Advertisement for orthosearch.org.uk
Results 1 - 20 of 269
Results per page:
Bone & Joint Open
Vol. 4, Issue 11 | Pages 873 - 880
17 Nov 2023
Swaby L Perry DC Walker K Hind D Mills A Jayasuriya R Totton N Desoysa L Chatters R Young B Sherratt F Latimer N Keetharuth A Kenison L Walters S Gardner A Ahuja S Campbell L Greenwood S Cole A

Aims. Scoliosis is a lateral curvature of the spine with associated rotation, often causing distress due to appearance. For some curves, there is good evidence to support the use of a spinal brace, worn for 20 to 24 hours a day to minimize the curve, making it as straight as possible during growth, preventing progression. Compliance can be poor due to appearance and comfort. A night-time brace, worn for eight to 12 hours, can achieve higher levels of curve correction while patients are supine, and could be preferable for patients, but evidence of efficacy is limited. This is the protocol for a randomized controlled trial of ‘full-time bracing’ versus ‘night-time bracing’ in adolescent idiopathic scoliosis (AIS). Methods. UK paediatric spine clinics will recruit 780 participants aged ten to 15 years-old with AIS, Risser stage 0, 1, or 2, and curve size (Cobb angle) 20° to 40° with apex at or below T7. Patients are randomly allocated 1:1, to either full-time or night-time bracing. A qualitative sub-study will explore communication and experiences of families in terms of bracing and research. Patient and Public Involvement & Engagement informed study design and will assist with aspects of trial delivery and dissemination. Discussion. The primary outcome is ‘treatment failure’ (Cobb angle progression to 50° or more before skeletal maturity); skeletal maturity is at Risser stage 4 in females and 5 in males, or ‘treatment success’ (Cobb angle less than 50° at skeletal maturity). The comparison is on a non-inferiority basis (non-inferiority margin 11%). Participants are followed up every six months while in brace, and at one and two years after skeletal maturity. Secondary outcomes include the Scoliosis Research Society 22 questionnaire and measures of quality of life, psychological effects of bracing, adherence, anxiety and depression, sleep, satisfaction, and educational attainment. All data will be collected through the British Spine Registry. Cite this article: Bone Jt Open 2023;4(11):873–880


The Bone & Joint Journal
Vol. 95-B, Issue 10 | Pages 1308 - 1316
1 Oct 2013
Stokes OM Luk KDK

Adolescent idiopathic scoliosis affects about 3% of children. Non-operative measures are aimed at altering the natural history to maintain the size of the curve below 40° at skeletal maturity. The application of braces to treat spinal deformity pre-dates the era of evidence-based medicine, and there is a paucity of irrefutable prospective evidence in the literature to support their use and their effectiveness has been questioned. This review considers this evidence. The weight of the evidence is in favour of bracing over observation. The most recent literature has moved away from addressing this question, and instead focuses on developments in the design of braces and ways to improve compliance. Cite this article: Bone Joint J 2013;95-B:1308–16


The Bone & Joint Journal
Vol. 106-B, Issue 3 | Pages 286 - 292
1 Mar 2024
Tang S Cheung JPY Cheung PWH

Aims. To systematically evaluate whether bracing can effectively achieve curve regression in patients with adolescent idiopathic scoliosis (AIS), and to identify any predictors of curve regression after bracing. Methods. Two independent reviewers performed a comprehensive literature search in PubMed, Ovid, Web of Science, Scopus, and Cochrane Library to obtain all published information about the effectiveness of bracing in achieving curve regression in AIS patients. Search terms included “brace treatment” or “bracing,” “idiopathic scoliosis,” and “curve regression” or “curve reduction.” Inclusion criteria were studies recruiting patients with AIS undergoing brace treatment and one of the study outcomes must be curve regression or reduction, defined as > 5° reduction in coronal Cobb angle of a major curve upon bracing completion. Exclusion criteria were studies including non-AIS patients, studies not reporting p-value or confidence interval, animal studies, case reports, case series, and systematic reviews. The GRADE approach to assessing quality of evidence was used to evaluate each publication. Results. After abstract and full-text screening, 205 out of 216 articles were excluded. The 11 included studies all reported occurrence of curve regression among AIS patients who were braced. Regression rate ranged from 16.7% to 100%. We found evidence that bracing is effective in achieving curve regression among compliant AIS patients eligible for bracing, i.e. curves of 25° to 40°. A similar effect was also found in patients with major curve sizes ranging from 40° to 60° when combined with scoliosis-specific exercises. There was also evidence showing that a low apical vertebral body height ratio, in-brace correction, smaller pre-brace Cobb angle, and daily pattern of brace-wear compliance predict curve regression after bracing. Conclusion. Bracing provides a corrective effect on scoliotic curves of AIS patients to achieve curve regression, given there is high compliance rate and the incorporation of exercises. Cite this article: Bone Joint J 2024;106-B(3):286–292


