Advertisement for orthosearch.org.uk
Results 1 - 50 of 315
Results per page:
Bone & Joint Research
Vol. 12, Issue 9 | Pages 590 - 597
20 Sep 2023
Uemura K Otake Y Takashima K Hamada H Imagama T Takao M Sakai T Sato Y Okada S Sugano N

Aims. This study aimed to develop and validate a fully automated system that quantifies proximal femoral bone mineral density (BMD) from CT images. Methods. The study analyzed 978 pairs of hip CT and dual-energy X-ray absorptiometry (DXA) measurements of the proximal femur (DXA-BMD) collected from three institutions. From the CT images, the femur and a calibration phantom were automatically segmented using previously trained deep-learning models. The Hounsfield units of each voxel were converted into density (mg/cm. 3. ). Then, a deep-learning model trained by manual landmark selection of 315 cases was developed to select the landmarks at the proximal femur to rotate the CT volume to the neutral position. Finally, the CT volume of the femur was projected onto the coronal plane, and the areal BMD of the proximal femur (CT-aBMD) was quantified. CT-aBMD correlated to DXA-BMD, and a receiver operating characteristic (ROC) analysis quantified the accuracy in diagnosing osteoporosis. Results. CT-aBMD was successfully measured in 976/978 hips (99.8%). A significant correlation was found between CT-aBMD and DXA-BMD (r = 0.941; p < 0.001). In the ROC analysis, the area under the curve to diagnose osteoporosis was 0.976. The diagnostic sensitivity and specificity were 88.9% and 96%, respectively, with the cutoff set at 0.625 g/cm. 2. . Conclusion. Accurate DXA-BMD measurements and diagnosis of osteoporosis were performed from CT images using the system developed herein. As the models are open-source, clinicians can use the proposed system to screen osteoporosis and determine the surgical strategy for hip surgery. Cite this article: Bone Joint Res 2023;12(9):590–597


The Bone & Joint Journal
Vol. 104-B, Issue 11 | Pages 1196 - 1201
1 Nov 2022
Anderson CG Brilliant ZR Jang SJ Sokrab R Mayman DJ Vigdorchik JM Sculco PK Jerabek SA

Aims. Although CT is considered the benchmark to measure femoral version, 3D biplanar radiography (hipEOS) has recently emerged as a possible alternative with reduced exposure to ionizing radiation and shorter examination time. The aim of our study was to evaluate femoral stem version in postoperative total hip arthroplasty (THA) patients and compare the accuracy of hipEOS to CT. We hypothesize that there will be no significant difference in calculated femoral stem version measurements between the two imaging methods. Methods. In this study, 45 patients who underwent THA between February 2016 and February 2020 and had both a postoperative CT and EOS scan were included for evaluation. A fellowship-trained musculoskeletal radiologist and radiological technician measured femoral version for CT and 3D EOS, respectively. Comparison of values for each imaging modality were assessed for statistical significance. Results. Comparison of the mean postoperative femoral stem version measurements between CT and 3D hipEOS showed no significant difference (p = 0.862). In addition, the two version measurements were strongly correlated (r = 0.95; p < 0.001), and the mean paired difference in postoperative femoral version for CT scan and 3D biplanar radiography was -0.09° (95% confidence interval -1.09 to 0.91). Only three stem measurements (6.7%) were considered outliers with a > 5° difference. Conclusion. Our study supports the use of low-dose biplanar radiography for the postoperative assessment of femoral stem version after THA, demonstrating high correlation with CT. We found no significant difference for postoperative femoral version when comparing CT to 3D EOS. We believe 3D EOS is a reliable option to measure postoperative femoral version given its advantages of lower radiation dosage and shorter examination time. Cite this article: Bone Joint J 2022;104-B(11):1196–1201


The Bone & Joint Journal
Vol. 105-B, Issue 3 | Pages 254 - 260
1 Mar 2023
Bukowski BR Sandhu KP Bernatz JT Pickhardt PJ Binkley N Anderson PA Illgen R

Aims. Osteoporosis can determine surgical strategy for total hip arthroplasty (THA), and perioperative fracture risk. The aims of this study were to use hip CT to measure femoral bone mineral density (BMD) using CT X-ray absorptiometry (CTXA), determine if systematic evaluation of preoperative femoral BMD with CTXA would improve identification of osteopenia and osteoporosis compared with available preoperative dual-energy X-ray absorptiometry (DXA) analysis, and determine if improved recognition of low BMD would affect the use of cemented stem fixation. Methods. Retrospective chart review of a single-surgeon database identified 78 patients with CTXA performed prior to robotic-assisted THA (raTHA) (Group 1). Group 1 was age- and sex-matched to 78 raTHAs that had a preoperative hip CT but did not have CTXA analysis (Group 2). Clinical demographics, femoral fixation method, CTXA, and DXA data were recorded. Demographic data were similar for both groups. Results. Preoperative femoral BMD was available for 100% of Group 1 patients (CTXA) and 43.6% of Group 2 patients (DXA). CTXA analysis for all Group 1 patients preoperatively identified 13 osteopenic and eight osteoporotic patients for whom there were no available preoperative DXA data. Cemented stem fixation was used with higher frequency in Group 1 versus Group 2 (28.2% vs 14.3%, respectively; p = 0.030), and in all cases where osteoporosis was diagnosed, irrespective of technique (DXA or CTXA). Conclusion. Preoperative hip CT scans which are routinely obtained prior to raTHA can determine bone health, and thus guide femoral fixation strategy. Systematic preoperative evaluation with CTXA resulted in increased recognition of osteopenia and osteoporosis, and contributed to increased use of cemented femoral fixation compared with routine clinical care; in this small study, however, it did not impact short-term periprosthetic fracture risk. Cite this article: Bone Joint J 2023;105-B(3):254–260


Bone & Joint Open
Vol. 3, Issue 1 | Pages 12 - 19
3 Jan 2022
Salih S Grammatopoulos G Burns S Hall-Craggs M Witt J

Aims. The lateral centre-edge angle (LCEA) is a plain radiological measure of superolateral cover of the femoral head. This study aims to establish the correlation between 2D radiological and 3D CT measurements of acetabular morphology, and to describe the relationship between LCEA and femoral head cover (FHC). Methods. This retrospective study included 353 periacetabular osteotomies (PAOs) performed between January 2014 and December 2017. Overall, 97 hips in 75 patients had 3D analysis by Clinical Graphics, giving measurements for LCEA, acetabular index (AI), and FHC. Roentgenographical LCEA, AI, posterior wall index (PWI), and anterior wall index (AWI) were measured from supine AP pelvis radiographs. The correlation between CT and roentgenographical measurements was calculated. Sequential multiple linear regression was performed to determine the relationship between roentgenographical measurements and CT FHC. Results. CT-measured LCEA and AI correlated strongly with roentgenographical LCEA (r = 0.92; p < 0.001) and AI (r = 0.83; p < 0.001). Radiological LCEA correlated very strongly with CT FHC (r = 0.92; p < 0.001). The sum of AWI and PWI also correlated strongly with CTFHC (r = 0.73; p < 0.001). CT measurements of LCEA and AI were 3.4° less and 2.3° greater than radiological LCEA and AI measures. There was a linear relation between radiological LCEA and CT FHC. The linear regression model statistically significantly predicted FHC from LCEA, F(1,96) = 545.1 (p < 0.001), adjusted R. 2. = 85.0%, with the prediction equation: CT FHC(%) = 42.1 + 0.77(XRLCEA). Conclusion. CT and roentgenographical measurement of acetabular parameters are comparable. Currently, a radiological LCEA greater than 25° is considered normal. This study demonstrates that those with hip pain and normal radiological acetabular parameters may still have deficiencies in FHC. More sophisticated imaging techniques such as 3D CT should be considered for those with hip pain to identify deficiencies in FHC. Cite this article: Bone Jt Open 2022;3(1):12–19


