Shoulder Score, the American Shoulder and Elbow Score, and a visual analogue score for pain. A Constant score was also obtained for the assessment of strength and range of motion. Results. RSA analysis showed a small increase in all translation and rotational values up to six months postoperatively, consistent with settling of the implant. The mean values plateaued by 12 months, with no evidence of further migration. In four patients, there was significant variation outside the mean, which corresponded to postoperative complications. There was a significant improvement in the clinical and patient-reported outcomes from the preoperative values to those at two years postoperatively (p < 0.001). Conclusion. These findings show, using RSA, that a glenoid baseplate composite of a trabecular titanium peg with autograft stabilizes within the glenoid about 12 months after surgery, and reinforce findings from a previous study of this implant/graft with CT scans at two years postoperatively, indicating that this type of structural composite results in sound early fixation. Cite this article: Bone Joint J 2023;105-B(8):912–919


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1284 - 1292
1 Nov 2024
Moroder P Poltaretskyi S Raiss P Denard PJ Werner BC Erickson BJ Griffin JW Metcalfe N Siegert P

Aims. The objective of this study was to compare simulated range of motion (ROM) for reverse total shoulder arthroplasty (rTSA) with and without adjustment for scapulothoracic orientation in a global reference system. We hypothesized that values for simulated ROM in preoperative planning software with and without adjustment for scapulothoracic orientation would be significantly different. Methods. A statistical shape model of the entire humerus and scapula was fitted into ten shoulder CT scans randomly selected from 162 patients who underwent rTSA. Six shoulder surgeons independently planned a rTSA in each model using prototype development software with the ability to adjust for scapulothoracic orientation, the starting position of the humerus, as well as kinematic planes in a global reference system simulating previously described posture types A, B, and C. ROM with and without posture adjustment was calculated and compared in all movement planes. Results. All movement planes showed significant differences when comparing protocols with and without adjustment for posture. The largest mean difference was seen in external rotation, being 62° (SD 16°) without adjustment compared to 25° (SD 9°) with posture adjustment (p < 0.001), with the highest mean difference being 49° (SD 15°) in type C. Mean extension was 57° (SD 18°) without adjustment versus 24° (SD 11°) with adjustment (p < 0.001) and the highest mean difference of 47° (SD 18°) in type C. Mean abducted internal rotation was 69° (SD 11°) without adjustment versus 31° (SD 6°) with posture adjustment (p < 0.001), showing the highest mean difference of 51° (SD 11°) in type C. Conclusion. The present study demonstrates that accounting for scapulothoracic orientation has a significant impact on simulated ROM for rTSA in all motion planes, specifically rendering vastly lower values for external rotation, extension, and high internal rotation. The substantial differences observed in this study warrant a critical re-evaluation of all previously published studies that examined component choice and placement for optimized ROM in rTSA using conventional preoperative planning software. Cite this article: Bone Joint J 2024;106-B(11):1284–1292


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 964 - 969
1 Sep 2024
Wang YC Song JJ Li TT Yang D Lv ZB Wang ZY Zhang ZM Luo Y

Aims. To propose a new method for evaluating paediatric radial neck fractures and improve the accuracy of fracture angulation measurement, particularly in younger children, and thereby facilitate planning treatment in this population. Methods. Clinical data of 117 children with radial neck fractures in our hospital from August 2014 to March 2023 were collected. A total of 50 children (26 males, 24 females, mean age 7.6 years (2 to 13)) met the inclusion criteria and were analyzed. Cases were excluded for the following reasons: Judet grade I and Judet grade IVb (> 85° angulation) classification; poor radiograph image quality; incomplete clinical information; sagittal plane angulation; severe displacement of the ulna fracture; and Monteggia fractures. For each patient, standard elbow anteroposterior (AP) view radiographs and corresponding CT images were acquired. On radiographs, Angle P (complementary to the angle between the long axis of the radial head and the line perpendicular to the physis), Angle S (complementary to the angle between the long axis of the radial head and the midline through the proximal radial shaft), and Angle U (between the long axis of the radial head and the straight line from the distal tip of the capitellum to the coronoid process) were identified as candidates approximating the true coronal plane angulation of radial neck fractures. On the coronal plane of the CT scan, the angulation of radial neck fractures (CTa) was measured and served as the reference standard for measurement. Inter- and intraobserver reliabilities were assessed by Kappa statistics and intraclass correlation coefficient (ICC). Results. Angle U showed the strongest correlation with CTa (p < 0.001). In the analysis of inter- and intraobserver reliability, Kappa values were significantly higher for Angles S and U compared with Angle P. ICC values were excellent among the three groups. Conclusion. Angle U on AP view was the best substitute for CTa when evaluating radial neck fractures in children. Further studies are required to validate this method. Cite this article: Bone Joint J 2024;106-B(9):964–969