The Bone & Joint Journal
Vol. 101-B, Issue 10 | Pages 1370 - 1378
1 Oct 2019
Cheung JPY Chong CHW Cheung PWH

Aims. The aim of this study was to determine the influence of pelvic parameters on the tendency of patients with adolescent idiopathic scoliosis (AIS) to develop flatback deformity (thoracic hypokyphosis and lumbar hypolordosis) and its effect on quality-of-life outcomes. Patients and Methods. This was a radiological study of 265 patients recruited for Boston bracing between December 2008 and December 2013. Posteroanterior and lateral radiographs were obtained before, immediately after, and two-years after completion of bracing. Measurements of coronal and sagittal Cobb angles, coronal balance, sagittal vertical axis, and pelvic parameters were made. The refined 22-item Scoliosis Research Society (SRS-22r) questionnaire was recorded. Association between independent factors and outcomes of postbracing ≥ 6° kyphotic changes in the thoracic spine and ≥ 6° lordotic changes in the lumbar spine were tested using likelihood ratio chi-squared test and univariable logistic regression. Multivariable logistic regression models were then generated for both outcomes with odds ratios (ORs), and with SRS-22r scores. Results. Reduced T5-12 kyphosis (mean -4.3° (. sd. 8.2); p < 0.001), maximum thoracic kyphosis (mean -4.3° (. sd. 9.3); p < 0.001), and lumbar lordosis (mean -5.6° (. sd. 12.0); p < 0.001) were observed after bracing treatment. Increasing prebrace maximum kyphosis (OR 1.133) and lumbar lordosis (OR 0.92) was associated with postbracing hypokyphotic change. Prebrace sagittal vertical axis (OR 0.975), prebrace sacral slope (OR 1.127), prebrace pelvic tilt (OR 0.940), and change in maximum thoracic kyphosis (OR 0.878) were predictors for lumbar hypolordotic changes. There were no relationships between coronal deformity, thoracic kyphosis, or lumbar lordosis with SRS-22r scores. Conclusion. Brace treatment leads to flatback deformity with thoracic hypokyphosis and lumbar hypolordosis. Changes in the thoracic spine are associated with similar changes in the lumbar spine. Increased sacral slope, reduced pelvic tilt, and pelvic incidence are associated with reduced lordosis in the lumbar spine after bracing. Nevertheless, these sagittal parameter changes do not appear to be associated with worse quality of life. Cite this article: Bone Joint J 2019;101-B:1370–1378


The Bone & Joint Journal
Vol. 104-B, Issue 4 | Pages 495 - 503
1 Apr 2022
Wong LPK Cheung PWH Cheung JPY

Aims. The aim of this study was to assess the ability of morphological spinal parameters to predict the outcome of bracing in patients with adolescent idiopathic scoliosis (AIS) and to establish a novel supine correction index (SCI) for guiding bracing treatment. Methods. Patients with AIS to be treated by bracing were prospectively recruited between December 2016 and 2018, and were followed until brace removal. In all, 207 patients with a mean age at recruitment of 12.8 years (SD 1.2) were enrolled. Cobb angles, supine flexibility, and the rate of in-brace correction were measured and used to predict curve progression at the end of follow-up. The SCI was defined as the ratio between correction rate and flexibility. Receiver operating characteristic (ROC) curve analysis was carried out to assess the optimal thresholds for flexibility, correction rate, and SCI in predicting a higher risk of progression, defined by a change in Cobb angle of ≥ 5° or the need for surgery. Results. The baseline Cobb angles were similar (p = 0.374) in patients whose curves progressed (32.7° (SD 10.7)) and in those whose curves remained stable (31.4° (SD 6.1)). High supine flexibility (odds ratio (OR) 0.947 (95% CI 0.910 to 0.984); p = 0.006) and correction rate (OR 0.926 (95% CI 0.890 to 0.964); p < 0.001) predicted a lower incidence of progression after adjusting for Cobb angle, Risser sign, curve type, menarche status, distal radius and ulna grading, and brace compliance. ROC curve analysis identified a cut-off of 18.1% for flexibility (sensitivity 0.682, specificity 0.704) and a cut-off of 28.8% for correction rate (sensitivity 0.773, specificity 0.691) in predicting a lower risk of curve progression. A SCI of greater than 1.21 predicted a lower risk of progression (OR 0.4 (95% CI 0.251 to 0.955); sensitivity 0.583, specificity 0.591; p = 0.036). Conclusion. A higher supine flexibility (18.1%) and correction rate (28.8%), and a SCI of greater than 1.21 predicted a lower risk of progression. These novel parameters can be used as a guide to optimize the outcome of bracing. Cite this article: Bone Joint J 2022;104-B(4):495–503


