Aims
Surgeons and most engineers believe that bone compaction improves implant primary stability without causing undue damage to the bone itself. In this study, we developed a murine distal femoral implant model and tested this dogma.
Methods
Each mouse received two femoral implants, one placed into a site prepared by drilling and the other into the contralateral site prepared by drilling followed by stepwise condensation.
Objectives
Screw plugs have been reported to increase the fatigue strength of stainless steel locking plates. The objective of this study was to examine and compare this effect between stainless steel and titanium locking plates.
Methods
Custom-designed locking plates with identical structures were fabricated from stainless steel and a titanium alloy. Three types of plates were compared: type I unplugged plates; type II plugged plates with a 4 Nm torque; and type III plugged plates with a 12 Nm torque. The stiffness, yield strength, and fatigue strength of the plates were investigated through a four-point bending test. Failure analyses were performed subsequently.