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1133 - 1140
1 Oct 2024
Olsen Kipp J Petersen ET Falstie-Jensen T Frost Teilmann J Zejden A Jellesen Åberg R de Raedt S Thillemann TM Stilling M

Aims. This study aimed to quantify the shoulder kinematics during an apprehension-relocation test in patients with anterior shoulder instability (ASI) and glenoid bone loss using the radiostereometric analysis (RSA) method. Kinematics were compared with the patient’s contralateral healthy shoulder. Methods. A total of 20 patients with ASI and > 10% glenoid bone loss and a healthy contralateral shoulder were included. RSA imaging of the patient’s shoulders was performed during a repeated apprehension-relocation test. Bone volume models were generated from CT scans, marked with anatomical coordinate systems, and aligned with the digitally reconstructed bone projections on the RSA images. The glenohumeral joint (GHJ) kinematics were evaluated in the anteroposterior and superoinferior direction of: the humeral head centre location relative to the glenoid centre; and the humeral head contact point location on the glenoid. Results. During the apprehension test, the centre of the humeral head was 1.0 mm (95% CI 0.0 to 2.0) more inferior on the glenoid for the ASI shoulder compared with the healthy shoulder. Furthermore, the contact point of the ASI shoulder was 1.4 mm (95% CI 0.3 to 2.5) more anterior and 2.0 mm (95% CI 0.8 to 3.1) more inferior on the glenoid compared with the healthy shoulder. The contact point of the ASI shoulder was 1.2 mm (95% CI 0.2 to 2.6) more anterior during the apprehension test compared to the relocation test. Conclusion. The humeral head centre was located more inferior, and the GHJ contact point was located both more anterior and inferior during the apprehension test for the ASI shoulders than the healthy shoulders. Furthermore, the contact point displacement between the apprehension and relocation test revealed increased joint laxity for the ASI shoulder than the healthy shoulders. These results contribute to existing knowledge that ASI shoulders with glenoid bone loss may also suffer from inferior shoulder instability. Cite this article: Bone Joint J 2024;106-B(10):1133–1140


Bone & Joint Open
Vol. 5, Issue 10 | Pages 929 - 936
22 Oct 2024
Gutierrez-Naranjo JM Salazar LM Kanawade VA Abdel Fatah EE Mahfouz M Brady NW Dutta AK

Aims. This study aims to describe a new method that may be used as a supplement to evaluate humeral rotational alignment during intramedullary nail (IMN) insertion using the profile of the perpendicular peak of the greater tuberosity and its relation to the transepicondylar axis. We called this angle the greater tuberosity version angle (GTVA). Methods. This study analyzed 506 cadaveric humeri of adult patients. All humeri were CT scanned using 0.625 × 0.625 × 0.625 mm cubic voxels. The images acquired were used to generate 3D surface models of the humerus. Next, 3D landmarks were automatically calculated on each 3D bone using custom-written C++ software. The anatomical landmarks analyzed were the transepicondylar axis, the humerus anatomical axis, and the peak of the perpendicular axis of the greater tuberosity. Lastly, the angle between the transepicondylar axis and the greater tuberosity axis was calculated and defined as the GTVA. Results. The value of GTVA was 20.9° (SD 4.7°) (95% CI 20.47° to 21.3°). Results of analysis of variance revealed that females had a statistically significant larger angle of 21.95° (SD 4.49°) compared to males, which were found to be 20.49° (SD 4.8°) (p = 0.001). Conclusion. This study identified a consistent relationship between palpable anatomical landmarks, enhancing IMN accuracy by utilizing 3D CT scans and replicating a 20.9° angle from the greater tuberosity to the transepicondylar axis. Using this angle as a secondary reference may help mitigate the complications associated with malrotation of the humerus following IMN. However, future trials are needed for clinical validation. Cite this article: Bone Jt Open 2024;5(10):929–936