The Bone & Joint Journal
Vol. 102-B, Issue 2 | Pages 254 - 260
1 Feb 2020
Cheung JPY Cheung PWH

Aims. The aim of this study was to assess whether supine flexibility predicts the likelihood of curve progression in patients with adolescent idiopathic scoliosis (AIS) undergoing brace treatment. Methods. This was a retrospective analysis of patients with AIS prescribed with an underarm brace between September 2008 to April 2013 and followed up until 18 years of age or required surgery. Patients with structural proximal curves that preclude underarm bracing, those who were lost to follow-up, and those who had poor compliance to bracing (<16 hours a day) were excluded. The major curve Cobb angle, curve type, and location were measured on the pre-brace standing posteroanterior (PA) radiograph, supine whole spine radiograph, initial in-brace standing PA radiograph, and the post-brace weaning standing PA radiograph. Validation of the previous in-brace Cobb angle regression model was performed. The outcome of curve progression post-bracing was tested using a logistic regression model. The supine flexibility cut-off for curve progression was analyzed with receiver operating characteristic curve. Results. A total of 586 patients with mean age of 12.6 years (SD 1.2) remained for analysis after exclusion. The baseline Cobb angle was similar for thoracic major curves (31.6° (SD 3.8°)) and lumbar major curves (30.3° (SD 3.7°)). Curve progression was more common in the thoracic curves than lumbar curves with mean final Cobb angles of 40.5° (SD 12.5°) and 31.8° (SD 9.8°) respectively. This dataset matched the prediction model for in-brace Cobb angle with less mean absolute error in thoracic curves (0.61) as compared to lumbar curves (1.04). Reduced age and Risser stage, thoracic curves, increased pre-brace Cobb angle, and reduced correction and flexibility rates predicted increased likelihood of curve progression. Flexibility rate of more than 28% has likelihood of preventing curve progression with bracing. Conclusion. Supine radiographs provide satisfactory prediction for in-brace correction and post-bracing curve magnitude. The flexibility of the curve is a guide to determine the likelihood for brace success. Cite this article: Bone Joint J 2020;102-B(2):254–260


The Bone & Joint Journal
Vol. 97-B, Issue 7 | Pages 973 - 981
1 Jul 2015
Fong DYT Cheung KMC Wong YW Cheung WY Fu ICY Kuong EE Mak KC To M Samartzis D Luk KDK

Randomised controlled trials (RCTs) that assessed the efficacy of bracing for adolescent idiopathic scoliosis have suffered from small sample sizes, low compliance and lack of willingness to participate. The aim of this study was to assess the feasibility of a comprehensive cohort study for evaluating both the efficacy and the effectiveness of bracing in patients with adolescent idiopathic scoliosis. Patients with curves at greater risk of progression were invited to join a randomised controlled trial. Those who declined were given the option to remain in the study and to choose whether they wished to be braced or observed. Of 87 eligible patients (5 boys and 63 girls) identified over one year, 68 (78%) with mean age of 12.5 years (10 to 15) consented to participate, with a mean follow-up of 168 weeks (0 to 290). Of these, 19 (28%) accepted randomisation. Of those who declined randomisation, 18 (37%) chose a brace. Patients who were more satisfied with their image were more likely to choose bracing (Odds Ratio 4.1; 95% confidence interval 1.1 to 15.0; p = 0.035). This comprehensive cohort study design facilitates the assessment of both efficacy and effectiveness of bracing in patients with adolescent idiopathic scoliosis, which is not feasible in a conventional randomised controlled trial. Cite this article: Bone Joint J 2015; 97-B:973–81


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 7 | Pages 918 - 921
1 Jul 2009
Finestone A Milgrom C Radeva-Petrova DR Rath E Barchilon V Beyth S Jaber S Safran O

We undertook a prospective study in 51 male patients aged between 17 and 27 years to ascertain whether immobilisation after primary traumatic anterior dislocation of the shoulder in external rotation was more effective than immobilisation in internal rotation in preventing recurrent dislocation in a physically active population. Of the 51 patients, 24 were randomised to be treated by a traditional brace in internal rotation and 27 were immobilised in external rotation of 15° to 20°. After immobilisation, the patients undertook a standard regime of physiotherapy and were then assessed clinically for evidence of instability. When reviewed at a mean of 33.4 months (24 to 48) ten from the external rotation group (37%) and ten from the internal rotation group (41.7%) had sustained a futher dislocation. There was no statistically significant difference (p = 0.74) between the groups. Our findings show that external rotation bracing may not be as effective as previously reported in preventing recurrent anterior dislocation of the shoulder