Aims. The aim of this study was to assess the reproducibility and validity of cross table radiographs for measuring the anteversion of the acetabular component after total hip arthroplasty (THA) and to compare it with measurements using CT scans. Patients and Methods. A total of 29 patients who underwent THA between June 2010 and January 2016 were included. There were 17 men and 12 women. Their mean age was 43 years (26 to 65). Seven patients underwent a bilateral procedure. Thus, 36 THAs were included in the study. Lateral radiographs and CT scans were obtained post-operatively and radiographs repeated three weeks later. The anteversion of the acetabular component was measured using the method described by Woo and Morrey and the ischiolateral method described by Pulos et al and these were compared with the results obtained from CT scans. Results. The mean anteversion was 18.35° (3° to 38°) using Woo and Morrey’s method, 51.45° (30° to 85°) using the ischiolateral method and 21.22° (2° to 48°) using CT scans. The Pearson correlation coefficient was 0.754 for Woo and Morrey’s method and 0.925 for the ischiolateral method. There was a linear correlation between the measurements using the ischiolateral method and those using CT scans. We derived a simple linear equation between the value of the CT scan and that of ischiolateral method to deduce the CT scan value from that of ischiolateral method and vice versa. . Conclusion. The anteversion of the acetabular component measured using both plain radiographic methods was consistently valid with good interobserver reproducibility, but the ischiolateral method which is independent of pelvic tilt was more accurate. As CT is costly, associated with a high dose of radiation and not readily available, the ischiolateral method can be used for assessing the anteversion of the acetabular component. Cite this article: Bone Joint J 2017;99-B:1006–11


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 9 | Pages 1176 - 1179
1 Sep 2012
Zlotorowicz M Czubak J Kozinski P Boguslawska-Walecka R

The femoral head receives its blood supply primarily from the medial femoral circumflex artery, with its deep branch being the most important. In a previous study, we performed classical anatomical dissections of 16 hips. We have extended our investigation with a radiological study, in which we aimed to visualise the arteries supplying the femoral head in healthy individuals. We analysed 55 CT angiographic images of the hip. Using 64-row CT angiography, we identified three main arteries supplying the femoral head: the deep branch of the medial femoral circumflex artery and the posterior inferior nutrient artery originating from the medial femoral circumflex artery, and the piriformis branch of the inferior gluteal artery. CT angiography is a good method for visualisation of the arteries supplying the femoral head. The current radiological studies will provide information for further investigation of vascularity after traumatic dislocation of the hip, using CT angiography


The Bone & Joint Journal
Vol. 96-B, Issue 9 | Pages 1167 - 1171
1 Sep 2014
Khan O Witt J

The cam-type deformity in femoroacetabular impingement is a 3D deformity. Single measurements using radiographs, CT or MRI may not provide a true estimate of the magnitude of the deformity. We performed an analysis of the size and location of measurements of the alpha angle (α°) using a CT technique which could be applied to the 3D reconstructions of the hip. Analysis was undertaken in 42 patients (57 hips; 24 men and 18 women; mean age 38 years (16 to 58)) who had symptoms of femoroacetabular impingement related to a cam-type abnormality. An α° of > 50° was considered a significant indicator of cam-type impingement. Measurements of the α° were made at different points around the femoral head/neck junction at intervals of 30°: starting at the nine o’clock (posterior), ten, eleven and twelve o’clock (superior), one, two and ending at three o’clock (anterior) position. The mean maximum increased α° was 64.6° (50.8° to 86°). The two o’clock position was the most common point to find an increased α° (53 hips; 93%), followed by one o’clock (48 hips; 84%). The largest α° for each hip was found most frequently at the two o’clock position (46%), followed by the one o’clock position (39%). Generally, raised α angles extend over three segments of the clock face. Single measurements of the α°, whether pre- or post-operative, should be viewed with caution as they may not be representative of the true size of the deformity and not define whether adequate correction has been achieved following surgery. Cite this article: Bone Joint J 2014;96-B:1167–71.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 1 | Pages 19 - 25
1 Jan 2006
Scheerlinck T de Mey J Deklerck R Noble PC

Using a modern cementing technique, we implanted 22 stereolithographic polymeric replicas of the Charnley-Kerboul stem in 11 pairs of human cadaver femora. On one side, the replicas were cemented line-to-line with the largest broach. On the other, one-size undersized replicas were used (radial difference, 0.89 mm . sd. 0.13). CT analysis showed that the line-to-line stems without distal centralisers were at least as well aligned and centered as undersized stems with a centraliser, but were surrounded by less cement and presented more areas of thin (< 2 mm) or deficient (< 1 mm) cement. These areas were located predominantly at the corners and in the middle and distal thirds of the stem. Nevertheless, in line-to-line stems, penetration of cement into cancellous bone resulted in a mean thickness of cement of 3.1 mm (. sd. 0.6) and only 6.2% of deficient and 26.4% of thin cement. In over 90% of these areas, the cement was directly supported by cortical bone or cortical bone with less than 1 mm of cancellous bone interposed. When Charnley-Kerboul stems are cemented line-to-line, good clinical results are observed because cement-deficient areas are limited and are frequently supported by cortical bone


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 4 | Pages 526 - 531
1 May 2000
Haddad FS Garbuz DS Duncan CP Janzen DL Munk PL

We have previously described a simple and reproducible three-dimensional technique of CT for the measurement of the cover of the femoral head in acetabular dysplasia in adults. We now describe the application of this technique in ten patients with symptomatic dysplasia to assess the degree and direction of dysplasia and to measure the cover obtained at acetabular osteotomy. The indices obtained gave a useful indication of the degree and direction of the dysplasia and confirmed which components had been used most efficiently to achieve cover. The information is easily presented in graphical form and gives a clearer indication of the cover obtained than the indices derived from plain radiographs


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 8 | Pages 1031 - 1036
1 Aug 2009
Dandachli W Islam SU Liu M Richards R Hall-Craggs M Witt J

This study examined the relationship between the cross-over sign and the true three-dimensional anatomical version of the acetabulum. We also investigated whether in true retroversion there is excessive femoral head cover anteriorly. Radiographs of 64 hips in patients being investigated for symptoms of femoro-acetabular impingement were analysed and the presence of a cross-over sign was documented. CT scans of the same hips were analysed to determine anatomical version and femoral head cover in relation to the anterior pelvic plane after correcting for pelvic tilt. The sensitivity and specificity of the cross-over sign were 92% and 55%, respectively for identifying true acetabular retroversion. There was no significant difference in total cover between normal and retroverted cases. Anterior and posterior cover were, however, significantly different (p < 0.001 and 0.002). The cross-over sign was found to be sensitive but not specific. The results for femoral head cover suggest that retroversion is characterised by posterior deficiency but increased cover anteriorly


The Bone & Joint Journal
Vol. 104-B, Issue 10 | Pages 1110 - 1117
12 Oct 2022
Wessling M Gebert C Hakenes T Dudda M Hardes J Frieler S Jeys LM Hanusrichter Y

Aims. The aim of this study was to examine the implant accuracy of custom-made partial pelvis replacements (PPRs) in revision total hip arthroplasty (rTHA). Custom-made implants offer an option to achieve a reconstruction in cases with severe acetabular bone loss. By analyzing implant deviation in CT and radiograph imaging and correlating early clinical complications, we aimed to optimize the usage of custom-made implants. Methods. A consecutive series of 45 (2014 to 2019) PPRs for Paprosky III defects at rTHA were analyzed comparing the preoperative planning CT scans used to manufacture the implants with postoperative CT scans and radiographs. The anteversion (AV), inclination (IC), deviation from the preoperatively planned implant position, and deviation of the centre of rotation (COR) were explored. Early postoperative complications were recorded, and factors for malpositioning were sought. The mean follow-up was 30 months (SD 19; 6 to 74), with four patients lost to follow-up. Results. Mean CT defined discrepancy (Δ) between planned and achieved AV and IC was 4.5° (SD 3°; 0° to 12°) and 4° (SD 3.5°; 1° to 12°), respectively. Malpositioning (Δ > 10°) occurred in five hips (10.6%). Native COR reconstruction was planned in 42 cases (93%), and the mean 3D deviation vector was 15.5 mm (SD 8.5; 4 to 35). There was no significant influence in malpositioning found for femoral stem retention, surgical approach, or fixation method. Conclusion. At short-term follow-up, we found that PPR offers a viable solution for rTHA in cases with massive acetabular bone loss, as highly accurate positioning can be accomplished with meticulous planning, achieving anatomical reconstruction. Accuracy of achieved placement contributed to reduced complications with no injury to vital structures by screw fixation. Cite this article: Bone Joint J 2022;104-B(10):1110–1117