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1165 - 1175
1 Oct 2024
Frost Teilmann J Petersen ET Thillemann TM Hemmingsen CK Olsen Kipp J Falstie-Jensen T Stilling M

Aims. The aim of this study was to evaluate the kinematics of the elbow following increasing length of the radius with implantation of radial head arthroplasties (RHAs) using dynamic radiostereometry (dRSA). Methods. Eight human donor arms were examined by dRSA during motor-controlled flexion and extension of the elbow with the forearm in an unloaded neutral position, and in pronation and supination with and without a 10 N valgus or varus load, respectively. The elbows were examined before and after RHA with stem lengths of anatomical size, + 2 mm, and + 4 mm. The ligaments were maintained intact by using a step-cut lateral humeral epicondylar osteotomy, allowing the RHAs to be repeatedly exchanged. Bone models were obtained from CT scans, and specialized software was used to match these models with the dRSA recordings. The flexion kinematics of the elbow were described using anatomical coordinate systems to define translations and rotations with six degrees of freedom. Results. The greatest kinematic changes in the elbows were seen with the longest, + 4 mm, implant, which imposed a mean joint distraction of 2.8 mm in the radiohumeral joint and of 1.1 mm in the ulnohumeral joint, an increased mean varus angle of up to 2.4° for both the radius and the ulna, a mean shift of the radius of 2.0 mm in the ulnar direction, and a mean shift of the ulna of 1.0 mm posteriorly. Conclusion. The kinematics of the elbow deviated increasingly from those of the native joint with a 2 mm to a 4 mm lengthening of the radius. This confirms the importance of restoring the natural length of the radius when undertaking RHA. Cite this article: Bone Joint J 2024;106-B(10):1165–1175


Bone & Joint Open
Vol. 2, Issue 7 | Pages 552 - 561
28 Jul 2021
Werthel J Boux de Casson F Burdin V Athwal GS Favard L Chaoui J Walch G

Aims. The aim of this study was to describe a quantitative 3D CT method to measure rotator cuff muscle volume, atrophy, and balance in healthy controls and in three pathological shoulder cohorts. Methods. In all, 102 CT scans were included in the analysis: 46 healthy, 21 cuff tear arthropathy (CTA), 18 irreparable rotator cuff tear (IRCT), and 17 primary osteoarthritis (OA). The four rotator cuff muscles were manually segmented and their volume, including intramuscular fat, was calculated. The normalized volume (NV) of each muscle was calculated by dividing muscle volume to the patient’s scapular bone volume. Muscle volume and percentage of muscle atrophy were compared between muscles and between cohorts. Results. Rotator cuff muscle volume was significantly decreased in patients with OA, CTA, and IRCT compared to healthy patients (p < 0.0001). Atrophy was comparable for all muscles between CTA, IRCT, and OA patients, except for the supraspinatus, which was significantly more atrophied in CTA and IRCT (p = 0.002). In healthy shoulders, the anterior cuff represented 45% of the entire cuff, while the posterior cuff represented 40%. A similar partition between anterior and posterior cuff was also found in both CTA and IRCT patients. However, in OA patients, the relative volume of the anterior (42%) and posterior cuff (45%) were similar. Conclusion. This study shows that rotator cuff muscle volume is significantly decreased in patients with OA, CTA, or IRCT compared to healthy patients, but that only minimal differences can be observed between the different pathological groups. This suggests that the influence of rotator cuff muscle volume and atrophy (including intramuscular fat) as an independent factor of outcome may be overestimated. Cite this article: Bone Jt Open 2021;2(7):552–561


The Bone & Joint Journal
Vol. 99-B, Issue 5 | Pages 674 - 679
1 May 2017
Nuttall D Birch A Haines JF Watts AC Trail IA

Aims. Radiostereometric analysis (RSA) allows an extremely accurate measurement of early micromotion of components following arthroplasty. . Patients and Methods. In this study, RSA was used to measure the migration of 11 partially cemented fluted pegged glenoid components in patients with osteoarthritis who underwent total shoulder arthroplasty using an improved surgical technique (seven men, four women, mean age 68). Patients were evaluated clinically using the American Shoulder and Elbow Surgeons (ASES) and Constant-Murley scores and by CT scans two years post-operatively. . Results. There were two patterns of migration, the first showing little, if any, migration and the second showing rotation by > 6° as early as three months post-operatively. At two years, these two groups could be confirmed on CT scans, one with osseointegration around the central peg, and the second with cystic changes. Patients with osteolysis around the central peg were those with early migration and those with osseointegration had minimal early migration. Both groups,however,had similar clinical results. . Conclusion. Rapid early migration associated with focal lucency and absence of osseointegration was observed in three of 11 glenoid components, suggesting that lack of initial stability leads to early movement and failure of osseointegration. Cite this article: Bone Joint J 2017;99-B:674–9


