Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Bone & Joint Research
Vol. 6, Issue 3 | Pages 132 - 136
1 Mar 2017
Yuenyongviwat V Ingviya N Pathaburee P Tangtrakulwanich B

Objectives

Vancomycin and fosfomycin are antibiotics commonly used to treat methicillin-resistant Staphylococcus aureus (MRSA) infection. This study compares the in vitro inhibitory effects against MRSA of articulating cement spacers impregnated with either vancomycin or fosfomycin.

Methods

Vancomycin-impregnated articulating cement spacers and fosfomycin-impregnated articulating cement spacers were immersed in sterile phosphate-buffered saline (PBS) solutions and then incubated. Samples were collected for bioactivity evaluation. The aliquots were tested for MRSA inhibition with the disc diffusion method, and the inhibition zone diameters were measured. The inhibition zone differences were evaluated using the Wilcoxon Rank Sum Test.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 2 | Pages 272 - 276
1 Feb 2005
Hendriks JGE Neut D van Horn JR van der Mei HC Busscher HJ

Clinical experience indicates the beneficial effects of antibiotic-loaded bone cement. Although in vitro studies have shown the formation of a biofilm on its surface they have not considered the gap between the cement and the bone. We have investigated bacterial survival in that gap. Samples with gaps 200 μm wide were made of different bone cements. These were stored dry (‘pre-elution’) or submersed in phosphate-buffered saline to simulate the initial release of gentamicin (‘post-elution’). The gaps were subsequently inoculated with bacteria, which had been isolated from infected orthopaedic prostheses and assessed for their sensitivity to gentamicin. Bacterial survival was measured 24 hours after inoculation. All the strains survived in plain cements. In the pre-elution gentamicin-loaded cements only the most gentamicin-resistant strain, CN5115, survived, but in post-elution samples more strains did so, depending on the cement tested. Although high concentrations of gentamicin were demonstrated in the gaps only the gentamicin-sensitive strains were killed. This could explain the increased prevalence of gentamicin-resistant infections which are seen clinically.


Bone & Joint Research
Vol. 3, Issue 8 | Pages 246 - 251
1 Aug 2014
Chang YH Tai CL Hsu HY Hsieh PH Lee MS Ueng SWN

Objectives

The objective of this study was to compare the elution characteristics, antimicrobial activity and mechanical properties of antibiotic-loaded bone cement (ALBC) loaded with powdered antibiotic, powdered antibiotic with inert filler (xylitol), or liquid antibiotic, particularly focusing on vancomycin and amphotericin B.

Methods

Cement specimens loaded with 2 g of vancomycin or amphotericin B powder (powder group), 2 g of antibiotic powder and 2 g of xylitol (xylitol group) or 12 ml of antibiotic solution containing 2 g of antibiotic (liquid group) were tested.


Bone & Joint Research
Vol. 2, Issue 10 | Pages 220 - 226
1 Oct 2013
Chang Y Tai C Hsieh P Ueng SWN

Objectives

The objective of this study is to determine an optimal antibiotic-loaded bone cement (ALBC) for infection prophylaxis in total joint arthroplasty (TJA).

Methods

We evaluated the antibacterial effects of polymethylmethacrylate (PMMA) bone cements loaded with vancomycin, teicoplanin, ceftazidime, imipenem, piperacillin, gentamicin, and tobramycin against methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant Staph. aureus (MRSA), coagulase-negative staphylococci (CoNS), Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Standardised cement specimens made from 40 g PMMA loaded with 1 g antibiotics were tested for elution characteristics, antibacterial activities, and compressive strength in vitro.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 11 | Pages 1568 - 1574
1 Nov 2005
Day RE Megson S Wood D

Allograft bone is widely used in orthopaedic surgery, but peri-operative infection of the graft remains a common and disastrous complication. The efficacy of systemic prophylactic antibiotics is unproven, and since the graft is avascular it is likely that levels of antibiotic in the graft are low.

Using an electrical potential to accelerate diffusion of antibiotics into allograft bone, high levels were achieved in specimens of both sheep and human allograft. In human bone these ranged from 187.1 mg/kg in endosteal (sd 15.7) to 124.6 (sd 46.2) in periosteal bone for gentamicin and 31.9 (sd 8.9) in endosteal and 2.9 (sd 1.1) in periosteal bone for flucloxacillin. The antibiotics remained active against bacteria in vitro after iontophoresis and continued to elute from the allograft for up to two weeks.

Structural allograft can be supplemented directly with antibiotics using iontophoresis. The technique is simple and inexpensive and offers a potential means of reducing the rate of peri-operative infection in allograft surgery. Iontophoresis into allograft bone may also be applicable to other therapeutic compounds.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 8 | Pages 1106 - 1109
1 Aug 2009
Branstetter JG Jackson SR Haggard WO Richelsoph KC Wenke JC

We used a goat model of a contaminated musculoskeletal defect to determine the effectiveness of rapidly-resorbing calcium-sulphate pellets containing amikacin to reduce the local bacterial count. Our findings showed that this treatment eradicated the bacteria quickly, performed as well as standard polymethylmethacrylate mixed with an antibiotic and had many advantages over the latter. The pellets were prepared before surgery and absorbed completely. They released all of the antibiotic and did not require a subsequent operation for their removal. Our study indicated that locally administered antibiotics reduced bacteria within the wound rapidly. This method of treatment may have an important role in decreasing the rate of infection in contaminated wounds.