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 359 - 364
1 Apr 2024
Özdemir E de Lange B Buckens CFM Rijnen WHC Visser J

Aims. To investigate the extent of bone development around the scaffold of custom triflange acetabular components (CTACs) over time. Methods. We performed a single-centre historical prospective cohort study, including all patients with revision THA using the aMace CTAC between January 2017 and March 2021. A total of 18 patients (18 CTACs) were included. Models of the hemipelvis and the scaffold component of the CTACs were created by segmentation of CT scans. The CT scans were performed immediately postoperatively and at least one year after surgery. The amount of bone in contact with the scaffold was analyzed at both times, and the difference was calculated. Results. The mean time between the implantation and the second CT scan was two years (1 to 5). The mean age of the patients during CTAC implantation was 75 years (60 to 92). The mean scaffold-bone contact area increased from 16% (SD 12.6) to 28% (SD 11.9). The mean scaffold-bone distance decreased from a mean of 6.5 mm (SD 2.0) to 5.5 mm (SD 1.6). None of the CTACs were revised or radiologically loose. Conclusion. There was a statistically significant increase of scaffold-bone contact area over time, but the total contact area of the scaffold in relation to the acetabular bone remained relatively low. As all implants remained well fixed, the question remains to what extend the scaffold contributes to the observed stability, in relation to the screws. A future design implication might be an elimination of the bulky scaffold component. This design modification would reduce production costs and may optimize the primary fit of the implant. Cite this article: Bone Joint J 2024;106-B(4):359–364


The Bone & Joint Journal
Vol. 106-B, Issue 6 | Pages 555 - 564
1 Jun 2024
Leal J Holland CT Cochrane NH Seyler TM Jiranek WA Wellman SS Bolognesi MP Ryan SP

Aims

This study aims to assess the relationship between history of pseudotumour formation secondary to metal-on-metal (MoM) implants and periprosthetic joint infection (PJI) rate, as well as establish ESR and CRP thresholds that are suggestive of infection in these patients. We hypothesized that patients with a pseudotumour were at increased risk of infection.

Methods

A total of 1,171 total hip arthroplasty (THA) patients with MoM articulations from August 2000 to March 2014 were retrospectively identified. Of those, 328 patients underwent metal artefact reduction sequence MRI and had minimum two years’ clinical follow-up, and met our inclusion criteria. Data collected included demographic details, surgical indication, laterality, implants used, history of pseudotumour, and their corresponding preoperative ESR (mm/hr) and CRP (mg/dl) levels. Multivariate logistic regression modelling was used to evaluate PJI and history of pseudotumour, and receiver operating characteristic curves were created to assess the diagnostic capabilities of ESR and CRP to determine the presence of infection in patients undergoing revision surgery.


Bone & Joint Research
Vol. 13, Issue 6 | Pages 294 - 305
17 Jun 2024
Yang P He W Yang W Jiang L Lin T Sun W Zhang Q Bai X Sun W Guo D

Aims. In this study, we aimed to visualize the spatial distribution characteristics of femoral head necrosis using a novel measurement method. Methods. We retrospectively collected CT imaging data of 108 hips with non-traumatic osteonecrosis of the femoral head from 76 consecutive patients (mean age 34.3 years (SD 8.1), 56.58% male (n = 43)) in two clinical centres. The femoral head was divided into 288 standard units (based on the orientation of units within the femoral head, designated as N[Superior], S[Inferior], E[Anterior], and W[Posterior]) using a new measurement system called the longitude and latitude division system (LLDS). A computer-aided design (CAD) measurement tool was also developed to visualize the measurement of the spatial location of necrotic lesions in CT images. Two orthopaedic surgeons independently performed measurements, and the results were used to draw 2D and 3D heat maps of spatial distribution of necrotic lesions in the femoral head, and for statistical analysis. Results. The results showed that the LLDS has high inter-rater reliability. As illustrated by the heat map, the distribution of Japanese Investigation Committee (JIC) classification type C necrotic lesions exhibited clustering characteristics, with the lesions being concentrated in the northern and eastern regions, forming a hot zone (90% probability) centred on the N4-N6E2, N3-N6E units of outer ring blocks. Statistical results showed that the distribution difference between type C2 and type C1 was most significant in the E1 and E2 units and, combined with the heat map, indicated that the spatial distribution differences at N3-N6E1 and N1-N3E2 units are crucial in understanding type C1 and C2 necrotic lesions. Conclusion. The LLDS can be used to accurately measure the spatial location of necrotic lesions and display their distribution characteristics. Cite this article: Bone Joint Res 2024;13(6):294–305


Bone & Joint Open
Vol. 3, Issue 10 | Pages 759 - 766
5 Oct 2022
Schmaranzer F Meier MK Lerch TD Hecker A Steppacher SD Novais EN Kiapour AM

Aims. To evaluate how abnormal proximal femoral anatomy affects different femoral version measurements in young patients with hip pain. Methods. First, femoral version was measured in 50 hips of symptomatic consecutively selected patients with hip pain (mean age 20 years (SD 6), 60% (n = 25) females) on preoperative CT scans using different measurement methods: Lee et al, Reikerås et al, Tomczak et al, and Murphy et al. Neck-shaft angle (NSA) and α angle were measured on coronal and radial CT images. Second, CT scans from three patients with femoral retroversion, normal femoral version, and anteversion were used to create 3D femur models, which were manipulated to generate models with different NSAs and different cam lesions, resulting in eight models per patient. Femoral version measurements were repeated on manipulated femora. Results. Comparing the different measurement methods for femoral version resulted in a maximum mean difference of 18° (95% CI 16 to 20) between the most proximal (Lee et al) and most distal (Murphy et al) methods. Higher differences in proximal and distal femoral version measurement techniques were seen in femora with greater femoral version (r > 0.46; p < 0.001) and greater NSA (r > 0.37; p = 0.008) between all measurement methods. In the parametric 3D manipulation analysis, differences in femoral version increased 11° and 9° in patients with high and normal femoral version, respectively, with increasing NSA (110° to 150°). Conclusion. Measurement of femoral version angles differ depending on the method used to almost 20°, which is in the range of the aimed surgical correction in derotational femoral osteotomy and thus can be considered clinically relevant. Differences between proximal and distal measurement methods further increase by increasing femoral version and NSA. Measurement methods that take the entire proximal femur into account by using distal landmarks may produce more sensitive measurements of these differences. Cite this article: Bone Jt Open 2022;3(10):759–766


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 324 - 335
1 Apr 2024
Fontalis A Kayani B Plastow R Giebaly DE Tahmassebi J Haddad IC Chambers A Mancino F Konan S Haddad FS

Aims. Achieving accurate implant positioning and restoring native hip biomechanics are key surgeon-controlled technical objectives in total hip arthroplasty (THA). The primary objective of this study was to compare the reproducibility of the planned preoperative centre of hip rotation (COR) in patients undergoing robotic arm-assisted THA versus conventional THA. Methods. This prospective randomized controlled trial (RCT) included 60 patients with symptomatic hip osteoarthritis undergoing conventional THA (CO THA) versus robotic arm-assisted THA (RO THA). Patients in both arms underwent pre- and postoperative CT scans, and a patient-specific plan was created using the robotic software. The COR, combined offset, acetabular orientation, and leg length discrepancy were measured on the pre- and postoperative CT scanogram at six weeks following surgery. Results. There were no significant differences for any of the baseline characteristics including spinopelvic mobility. The absolute error for achieving the planned horizontal COR was median 1.4 mm (interquartile range (IQR) 0.87 to 3.42) in RO THA versus 4.3 mm (IQR 3 to 6.8; p < 0.001); vertical COR mean 0.91 mm (SD 0.73) in RO THA versus 2.3 mm (SD 1.3; p < 0.001); and combined offset median 2 mm (IQR 0.97 to 5.45) in RO THA versus 3.9 mm (IQR 2 to 7.9; p = 0.019). Improved accuracy was observed with RO THA in achieving the desired acetabular component positioning (root mean square error for anteversion and inclination was 2.6 and 1.3 vs 8.9 and 5.3, repectively) and leg length (mean 0.6 mm vs 1.4 mm; p < 0.001). Patient-reported outcome measures were comparable between the two groups at baseline and one year. Participants in the RO THA group needed fewer physiotherapy sessions postoperatively (median six (IQR 4.5 to 8) vs eight (IQR 6 to 11; p = 0.005). Conclusion. This RCT suggested that robotic-arm assistance in THA was associated with improved accuracy in restoring the native COR, better preservation of the combined offset, leg length correction, and superior accuracy in achieving the desired acetabular component positioning. Further evaluation through long-term and registry data is necessary to assess whether these findings translate into improved implant survival and functional outcomes. Cite this article: Bone Joint J 2024;106-B(4):324–335