The Bone & Joint Journal
Vol. 102-B, Issue 2 | Pages 232 - 238
1 Feb 2020
Javed S Hadi S Imam MA Gerogiannis D Foden P Monga P

Aims. Accurate measurement of the glenoid version is important in performing total shoulder arthroplasty (TSA). Our aim was to evaluate the Ellipse method, which involves formally defining the vertical mid-point of the glenoid prior to measuring the glenoid version and comparing it with the ‘classic’ Friedman method. Methods. This was a retrospective study which evaluated 100 CT scans for patients who underwent a primary TSA. The glenoid version was measured using the Friedman and Ellipse methods by two senior observers. Statistical analyses were performed using the paired t-test for significance and the Bland-Altman plot for agreement. Results. The mean glenoid version was -3.11° (-23.8° to 17.9°) using the Friedman method and -1.95° (-29.8° to 24.6°) using the Ellipse method (p = 0.002). In 16 patients the difference between methods was greater than 5°, which we considered to be clinically significant. There was poor agreement between methods with relatively large 95% limits of agreement. There was excellent inter-rater agreement between the observers for the Ellipse method and similarly, the intrarater agreement was excellent with a repeatability coefficient of 0.94. Conclusion. We recommend the use of the Ellipse modification to define the mid glenoid point prior to measuring the glenoid version in patients undergoing TSA. Cite this article: Bone Joint J 2020;102-B(2):232–238


The Bone & Joint Journal
Vol. 98-B, Issue 3 | Pages 374 - 380
1 Mar 2016
Kocsis G Thyagarajan DS Fairbairn KJ Wallace WA

Aims. Glenoid bone loss can be a challenging problem when revising a shoulder arthroplasty. Precise pre-operative planning based on plain radiographs or CT scans is essential. We have investigated a new radiological classification system to describe the degree of medialisation of the bony glenoid and that will indicate the amount of bone potentially available for supporting a glenoid component. It depends on the relationship between the most medial part of the articular surface of the glenoid with the base of the coracoid process and the spinoglenoid notch: it classifies the degree of bone loss into three types. It also attempts to predict the type of glenoid reconstruction that may be possible (impaction bone grafting, structural grafting or simple non-augmented arthroplasty) and gives guidance about whether a pre-operative CT scan is indicated. Patients and Methods. Inter-method reliability between plain radiographs and CT scans was assessed retrospectively by three independent observers using data from 39 randomly selected patients. . Inter-observer reliability and test-retest reliability was tested on the same cohort using Cohen's kappa statistics. Correlation of the type of glenoid with the Constant score and its pain component was analysed using the Kruskal-Wallis method on data from 128 patients. Anatomical studies of the scapula were reviewed to explain the findings. Results. Excellent inter-method reliability, inter-observer and test-retest reliability were seen. The system did not correlate with the Constant score, but correlated well with its pain component. . Take home message: Our system of classification is a helpful guide to the degree of glenoid bone loss when embarking on revision shoulder arthroplasty. Cite this article: Bone Joint J 2016;98-B:374–80


The Bone & Joint Journal
Vol. 100-B, Issue 12 | Pages 1609 - 1617
1 Dec 2018
Malhas AM Granville-Chapman J Robinson PM Brookes-Fazakerley S Walton M Monga P Bale S Trail I