The Journal of Bone & Joint Surgery British Volume
Vol. 69-B, Issue 1 | Pages 13 - 16
1 Jan 1987
Christodoulou A Prince H Webb J Burwell R

Fifty patients with adolescent idiopathic scoliosis treated by posterior fusion and Harrington instrumentation augmented by a Cotrel bar or by sublaminal Luque wires were studied in a prospective trial to ascertain the need for postoperative bracing. Twenty-five patients wore a plaster brace postoperatively for six months, while 25 were managed without a brace. The mean loss of correction from the first standing postoperative radiograph to one obtained two years later was 7 degrees in the braced group, and 6.3 degrees in the unbraced group, the difference not being statistically significant. We conclude that postoperative bracing is unnecessary after augmented Harrington instrumentation


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 89 - 94
1 Jan 2016
Cherian JJ Jauregui JJ Leichliter AK Elmallah RK Bhave A Mont MA

The purpose of this study was to evaluate the effect of various non-operative modalities of treatment (transcutaneous electrical nerve stimulation (TENS); neuromuscular electrical stimulation (NMES); insoles and bracing) on the pain of osteoarthritis (OA) of the knee. . We conducted a systematic review according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines to identify the therapeutic options which are commonly adopted for the management of osteoarthritis (OA) of the knee. The outcome measurement tools used in the different studies were the visual analogue scale and The Western Ontario and McMaster Universities Arthritis Index pain index: all pain scores were converted to a 100-point scale. . A total of 30 studies met our inclusion criteria: 13 on insoles, seven on TENS, six on NMES, and four on bracing. The standardised mean difference (SMD) in pain after treatment with TENS was 1.796, which represented a significant reduction in pain. The significant overall effect estimate for NMES on pain was similar to that of TENS, with a SMD of 1.924. The overall effect estimate of insoles on pain was a SMD of 0.992. The overall effect of bracing showed a significant reduction in pain of 1.34. . Overall, all four non-operative modalities of treatment were found to have a significant effect on the reduction of pain in OA of the knee. . This study shows that non-operative physical modalities of treatment are of benefit when treating OA of the knee. However, much of the literature reviewed evaluates studies with follow-up of less than six months: future work should aim to evaluate patients with longer follow-up. Cite this article: Bone Joint J 2016;98-B(1 Suppl A):89–94


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 5 | Pages 684 - 689
1 May 2012
Tsirikos AI Smith G

We reviewed 31 consecutive patients with Friedreich’s ataxia and scoliosis. There were 24 males and seven females with a mean age at presentation of 15.5 years (8.6 to 30.8) and a mean curve of 51° (13° to 140°). A total of 12 patients had thoracic curvatures, 11 had thoracolumbar and eight had double thoracic/lumbar. Two patients had long thoracolumbar collapsing scoliosis with pelvic obliquity and four had hyperkyphosis. Left-sided thoracic curves in nine patients (45%) and increased thoracic kyphosis differentiated these deformities from adolescent idiopathic scoliosis. There were 17 patients who underwent a posterior instrumented spinal fusion at mean age of 13.35 years, which achieved and maintained good correction of the deformity. Post-operative complications included one death due to cardiorespiratory failure, one revision to address nonunion and four patients with proximal junctional kyphosis who did not need extension of the fusion. There were no neurological complications and no wound infections. The rate of progression of the scoliosis in children kept under simple observation and those treated with bracing was less for lumbar curves during bracing and similar for thoracic curves. The scoliosis progressed in seven of nine children initially treated with a brace who later required surgery. Two patients presented after skeletal maturity with balanced curves not requiring correction. Three patients with severe deformities who would benefit from corrective surgery had significant cardiac co-morbidities


Aims

The aim of this study was to review the current evidence surrounding curve type and morphology on curve progression risk in adolescent idiopathic scoliosis (AIS).