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 59 - 65
1 Jul 2021
Bracey DN Hegde V Shimmin AJ Jennings JM Pierrepont JW Dennis DA

Aims. Cross-table lateral (CTL) radiographs are commonly used to measure acetabular component anteversion after total hip arthroplasty (THA). The CTL measurements may differ by > 10° from CT scan measurements but the reasons for this discrepancy are poorly understood. Anteversion measurements from CTL radiographs and CT scans are compared to identify spinopelvic parameters predictive of inaccuracy. Methods. THA patients (n = 47; 27 males, 20 females; mean age 62.9 years (SD 6.95)) with preoperative spinopelvic mobility, radiological analysis, and postoperative CT scans were retrospectively reviewed. Acetabular component anteversion was measured on postoperative CTL radiographs and CT scans using 3D reconstructions of the pelvis. Two cohorts were identified based on a CTL-CT error of ≥ 10° (n = 11) or < 10° (n = 36). Spinopelvic mobility parameters were compared using independent-samples t-tests. Correlation between error and mobility parameters were assessed with Pearson’s coefficient. Results. Patients with CTL error > 10° (10° to 14°) had stiffer lumbar spines with less mean lumbar flexion (38.9°(SD 11.6°) vs 47.4° (SD 13.1°); p = 0.030), different sagittal balance measured by pelvic incidence-lumbar lordosis mismatch (5.9° (SD 18.8°) vs -1.7° (SD 9.8°); p = 0.042), more pelvic extension when seated (pelvic tilt -9.7° (SD 14.1°) vs -2.2° (SD 13.2°); p = 0.050), and greater change in pelvic tilt between supine and seated positions (12.6° (SD 12.1°) vs 4.7° (SD 12.5°); p = 0.036). The CTL measurement error showed a positive correlation with increased CTL anteversion (r = 0.5; p = 0.001), standing lordosis (r = 0.23; p = 0.050), seated lordosis (r = 0.4; p = 0.009), and pelvic tilt change between supine and step-up positions (r = 0.34; p = 0.010). Conclusion. Differences in spinopelvic mobility may explain the variability of acetabular anteversion measurements made on CTL radiographs. Patients with stiff spines and increased compensatory pelvic movement have less accurate measurements on CTL radiographs. Flexion of the contralateral hip is required to obtain clear CTL radiographs. In patients with lumbar stiffness, this movement may extend the pelvis and increase anteversion of the acetabulum on CTL views. Reliable analysis of acetabular component anteversion in this patient population may require advanced imaging with a CT scan. Cite this article: Bone Joint J 2021;103-B(7 Supple B):59–65


Bone & Joint Open
Vol. 3, Issue 11 | Pages 859 - 866
4 Nov 2022
Diesel CV Guimarães MR Menegotto SM Pereira AH Pereira AA Bertolucci LH Freitas EC Galia CR

Aims. Our objective was describing an algorithm to identify and prevent vascular injury in patients with intrapelvic components. Methods. Patients were defined as at risk to vascular injuries when components or cement migrated 5 mm or more beyond the ilioischial line in any of the pelvic incidences (anteroposterior and Judet view). In those patients, a serial investigation was initiated by a CT angiography, followed by a vascular surgeon evaluation. The investigation proceeded if necessary. The main goal was to assure a safe tissue plane between the hardware and the vessels. Results. In ten at-risk patients undergoing revision hip arthroplasty and submitted to our algorithm, six were recognized as being high risk to vascular injury during surgery. In those six high-risk patients, a preventive preoperative stent was implanted before the orthopaedic procedure. Four patients needed a second reinforcing stent to protect and to maintain the vessel anatomy deformed by the intrapelvic implants. Conclusion. The evaluation algorithm was useful to avoid blood vessels injury during revision total hip arthroplasty in high-risk patients. Cite this article: Bone Jt Open 2022;3(11):859–866


Bone & Joint Open
Vol. 3, Issue 1 | Pages 61 - 67
18 Jan 2022
van Lingen CP Ettema HB Bosker BH Verheyen CCPM

Aims. Large-diameter metal-on-metal (MoM) total hip arthroplasty (THA) has demonstrated unexpected high failure rates and pseudotumour formation. The purpose of this prospective cohort study is to report ten-year results in order to establish revision rate, prevalence of pseudotumour formation, and relation with whole blood cobalt levels. Methods. All patients were recalled according to the guidelines of the Dutch Orthopaedic Association. They underwent clinical and radiographical assessments (radiograph and CT scan) of the hip prosthesis and whole blood cobalt ion measurements. Overall, 94 patients (95 hips) fulfilled our requirements for a minimum ten-year follow-up. Results. Mean follow-up was 10.9 years (10 to 12), with a cumulative survival rate of 82.4%. Reason for revision was predominantly pseudotumour formation (68%), apart from loosening, pain, infection, and osteolysis. The prevalence of pseudotumour formation around the prostheses was 41%, while our previous report of this cohort (with a mean follow-up of 3.6 years) revealed a 39% prevalence. The ten-year revision-free survival with pseudotumour was 66.7% and without pseudotumour 92.4% (p < 0.05). There was poor discriminatory ability for cobalt for pseudotumour formation. Conclusion. This prospective study reports a minimum ten-year follow-up of large-head MoM THA. Revision rates are high, with the main reason being the sequelae of pseudotumour formation, which were rarely observed after five years of implantation. Blood ion measurements show limited discriminatory capacity in diagnosing pseudotumour formation. Our results evidence that an early comprehensive follow-up strategy is essential for MoM THA to promptly identify and manage early complications and revise on time. After ten years follow-up, we do not recommend continuing routine CT scanning or whole cobalt blood measurements, but instead enrolling these patients in routine follow-up protocols for THA. Cite this article: Bone Jt Open 2022;3(1):61–67


The Bone & Joint Journal
Vol. 106-B, Issue 2 | Pages 128 - 135
1 Feb 2024
Jenkinson MRJ Cheung TCC Witt J Hutt JRB

Aims. The aim of this study is to evaluate whether acetabular retroversion (AR) represents a structural anatomical abnormality of the pelvis or is a functional phenomenon of pelvic positioning in the sagittal plane, and to what extent the changes that result from patient-specific functional position affect the extent of AR. Methods. A comparative radiological study of 19 patients (38 hips) with AR were compared with a control group of 30 asymptomatic patients (60 hips). CT scans were corrected for rotation in the axial and coronal planes, and the sagittal plane was then aligned to the anterior pelvic plane. External rotation of the hemipelvis was assessed using the superior iliac wing and inferior iliac wing angles as well as quadrilateral plate angles, and correlated with cranial and central acetabular version. Sagittal anatomical parameters were also measured and correlated to version measurements. In 12 AR patients (24 hips), the axial measurements were repeated after matching sagittal pelvic rotation with standing and supine anteroposterior radiographs. Results. Acetabular version was significantly lower and measurements of external rotation of the hemipelvis were significantly increased in the AR group compared to the control group. The AR group also had increased evidence of anterior projection of the iliac wing in the sagittal plane. The acetabular orientation angles were more retroverted in the supine compared to standing position, and the change in acetabular version correlated with the change in sagittal pelvic tilt. An anterior pelvic tilt of 1° correlated with 1.02° of increased cranial retroversion and 0.76° of increased central retroversion. Conclusion. This study has demonstrated that patients with symptomatic AR have both an externally rotated hemipelvis and increased anterior projection of the iliac wing compared to a control group of asymptomatic patients. Functional sagittal pelvic positioning was also found to affect AR in symptomatic patients: the acetabulum was more retroverted in the supine position compared to standing position. Changes in acetabular version correlate with the change in sagittal pelvic tilt. These findings should be taken into account by surgeons when planning acetabular correction for AR with periacetabular osteotomy. Cite this article: Bone Joint J 2024;106-B(2):128–135