Aims. We present our experience of using a metal-backed prosthesis and autologous bone graft to treat gross glenoid bone deficiency. Patients and Methods. A prospective cohort study of the first 45 shoulder arthroplasties using the SMR Axioma Trabecular Titanium (TT) metal-backed glenoid with autologous bone graft. Between May 2013 and December 2014, 45 shoulder arthroplasties were carried out in 44 patients with a mean age of 64 years (35 to 89). The indications were 23 complex primary arthroplasties, 12 to revise a hemiarthroplasty or resurfacing, five for aseptic loosening of the glenoid, and five for infection. Results. Of the 45 patients, 16 had anatomical shoulder arthroplasties (ASA) and 29 had reverse shoulder arthroplasties (RSA). Postoperatively, 43/45 patients had a CT scan. In 41 of 43 patients (95%), the glenoid peg achieved > 50% integration. In 40 of 43 cases (93%), the graft was fully or partially integrated. There were seven revisions (16%) but only four (9%) required a change of baseplate. Four (25%) of the 16 ASAs were revised for instability or cuff failure. At two-year radiological follow-up, five of the 41 cases (11%) showed some evidence of lucent lines. Conclusion. The use of a metal baseplate with a trabecular titanium surface in conjunction with autologous bone graft is a reliable method of addressing glenoid bone defects in primary and revision RSA setting in the short term. ASAs have a higher rate of complications with this technique


The Bone & Joint Journal
Vol. 95-B, Issue 10 | Pages 1377 - 1382
1 Oct 2013
Walch G Mesiha M Boileau P Edwards TB Lévigne C Moineau G Young A

Osteoarthritis results in changes in the dimensions of the glenoid. This study aimed to assess the size and radius of curvature of arthritic glenoids. A total of 145 CT scans were analysed, performed as part of routine pre-operative assessment before total shoulder replacement in 91 women and 54 men. Only patients with primary osteoarthritis and a concentric glenoid were included in the study. The CT scans underwent three-dimensional (3D) reconstruction and were analysed using dedicated computer software. The measurements consisted of maximum superoinferior height, anteroposterior width and a best-fit sphere radius of curvature of the glenoid. The mean height was 40.2 mm (. sd. 4.9), the mean width was 29 mm (. sd. 4.3) and the mean radius of curvature was 35.4 mm (. sd. 7.8). The measurements were statistically different in men and women and had a Gaussian distribution with marked variation. All measurements were greater than the known values in normal subjects. With current shoulder replacement systems using a unique backside radius of curvature for the glenoid component, there is a risk of undertaking excessive reaming to adapt the bone to the component resulting in sacrifice of subchondral bone or under-reaming and instability of the component due to a ’rocking horse‘ phenomenon. . Cite this article: Bone Joint J 2013;95-B:1377–82


Bone & Joint Research
Vol. 8, Issue 8 | Pages 357 - 366
1 Aug 2019
Lädermann A Tay E Collin P Piotton S Chiu C Michelet A Charbonnier C

Objectives. To date, no study has considered the impact of acromial morphology on shoulder range of movement (ROM). The purpose of our study was to evaluate the effects of lateralization of the centre of rotation (COR) and neck-shaft angle (NSA) on shoulder ROM after reverse shoulder arthroplasty (RSA) in patients with different scapular morphologies. Methods. 3D computer models were constructed from CT scans of 12 patients with a critical shoulder angle (CSA) of 25°, 30°, 35°, and 40°. For each model, shoulder ROM was evaluated at a NSA of 135° and 145°, and lateralization of 0 mm, 5 mm, and 10 mm for seven standardized movements: glenohumeral abduction, adduction, forward flexion, extension, internal rotation with the arm at 90° of abduction, as well as external rotation with the arm at 10° and 90° of abduction. Results. CSA did not seem to influence ROM in any of the models, but greater lateralization achieved greater ROM for all movements in all configurations. Internal and external rotation at 90° of abduction were impossible in most configurations, except in models with a CSA of 25°. Conclusion. Postoperative ROM following RSA depends on multiple patient and surgical factors. This study, based on computer simulation, suggests that CSA has no influence on ROM after RSA, while lateralization increases ROM in all configurations. Furthermore, increasing subacromial space is important to grant sufficient rotation at 90° of abduction. In summary, increased lateralization of the COR and increased subacromial space improve ROM in all CSA configurations. Cite this article: A. Lädermann, E. Tay, P. Collin, S. Piotton, C-H Chiu, A. Michelet, C. Charbonnier. Effect of critical shoulder angle, glenoid lateralization, and humeral inclination on range of movement in reverse shoulder arthroplasty. Bone Joint Res 2019;8:378–386. DOI: 10.1302/2046-3758.88.BJR-2018-0293.R1