Methods

A comprehensive search was conducted by two independent reviewers on PubMed, Embase, Medline, and Web of Science to obtain all published information on morphological predictors of AIS progression. Search items included ‘adolescent idiopathic scoliosis’, ‘progression’, and ‘imaging’. The inclusion and exclusion criteria were carefully defined. Risk of bias of studies was assessed with the Quality in Prognostic Studies tool, and level of evidence for each predictor was rated with the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach. In all, 6,286 publications were identified with 3,598 being subjected to secondary scrutiny. Ultimately, 26 publications (25 datasets) were included in this review.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 2 | Pages 141 - 148
1 Feb 2006
Sarmiento A Latta L


The Journal of Bone & Joint Surgery British Volume
Vol. 63-B, Issue 1 | Pages 1 - 2
1 Feb 1981
Roper B


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 1 | Pages 152 - 152
1 Jan 2003
Rowley DI


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 2 | Pages 193 - 198
1 Mar 1999
Dickson RA Weinstein SL


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 7 | Pages 1001 - 1005
1 Sep 2000
Draper ERC Cable JM Sanchez-Ballester J Hunt N Robinson JR Strachan RK

The use of a valgus brace can effectively relieve the symptoms of unicompartmental osteoarthritis of the knee. This study provides an objective measurement of function by analysis of gait symmetry. This was measured in 30 patients on four separate occasions: immediately before and after initial fitting and then again at three months with the brace on and off. All patients reported immediate symptomatic improvement with less pain on walking. After fitting the brace, symmetry indices of stance and the swing phase of gait showed a consistent and immediate improvement at 0 and 3 months, respectively, of 3.92% (p = 0.030) and 3.40% (p = 0.025) in the stance phase and 11.78% (p = 0.020) and 9.58% (p = 0.005) in the swing phase. This was confirmed by a significant improvement at three months in the mean Hospital for Special Surgery (HSS) knee score from 69.9 to 82.0 (p < 0.001). Thus, wearing a valgus brace gives a significant and immediate improvement in the function of patients with unicompartmental osteoarthritis of the knee, as measured by analysis of gait symmetry.


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 1 | Pages 169 - 169
1 Jan 1996
Kenwright J


The Journal of Bone & Joint Surgery British Volume
Vol. 72-B, Issue 2 | Pages 283 - 287
1 Mar 1990
Sarmiento A Horowitch A Aboulafia A Vangsness C

From 1982 to 1987 we treated 85 extra-articular comminuted distal third humeral fractures in adults with prefabricated plastic braces. Of these, 15% were open fractures and 18% had initial peripheral nerve injury. On average, the sleeve was applied 12 days after injury and used for 10 weeks. There was 96% union, with no infections. All nerve injuries resolved or were improving at the latest examination. At union there was varus deformity averaging 9 degrees in 81% of patients, but loss of range of movement was minimal and functional results were good.


The Bone & Joint Journal
Vol. 105-B, Issue 12 | Pages 1327 - 1332
1 Dec 2023
Morris WZ Kak A Mayfield LM Kang MS Jo C Kim HKW

Aims. Abduction bracing is commonly used to treat developmental dysplasia of the hip (DDH) following closed reduction and spica casting, with little evidence to support or refute this practice. The purpose of this study was to determine the efficacy of abduction bracing after closed reduction in improving acetabular index (AI) and reducing secondary surgery for residual hip dysplasia. Methods. We performed a retrospective review of patients treated with closed reduction for DDH at a single tertiary referral centre. Demographic data were obtained including severity of dislocation based on the International Hip Dysplasia Institute (IHDI) classification, age at reduction, and casting duration. Patients were prescribed no abduction bracing, part-time, or full-time wear post-reduction and casting. AI measurements were obtained immediately upon cast removal and from two- and four-year follow-up radiographs. Results. A total of 243 hips underwent closed reduction and 82% (199/243) were treated with abduction bracing. There was no difference between those treated with or without bracing with regard to sex, age at reduction, severity of dislocation, spica duration, or immediate post-casting AI (all p > 0.05). There was no difference in hips treated with or without abduction brace with regard to AI at two years post-reduction (32.4° (SD 5.3°) vs 30.9° (SD 4.6°), respectively; p = 0.099) or at four years post-reduction (26.4° (SD 5.2°) vs 25.4° (SD 5.1°), respectively; p = 0.231). Multivariate analysis revealed only IHDI grade predicted AI at two years post-reduction (p = 0.004). There was no difference in overall rate of secondary surgery for residual dysplasia between hips treated with or without bracing (32% vs 39%, respectively; p = 0.372). However, there was an increased risk of early secondary surgery (< two years post-reduction) in the non-braced group (11.4% vs 2.5%; p = 0.019). Conclusion. Abduction bracing following closed reduction for DDH treatment is not associated with decreased residual dysplasia at two or four years post-reduction but may reduce rates of early secondary surgery. A prospective study is indicated to provide more definitive recommendations. Cite this article: Bone Joint J 2023;105-B(12):1327–1332