Bone & Joint Open
Vol. 5, Issue 2 | Pages 79 - 86
1 Feb 2024
Sato R Hamada H Uemura K Takashima K Ando W Takao M Saito M Sugano N

Aims. This study aimed to investigate the incidence of ≥ 5 mm asymmetry in lower and whole leg lengths (LLs) in patients with unilateral osteoarthritis (OA) secondary to developmental dysplasia of the hip (DDH-OA) and primary hip osteoarthritis (PHOA), and the relationship between lower and whole LL asymmetries and femoral length asymmetry. Methods. In total, 116 patients who underwent unilateral total hip arthroplasty were included in this study. Of these, 93 had DDH-OA and 23 had PHOA. Patients with DDH-OA were categorized into three groups: Crowe grade I, II/III, and IV. Anatomical femoral length, femoral length greater trochanter (GT), femoral length lesser trochanter (LT), tibial length, foot height, lower LL, and whole LL were evaluated using preoperative CT data of the whole leg in the supine position. Asymmetry was evaluated in the Crowe I, II/III, IV, and PHOA groups. Results. The incidences of whole and lower LL asymmetries were 40%, 62.5%, 66.7%, and 26.1%, and 21.7%, 20.8%, 55.6%, and 8.7% in the Crowe I, II/III, and IV, and PHOA groups, respectively. The incidence of tibial length asymmetry was significantly higher in the Crowe IV group (44.4%) than that in the PHOA group (4.4%). In all, 50% of patients with DDH-OA with femoral length GT and LT asymmetries had lower LL asymmetry, and 75% had whole LL asymmetry. The incidences of lower and whole LL asymmetries were 20% and 42.9%, respectively, even in the absence of femoral length GT and LT asymmetries. Conclusion. Overall, 43% of patients with unilateral DDH-OA without femoral length asymmetry had whole LL asymmetry of ≥ 5 mm. Thus, both the femur length and whole LL should be measured to accurately assess LL discrepancy in patients with unilateral DDH-OA. Cite this article: Bone Jt Open 2024;5(2):79–86


Bone & Joint Open
Vol. 4, Issue 1 | Pages 3 - 12
4 Jan 2023
Hardwick-Morris M Twiggs J Miles B Al-Dirini RMA Taylor M Balakumar J Walter WL

Aims. Iliopsoas impingement occurs in 4% to 30% of patients after undergoing total hip arthroplasty (THA). Despite a relatively high incidence, there are few attempts at modelling impingement between the iliopsoas and acetabular component, and no attempts at modelling this in a representative cohort of subjects. The purpose of this study was to develop a novel computational model for quantifying the impingement between the iliopsoas and acetabular component and validate its utility in a case-controlled investigation. Methods. This was a retrospective cohort study of patients who underwent THA surgery that included 23 symptomatic patients diagnosed with iliopsoas tendonitis, and 23 patients not diagnosed with iliopsoas tendonitis. All patients received postoperative CT imaging, postoperative standing radiography, and had minimum six months’ follow-up. 3D models of each patient’s prosthetic and bony anatomy were generated, landmarked, and simulated in a novel iliopsoas impingement detection model in supine and standing pelvic positions. Logistic regression models were implemented to determine if the probability of pain could be significantly predicted. Receiver operating characteristic curves were generated to determine the model’s sensitivity, specificity, and area under the curve (AUC). Results. Highly significant differences between the symptomatic and asymptomatic cohorts were observed for iliopsoas impingement. Logistic regression models determined that the impingement values significantly predicted the probability of groin pain. The simulation had a sensitivity of 74%, specificity of 100%, and an AUC of 0.86. Conclusion. We developed a computational model that can quantify iliopsoas impingement and verified its accuracy in a case-controlled investigation. This tool has the potential to be used preoperatively, to guide decisions about optimal cup placement, and postoperatively, to assist in the diagnosis of iliopsoas tendonitis. Cite this article: Bone Jt Open 2023;4(1):3–12


Bone & Joint Research
Vol. 12, Issue 1 | Pages 22 - 32
11 Jan 2023
Boschung A Faulhaber S Kiapour A Kim Y Novais EN Steppacher SD Tannast M Lerch TD

Aims. Femoroacetabular impingement (FAI) patients report exacerbation of hip pain in deep flexion. However, the exact impingement location in deep flexion is unknown. The aim was to investigate impingement-free maximal flexion, impingement location, and if cam deformity causes hip impingement in flexion in FAI patients. Methods. A retrospective study involving 24 patients (37 hips) with FAI and femoral retroversion (femoral version (FV) < 5° per Murphy method) was performed. All patients were symptomatic (mean age 28 years (SD 9)) and had anterior hip/groin pain and a positive anterior impingement test. Cam- and pincer-type subgroups were analyzed. Patients were compared to an asymptomatic control group (26 hips). All patients underwent pelvic CT scans to generate personalized CT-based 3D models and validated software for patient-specific impingement simulation (equidistant method). Results. Mean impingement-free flexion of patients with mixed-type FAI (110° (SD 8°)) and patients with pincer-type FAI (112° (SD 8°)) was significantly (p < 0.001) lower compared to the control group (125° (SD 13°)). The frequency of extra-articular subspine impingement was significantly (p < 0.001) increased in patients with pincer-type FAI (57%) compared to cam-type FAI (22%) in 125° flexion. Bony impingement in maximal flexion was located anterior-inferior at femoral four and five o’clock position in patients with cam-type FAI (63% (10 of 16 hips) and 37% (6 of 10 hips)), and did not involve the cam deformity. The cam deformity did not cause impingement in maximal flexion. Conclusion. Femoral impingement in maximal flexion was located anterior-inferior distal to the cam deformity. This differs to previous studies, a finding which could be important for FAI patients in order to avoid exacerbation of hip pain in deep flexion (e.g. during squats) and for hip arthroscopy (hip-preservation surgery) for planning of bone resection. Hip impingement in flexion has implications for daily activities (e.g. putting on shoes), sports, and sex. Cite this article: Bone Joint Res 2023;12(1):22–32


Bone & Joint Research
Vol. 10, Issue 10 | Pages 629 - 638
20 Oct 2021
Hayashi S Hashimoto S Kuroda Y Nakano N Matsumoto T Ishida K Shibanuma N Kuroda R

Aims. This study aimed to evaluate the accuracy of implant placement with robotic-arm assisted total hip arthroplasty (THA) in patients with developmental dysplasia of the hip (DDH). Methods. The study analyzed a consecutive series of 69 patients who underwent robotic-arm assisted THA between September 2018 and December 2019. Of these, 30 patients had DDH and were classified according to the Crowe type. Acetabular component alignment and 3D positions were measured using pre- and postoperative CT data. The absolute differences of cup alignment and 3D position were compared between DDH and non-DDH patients. Moreover, these differences were analyzed in relation to the severity of DDH. The discrepancy of leg length and combined offset compared with contralateral hip were measured. Results. The mean values of absolute differences (postoperative CT-preoperative plan) were 1.7° (standard deviation (SD) 2.0) (inclination) and 2.5° (SD 2.1°) (anteversion) in DDH patients, and no significant differences were found between non-DDH and DDH patients. The mean absolute differences for 3D cup position were 1.1 mm (SD 1.0) (coronal plane) and 1.2 mm (SD 2.1) (axial plane) in DDH patients, and no significant differences were found between two groups. No significant difference was found either in cup alignment between postoperative CT and navigation record after cup screws or in the severity of DDH. Excellent restoration of leg length and combined offset were achieved in both groups. Conclusion. We demonstrated that robotic-assisted THA may achieve precise cup positioning in DDH patients, and may be useful in those with severe DDH. Cite this article: Bone Joint Res 2021;10(10):629–638


Bone & Joint Open
Vol. 3, Issue 9 | Pages 666 - 673
1 Sep 2022
Blümel S Leunig M Manner H Tannast M Stetzelberger VM Ganz R