The Bone & Joint Journal
Vol. 98-B, Issue 8 | Pages 1080 - 1085
1 Aug 2016
Gauci MO Boileau P Baba M Chaoui J Walch G

Aims. Patient-specific glenoid guides (PSGs) claim an improvement in accuracy and reproducibility of the positioning of components in total shoulder arthroplasty (TSA). The results have not yet been confirmed in a prospective clinical trial. Our aim was to assess whether the use of PSGs in patients with osteoarthritis of the shoulder would allow accurate and reliable implantation of the glenoid component. Patients and Methods. A total of 17 patients (three men and 14 women) with a mean age of 71 years (53 to 81) awaiting TSA were enrolled in the study. Pre- and post-operative version and inclination of the glenoid were measured on CT scans, using 3D planning automatic software. During surgery, a congruent 3D-printed PSG was applied onto the glenoid surface, thus determining the entry point and orientation of the central guide wire used for reaming the glenoid and the introduction of the component. Manual segmentation was performed on post-operative CT scans to compare the planned and the actual position of the entry point (mm) and orientation of the component (°). Results. The mean error in the accuracy of the entry point was -0.1 mm (standard deviation (. sd. ) 1.4) in the horizontal plane, and 0.8 mm (. sd. 1.3) in the vertical plane. The mean error in the orientation of the glenoid component was 3.4° (. sd. 5.1°) for version and 1.8° (. sd. 5.3°) for inclination. Conclusion. Pre-operative planning with automatic software and the use of PSGs provides accurate and reproducible positioning and orientation of the glenoid component in anatomical TSA. Cite this article: Bone Joint J 2016;98-B:1080–5


The Bone & Joint Journal
Vol. 99-B, Issue 7 | Pages 927 - 933
1 Jul 2017
Poltaretskyi S Chaoui J Mayya M Hamitouche C Bercik MJ Boileau P Walch G

Aims. Restoring the pre-morbid anatomy of the proximal humerus is a goal of anatomical shoulder arthroplasty, but reliance is placed on the surgeon’s experience and on anatomical estimations. The purpose of this study was to present a novel method, ‘Statistical Shape Modelling’, which accurately predicts the pre-morbid proximal humeral anatomy and calculates the 3D geometric parameters needed to restore normal anatomy in patients with severe degenerative osteoarthritis or a fracture of the proximal humerus. Materials and Methods. From a database of 57 humeral CT scans 3D humeral reconstructions were manually created. The reconstructions were used to construct a statistical shape model (SSM), which was then tested on a second set of 52 scans. For each humerus in the second set, 3D reconstructions of four diaphyseal segments of varying lengths were created. These reconstructions were chosen to mimic severe osteoarthritis, a fracture of the surgical neck of the humerus and a proximal humeral fracture with diaphyseal extension. The SSM was then applied to the diaphyseal segments to see how well it predicted proximal morphology, using the actual proximal humeral morphology for comparison. Results. With the metaphysis included, mimicking osteoarthritis, the errors of prediction for retroversion, inclination, height, radius of curvature and posterior and medial offset of the head of the humerus were 2.9° (± 2.3°), 4.0° (± 3.3°), 1.0 mm (± 0.8 mm), 0.8 mm (± 0.6 mm), 0.7 mm (± 0.5 mm) and 1.0 mm (± 0.7 mm), respectively. With the metaphysis excluded, mimicking a fracture of the surgical neck, the errors of prediction for retroversion, inclination, height, radius of curvature and posterior and medial offset of the head of the humerus were 3.8° (± 2.9°), 3.9° (± 3.4°), 2.4 mm (± 1.9 mm), 1.3 mm (± 0.9 mm), 0.8 mm (± 0.5 mm) and 0.9 mm (± 0.6 mm), respectively. Conclusion. This study reports a novel, computerised method that accurately predicts the pre-morbid proximal humeral anatomy even in challenging situations. This information can be used in the surgical planning and operative reconstruction of patients with severe degenerative osteoarthritis or with a fracture of the proximal humerus. Cite this article: Bone Joint J 2017;99-B:927–33


The Bone & Joint Journal
Vol. 97-B, Issue 11 | Pages 1539 - 1545
1 Nov 2015
Lenoir H Chammas M Micallef JP Lazerges C Waitzenegger T Coulet B