Aims. Avascular femoral head necrosis in the context of gymnastics is a rare but serious complication, appearing similar to Perthes’ disease but occurring later during adolescence. Based on 3D CT animations, we propose repetitive impact between the main supplying vessels on the posterolateral femoral neck and the posterior acetabular wall in hyperextension and external rotation as a possible cause of direct vascular damage, and subsequent femoral head necrosis in three adolescent female gymnasts we are reporting on. Methods. Outcome of hip-preserving head reduction osteotomy combined with periacetabular osteotomy was good in one and moderate in the other up to three years after surgery; based on the pronounced hip destruction, the third received initially a total hip arthroplasty. Results. The described pathology is quite devastating, and extensive joint preserving surgery (which has been shown successful in Perthes’ cases) was less successful in this patient cohort. Conclusion. Supraselective angiography may be helpful to improve pathomechanical understanding and surgical decision making. Cite this article: Bone Jt Open 2022;3(9):666–673


Bone & Joint Research
Vol. 10, Issue 10 | Pages 639 - 649
19 Oct 2021
Bergiers S Hothi H Henckel J Di Laura A Belzunce M Skinner J Hart A

Aims. Acetabular edge-loading was a cause of increased wear rates in metal-on-metal hip arthroplasties, ultimately contributing to their failure. Although such wear patterns have been regularly reported in retrieval analyses, this study aimed to determine their in vivo location and investigate their relationship with acetabular component positioning. Methods. 3D CT imaging was combined with a recently validated method of mapping bearing surface wear in retrieved hip implants. The asymmetrical stabilizing fins of Birmingham hip replacements (BHRs) allowed the co-registration of their acetabular wear maps and their computational models, segmented from CT scans. The in vivo location of edge-wear was measured within a standardized coordinate system, defined using the anterior pelvic plane. Results. Edge-wear was found predominantly along the superior acetabular edge in all cases, while its median location was 8° (interquartile range (IQR) -59° to 25°) within the anterosuperior quadrant. The deepest point of these scars had a median location of 16° (IQR -58° to 26°), which was statistically comparable to their centres (p = 0.496). Edge-wear was in closer proximity to the superior apex of the cups with greater angles of acetabular inclination, while a greater degree of anteversion influenced a more anteriorly centred scar. Conclusion. The anterosuperior location of edge-wear was comparable to the degradation patterns observed in acetabular cartilage, supporting previous findings that hip joint forces are directed anteriorly during a greater portion of walking gait. The further application of this novel method could improve the current definition of optimal and safe acetabular component positioning. Cite this article: Bone Joint Res 2021;10(10):639–649


Bone & Joint Open
Vol. 3, Issue 10 | Pages 795 - 803
12 Oct 2022
Liechti EF Attinger MC Hecker A Kuonen K Michel A Klenke FM

Aims. Traditionally, total hip arthroplasty (THA) templating has been performed on anteroposterior (AP) pelvis radiographs. Recently, additional AP hip radiographs have been recommended for accurate measurement of the femoral offset (FO). To verify this claim, this study aimed to establish quantitative data of the measurement error of the FO in relation to leg position and X-ray source position using a newly developed geometric model and clinical data. Methods. We analyzed the FOs measured on AP hip and pelvis radiographs in a prospective consecutive series of 55 patients undergoing unilateral primary THA for hip osteoarthritis. To determine sample size, a power analysis was performed. Patients’ position and X-ray beam setting followed a standardized protocol to achieve reproducible projections. All images were calibrated with the KingMark calibration system. In addition, a geometric model was created to evaluate both the effects of leg position (rotation and abduction/adduction) and the effects of X-ray source position on FO measurement. Results. The mean FOs measured on AP hip and pelvis radiographs were 38.0 mm (SD 6.4) and 36.6 mm (SD 6.3) (p < 0.001), respectively. Radiological view had a smaller effect on FO measurement than inaccurate leg positioning. The model showed a non-linear relationship between projected FO and femoral neck orientation; at 30° external neck rotation (with reference to the detector plane), a true FO of 40 mm was underestimated by up to 20% (7.8 mm). With a neutral to mild external neck rotation (≤ 15°), the underestimation was less than 7% (2.7 mm). The effect of abduction and adduction was negligible. Conclusion. For routine THA templating, an AP pelvis radiograph remains the gold standard. Only patients with femoral neck malrotation > 15° on the AP pelvis view, e.g. due to external rotation contracture, should receive further imaging. Options include an additional AP hip view with elevation of the entire affected hip to align the femoral neck more parallel to the detector, or a CT scan in more severe cases. Cite this article: Bone Jt Open 2022;3(10):795–803


The Bone & Joint Journal
Vol. 102-B, Issue 12 | Pages 1662 - 1669
1 Dec 2020
Pollmann CT Gjertsen J Dale H Straume-Næsheim TM Dybvik E Hallan G

Aims

To compare the functional outcome, health-related quality of life (HRQoL), and satisfaction of patients who underwent primary total hip arthroplasty (THA) and a single debridement, antibiotics and implant retention (DAIR) procedure for deep infection, using either the transgluteal or the posterior surgical approach for both procedures.

Methods

The study was registered at clinicaltrials.gov (ID: NCT03161990) on 15 May 2017. Patients treated with a single DAIR procedure for deep infection through the same operative approach as their primary THA (either the transgluteal or the posterior approach) were identified in the Norwegian Arthroplasty Register and given a questionnaire. Median follow-up after DAIR by questionnaire was 5.5 years in the transgluteal group (n = 87) and 2.5 years in the posterior approach group (n = 102).


The Bone & Joint Journal
Vol. 103-B, Issue 9 | Pages 1497 - 1504
1 Sep 2021
Rotman D Ariel G Rojas Lievano J Schermann H Trabelsi N Salai M Yosibash Z Sternheim A

Aims. Type 2 diabetes mellitus (T2DM) impairs bone strength and is a significant risk factor for hip fracture, yet currently there is no reliable tool to assess this risk. Most risk stratification methods rely on bone mineral density, which is not impaired by diabetes, rendering current tests ineffective. CT-based finite element analysis (CTFEA) calculates the mechanical response of bone to load and uses the yield strain, which is reduced in T2DM patients, to measure bone strength. The purpose of this feasibility study was to examine whether CTFEA could be used to assess the hip fracture risk for T2DM patients. Methods. A retrospective cohort study was undertaken using autonomous CTFEA performed on existing abdominal or pelvic CT data comparing two groups of T2DM patients: a study group of 27 patients who had sustained a hip fracture within the year following the CT scan and a control group of 24 patients who did not have a hip fracture within one year. The main outcome of the CTFEA is a novel measure of hip bone strength termed the Hip Strength Score (HSS). Results. The HSS was significantly lower in the study group (1.76 (SD 0.46)) than in the control group (2.31 (SD 0.74); p = 0.002). A multivariate model showed the odds of having a hip fracture were 17 times greater in patients who had an HSS ≤ 2.2. The CTFEA has a sensitivity of 89%, a specificity of 76%, and an area under the curve of 0.90. Conclusion. This preliminary study demonstrates the feasibility of using a CTFEA-based bone strength parameter to assess hip fracture risk in a population of T2DM patients. Cite this article: Bone Joint J 2021;103-B(9):1497–1504


Bone & Joint Open
Vol. 3, Issue 7 | Pages 557 - 565
11 Jul 2022
Meier MK Reche J Schmaranzer F von Tengg-Kobligk H Steppacher SD Tannast M Novais EN Lerch TD

Aims. The frequency of severe femoral retroversion is unclear in patients with femoroacetabular impingement (FAI). This study aimed to investigate mean femoral version (FV), the frequency of absolute femoral retroversion, and the combination of decreased FV and acetabular retroversion (AR) in symptomatic patients with FAI subtypes. Methods. A retrospective institutional review board-approved observational study was performed with 333 symptomatic patients (384 hips) with hip pain due to FAI evaluated for hip preservation surgery. Overall, 142 patients (165 hips) had cam-type FAI, while 118 patients (137 hips) had mixed-type FAI. The allocation to each subgroup was based on reference values calculated on anteroposterior radiographs. CT/MRI-based measurement of FV (Murphy method) and AV were retrospectively compared among five FAI subgroups. Frequency of decreased FV < 10°, severely decreased FV < 5°, and absolute femoral retroversion (FV < 0°) was analyzed. Results. A significantly (p < 0.001) lower mean FV was found in patients with cam-type FAI (15° (SD 10°)), and in patients with mixed-type FAI (17° (SD 11°)) compared to severe over-coverage (20° (SD 12°). Frequency of decreased FV < 10° was significantly (p < 0.001) higher in patients with cam-type FAI (28%, 46 hips) and in patients with over-coverage (29%, 11 hips) compared to severe over-coverage (12%, 5 hips). Absolute femoral retroversion (FV < 0°) was found in 13% (5 hips) of patients with over-coverage, 6% (10 hips) of patients with cam-type FAI, and 5% (7 hips) of patients with mixed-type FAI. The frequency of decreased FV< 10° combined with acetabular retroversion (AV < 10°) was 6% (8 hips) in patients with mixed-type FAI and 5% (20 hips) in all FAI patients. Of patients with over-coverage, 11% (4 hips) had decreased FV < 10° combined with acetabular retroversion (AV < 10°). Conclusion. Patients with cam-type FAI had a considerable proportion (28%) of decreased FV < 10° and 6% had absolute femoral retroversion (FV < 0°), even more for patients with pincer-type FAI due to over-coverage (29% and 13%). This could be important for patients evaluated for open hip preservation surgery or hip arthroscopy, and each patient requires careful personalized evaluation. Cite this article: Bone Jt Open 2022;3(7):557–565


Bone & Joint Research
Vol. 11, Issue 3 | Pages 180 - 188
1 Mar 2022
Rajpura A Asle SG Ait Si Selmi T Board T

Aims. Hip arthroplasty aims to accurately recreate joint biomechanics. Considerable attention has been paid to vertical and horizontal offset, but femoral head centre in the anteroposterior (AP) plane has received little attention. This study investigates the accuracy of restoration of joint centre of rotation in the AP plane. Methods. Postoperative CT scans of 40 patients who underwent unilateral uncemented total hip arthroplasty were analyzed. Anteroposterior offset (APO) and femoral anteversion were measured on both the operated and non-operated sides. Sagittal tilt of the femoral stem was also measured. APO measured on axial slices was defined as the perpendicular distance between a line drawn from the anterior most point of the proximal femur (anterior reference line) to the centre of the femoral head. The anterior reference line was made parallel to the posterior condylar axis of the knee to correct for rotation. Results. Overall, 26/40 hips had a centre of rotation displaced posteriorly compared to the contralateral hip, increasing to 33/40 once corrected for sagittal tilt, with a mean posterior displacement of 7 mm. Linear regression analysis indicated that stem anteversion needed to be increased by 10.8° to recreate the head centre in the AP plane. Merely matching the native version would result in a 12 mm posterior displacement. Conclusion. This study demonstrates the significant incidence of posterior displacement of the head centre in uncemented hip arthroplasty. Effects of such displacement include a reduction in impingement free range of motion, potential alterations in muscle force vectors and lever arms, and impaired proprioception due to muscle fibre reorientation. Cite this article: Bone Joint Res 2022;11(3):180–188


The Bone & Joint Journal
Vol. 104-B, Issue 3 | Pages 352 - 358
1 Mar 2022
Kleeman-Forsthuber L Vigdorchik JM Pierrepont JW Dennis DA

Aims. Pelvic incidence (PI) is a position-independent spinopelvic parameter traditionally used by spinal surgeons to determine spinal alignment. Its relevance to the arthroplasty surgeon in assessing patient risk for total hip arthroplasty (THA) instability preoperatively is unclear. This study was undertaken to investigate the significance of PI relative to other spinopelvic parameter risk factors for instability to help guide its clinical application. Methods. Retrospective analysis was performed of a multicentre THA database of 9,414 patients with preoperative imaging (dynamic spinopelvic radiographs and pelvic CT scans). Several spinopelvic parameter measurements were made by engineers using advanced software including sacral slope (SS), standing anterior pelvic plane tilt (APPT), spinopelvic tilt (SPT), lumbar lordosis (LL), and PI. Lumbar flexion (LF) was determined by change in LL between standing and flexed-seated lateral radiographs. Abnormal pelvic mobility was defined as ∆SPT ≥ 20° between standing and flexed-forward positions. Sagittal spinal deformity (SSD) was defined as PI-LL mismatch > 10°. Results. PI showed a positive correlation with parameters of SS, SPT, and LL (r-value range 0.468 to 0.661). Patients with a higher PI value showed higher degrees of standing LL, likely as a compensatory measure to maintain sagittal spine balance. There was a positive correlation between LL and LF such that patients with less standing LL had decreased LF (r = 0.49). Similarly, there was a positive correlation between increased SSD and decreased LF (r = 0.54). PI in isolation did not show any significant correlation with lumbar (r = 0.04) or pelvic mobility (r = 0.02). The majority of patients (range 89.4% to 94.2%) had normal lumbar and pelvic mobility regardless of the PI value. Conclusion. The PI value alone is not indicative of either spinal or pelvic mobility, and thus in isolation may not be a risk factor for THA instability. Patients with SSD had higher rates of spinopelvic stiffness, which may be the mechanism by which PI relates to THA instability risk, but further clinical studies are required. Cite this article: Bone Joint J 2022;104-B(3):352–358


The Bone & Joint Journal
Vol. 102-B, Issue 12 | Pages 1636 - 1645
1 Dec 2020
Lerch TD Liechti EF Todorski IAS Schmaranzer F Steppacher SD Siebenrock KA Tannast M Klenke FM

Aims. The prevalence of combined abnormalities of femoral torsion (FT) and tibial torsion (TT) is unknown in patients with femoroacetabular impingement (FAI) and hip dysplasia. This study aimed to determine the prevalence of combined abnormalities of FT and TT, and which subgroups are associated with combined abnormalities of FT and TT. Methods. We retrospectively evaluated symptomatic patients with FAI or hip dysplasia with CT scans performed between September 2011 and September 2016. A total of 261 hips (174 patients) had a measurement of FT and TT. Their mean age was 31 years (SD 9), and 63% were female (165 hips). Patients were compared to an asymptomatic control group (48 hips, 27 patients) who had CT scans including femur and tibia available for analysis, which had been acquired for nonorthopaedic reasons. Comparisons were conducted using analysis of variance with Bonferroni correction. Results. In the overall study group, abnormal FT was present in 62% (163 hips). Abnormal TT was present in 42% (109 hips). Normal FT combined with normal TT was present in 21% (55 hips). The most frequent abnormal combination was increased FT combined with normal TT of 32% (84 hips). In the hip dysplasia group, 21% (11 hips) had increased FT combined with increased TT. The prevalence of abnormal FT varied significantly among the subgroups (p < 0.001). We found a significantly higher mean FT for hip dysplasia (31°; SD 15)° and valgus hips (42° (SD 12°)) compared with the control group (22° (SD 8°)). We found a significantly higher mean TT for hips with cam-type-FAI (34° (SD 6°)) and hip dysplasia (35° (SD 9°)) compared with the control group (28° (SD 8°)) (p < 0.001). Conclusion. Patients with FAI had a high prevalence of combined abnormalities of FT and TT. For hip dysplasia, we found a significantly higher mean FT and TT, while 21% of patients (11 hips) had combined increased TT and increased FT (combined torsional malalignment). This is important when planning hip preserving surgery such as periacetabular osteomy and femoral derotation osteotomy. Cite this article: Bone Joint J 2020;102-B(12):1636–1645


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1656 - 1661
1 Nov 2021
Iwasa M Ando W Uemura K Hamada H Takao M Sugano N