Determining and accurately restoring the flexion-extension axis of the elbow is essential for functional recovery after total elbow arthroplasty (TEA). We evaluated the effect of morphological features of the elbow on variations of alignment of the components at TEA. Morphological and positioning variables were compared by systematic CT scans of 22 elbows in 21 patients after TEA. There were five men and 16 women, and the mean age was 63 years (38 to 80). The mean follow-up was 22 months (11 to 44). The anterior offset and version of the humeral components were significantly affected by the anterior angulation of the humerus (p = 0.052 and p = 0.004, respectively). The anterior offset and version of the ulnar components were strongly significantly affected by the anterior angulation of the ulna (p < 0.001 and p < 0.001). The closer the anterior angulation of the ulna was to the joint, the lower the ulnar anterior offset (p = 0.030) and version of the ulnar component (p = 0.010). The distance from the joint to the varus angulation also affected the lateral offset of the ulnar component (p = 0.046). Anatomical variations at the distal humerus and proximal ulna affect the alignment of the components at TEA. This is explained by abutment of the stems of the components and is particularly severe when there are substantial deformities or the deformities are close to the joint. Cite this article: Bone Joint J 2015;97-B:1539–45


The Bone & Joint Journal
Vol. 100-B, Issue 2 | Pages 212 - 218
1 Feb 2018
Jungbluth P Tanner S Schneppendahl J Grassmann J Wild M Hakimi M Windolf J Laun R

Aims. The aim of this retrospective multicentre study was to evaluate mid-term results of the operative treatment of Monteggia-like lesions and to determine the prognostic factors that influence the clinical and radiological outcome. Patients and Methods. A total of 46 patients (27 women and 19 men), with a mean age of 57.7 years (18 to 84) who had sustained a Monteggia-like lesion were followed up clinically and radiologically after surgical treatment. The Mayo Modified Wrist Score (MMWS), Mayo Elbow Performance Score (MEPS), Broberg and Morrey Score, and Disabilities of the Arm, Shoulder and Hand (DASH) score were used for evaluation at a mean of 65 months (27 to 111) postoperatively. All ulnar fractures were stabilized using a proximally contoured or precontoured locking compression plate. Mason type I fractures of the radial head were treated conservatively, type II fractures were treated with reconstruction, and type III fractures with arthroplasty. All Morrey type II and III fractures of the coronoid process was stabilized using lag screws. Results. Good results were found for the MMWS, with a mean of 88.4 (40 to 100). There were 29 excellent results (63%), nine good (20%), seven satisfactory (15%), and one poor (2%). Excellent results were obtained for the MEPS, with a mean of 90.7 (70 to 100): 31 excellent results (68%), 13 good (28%), and two fair (4%). Good results were also found for the functional rating index of Broberg and Morrey, with a mean score of 86.6 (57 to 100). There were 16 excellent results (35%), 22 good (48%), six fair (13%), and two poor (4%). The mean DASH score was 15.1 (0 to 55.8). Two patients had delayed wound healing; four patients had nonunion requiring bone grafting. One patient had asymptomatic loosening of the radial head prosthesis. Conclusion. Monteggia-like lesions are rare. With correct identification, classification, and understanding using CT scans followed by appropriate surgical treatment that addresses all components of the injury, good to excellent mid-term results can be achieved. Cite this article: Bone Joint J 2018;100-B:212–18


The Bone & Joint Journal
Vol. 106-B, Issue 3 | Pages 268 - 276
1 Mar 2024
Park JH Lee JH Kim DY Kim HG Kim JS Lee SM Kim SC Yoo JC

Aims

This study aimed to assess the impact of using the metal-augmented glenoid baseplate (AGB) on improving clinical and radiological outcomes, as well as reducing complications, in patients with superior glenoid wear undergoing reverse shoulder arthroplasty (RSA).

Methods

From January 2016 to June 2021, out of 235 patients who underwent primary RSA, 24 received a superior-AGB after off-axis reaming (Group A). Subsequently, we conducted propensity score matching in a 1:3 ratio, considering sex, age, follow-up duration, and glenoid wear (superior-inclination and retroversion), and selected 72 well-balanced matched patients who received a standard glenoid baseplate (STB) after eccentric reaming (Group B). Superior-inclination, retroversion, and lateral humeral offset (LHO) were measured to assess preoperative glenoid wear and postoperative correction, as well as to identify any complications. Clinical outcomes were measured at each outpatient visit before and after surgery.