Aims. Pelvic incidence (PI) is considered an important anatomical parameter for determining the sagittal balance of the spine. The contribution of an abnormal PI to hip osteoarthritis (OA) remains controversial. In this study, we aimed to investigate the relationship between PI and hip OA, and the difference in PI between hip OA without anatomical abnormalities (primary OA) and hip OA with developmental dysplasia of the hip (DDH-OA). Methods. In this study, 100 patients each of primary OA, DDH-OA, and control subjects with no history of hip disease were included. CT images were used to measure PI, sagittal femoral head coverage, α angle, and acetabular anteversion. PI was also subdivided into three categories: high PI (larger than 64.0°), medium PI (42.0° to 64.0°), and low PI (less than 42.0°). The anterior centre edge angles, posterior centre edge angles, and total sagittal femoral head coverage were measured. The correlations between PI and sagittal femoral head coverage, α angle, and acetabular anteversion were examined. Results. No significant difference in PI was observed between the three groups. There was no significant difference between the groups in terms of the category distribution of PI. The DDH-OA group had lower mean sagittal femoral head coverage than the other groups. There were no significant correlations between PI and other anatomical factors, including sagittal femoral head coverage, α angle, and acetabular anteversion. Conclusion. No associations were found between mean PI values or PI categories and hip OA. Furthermore, there was no difference in PI between patients with primary OA and DDH-OA. From our evaluation, we found no evidence of PI being an independent factor associated with the development of hip OA. Cite this article: Bone Joint J 2021;103-B(11):1656–1661


Bone & Joint Open
Vol. 2, Issue 10 | Pages 813 - 824
7 Oct 2021
Lerch TD Boschung A Schmaranzer F Todorski IAS Vanlommel J Siebenrock KA Steppacher SD Tannast M

Aims. The effect of pelvic tilt (PT) and sagittal balance in hips with pincer-type femoroacetabular impingement (FAI) with acetabular retroversion (AR) is controversial. It is unclear if patients with AR have a rotational abnormality of the iliac wing. Therefore, we asked: are parameters for sagittal balance, and is rotation of the iliac wing, different in patients with AR compared to a control group?; and is there a correlation between iliac rotation and acetabular version?. Methods. A retrospective, review board-approved, controlled study was performed including 120 hips in 86 consecutive patients with symptomatic FAI or hip dysplasia. Pelvic CT scans were reviewed to calculate parameters for sagittal balance (pelvic incidence (PI), PT, and sacral slope), anterior pelvic plane angle, pelvic inclination, and external rotation of the iliac wing and were compared to a control group (48 hips). The 120 hips were allocated to the following groups: AR (41 hips), hip dysplasia (47 hips) and cam FAI with normal acetabular morphology (32 hips). Subgroups of total AR (15 hips) and high acetabular anteversion (20 hips) were analyzed. Statistical analysis was performed using analysis of variance with Bonferroni correction. Results. PI and PT were significantly decreased comparing AR (PI 42° (SD 10°), PT 4° (SD 5°)) with dysplastic hips (PI 55° (SD 12°), PT 10° (SD 6°)) and with the control group (PI 51° (SD 9°) and PT 13° (SD 7°)) (p < 0.001). External rotation of the iliac wing was significantly increased comparing AR (29° (SD 4°)) with dysplastic hips (20°(SD 5°)) and with the control group (25° (SD 5°)) (p < 0.001). Correlation between external rotation of the iliac wing and acetabular version was significant and strong (r = 0.81; p < 0.001). Correlation between PT and acetabular version was significant and moderate (r = 0.58; p < 0.001). Conclusion. These findings could contribute to a better understanding of hip pain in a sitting position and extra-articular subspine FAI of patients with AR. These patients have increased iliac external rotation, a rotational abnormality of the iliac wing. This has implications for surgical therapy with hip arthroscopy and acetabular rim trimming or anteverting periacetabular osteotomy (PAO). Cite this article: Bone Jt Open 2021;2(10):813–824


The Bone & Joint Journal
Vol. 101-B, Issue 9 | Pages 1042 - 1049
1 Sep 2019
Murphy MP Killen CJ Ralles SJ Brown NM Hopkinson WJ Wu K

Aims. Several radiological methods of measuring anteversion of the acetabular component after total hip arthroplasty (THA) have been described. These are limited by low reproducibility, are less accurate than CT 3D reconstruction, and are cumbersome to use. These methods also partly rely on the identification of obscured radiological borders of the component. We propose two novel methods, the Area and Orthogonal methods, which have been designed to maximize use of readily identifiable points while maintaining the same trigonometric principles. Patients and Methods. A retrospective study of plain radiographs was conducted on 160 hips of 141 patients who had undergone primary THA. We compared the reliability and accuracy of the Area and Orthogonal methods with two of the current leading methods: those of Widmer and Lewinnek, respectively. Results. The 160 anteroposterior pelvis films revealed that the proposed Area method was statistically different from those described by Widmer and Lewinnek (p < 0.001 and p = 0.004, respectively). They gave the highest inter- and intraobserver reliability (0.992 and 0.998, respectively), and took less time (27.50 seconds (. sd. 3.19); p < 0.001) to complete. In addition, 21 available CT 3D reconstructions revealed the Area method achieved the highest Pearson’s correlation coefficient (r = 0.956; p < 0.001) and least statistical difference (p = 0.704) from CT with a mean within 1° of CT-3D reconstruction between ranges of 1° to 30° of measured radiological anteversion. Conclusion. Our results support the proposed Area method to be the most reliable, accurate, and speedy. They did not support any statistical superiority of the proposed Orthogonal method to that of the Widmer or Lewinnek method. Cite this article: Bone Joint J 2019;101-B:1042–1049


The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1303 - 1309
1 Oct 2018
Nodzo SR Chang C Carroll KM Barlow BT Banks SA Padgett DE Mayman DJ Jerabek SA

Aims. The aim of this study was to evaluate the accuracy of implant placement when using robotic assistance during total hip arthroplasty (THA). Patients and Methods. A total of 20 patients underwent a planned THA using preoperative CT scans and robotic-assisted software. There were nine men and 11 women (n = 20 hips) with a mean age of 60.8 years (. sd. 6.0). Pelvic and femoral bone models were constructed by segmenting both preoperative and postoperative CT scan images. The preoperative anatomical landmarks using the robotic-assisted system were matched to the postoperative 3D reconstructions of the pelvis. Acetabular and femoral component positions as measured intraoperatively and postoperatively were evaluated and compared. Results. The system reported accurate values for reconstruction of the hip when compared to those measured postoperatively using CT. The mean deviation from the executed overall hip length and offset were 1.6 mm (. sd. 2.9) and 0.5 mm (. sd. 3.0), respectively. Mean combined anteversion was similar and correlated between intraoperative measurements and postoperative CT measurements (32.5°, . sd. 5.9° versus 32.2°, . sd. 6.4°; respectively; R. 2. = 0.65; p < 0.001). There was a significant correlation between mean intraoperative (40.4°, . sd. 2.1°) acetabular component inclination and mean measured postoperative inclination (40.12°, . sd. 3.0°, R. 2. = 0.62; p < 0.001). There was a significant correlation between mean intraoperative version (23.2°, . sd. 2.3°), and postoperatively measured version (23.0°, . sd. 2.4°; R. 2. = 0.76; p < 0.001). Preoperative and postoperative femoral component anteversion were significantly correlated with one another (R. 2. = 0.64; p < 0.001). Three patients had CT scan measurements that differed substantially from the intraoperative robotic measurements when evaluating stem anteversion. Conclusion. This is the first study to evaluate the success of hip reconstruction overall using robotic-assisted THA. The overall hip reconstruction obtained in the operating theatre using robotic assistance accurately correlated with the postoperative component position assessed independently using CT based 3D modelling. Clinical correlation during surgery should continue to be practiced and compared with observed intraoperative robotic values. Cite this article: Bone Joint J 2018;100-B:1303–9


Bone & Joint Open
Vol. 2, Issue 7 | Pages 476 - 485
8 Jul 2021
Scheerlinck T De Winter E Sas A Kolk S Van Gompel G Vandemeulebroucke J

Aims. Hip arthroplasty does not always restore normal anatomy. This is due to inaccurate surgery or lack of stem sizes. We evaluated the aptitude of four total hip arthroplasty systems to restore an anatomical and medialized hip rotation centre. Methods. Using 3D templating software in 49 CT scans of non-deformed femora, we virtually implanted: 1) small uncemented calcar-guided stems with two offset options (Optimys, Mathys), 2) uncemented straight stems with two offset options (Summit, DePuy Synthes), 3) cemented undersized stems (Exeter philosophy) with three offset options (CPT, ZimmerBiomet), and 4) cemented line-to-line stems (Kerboul philosophy) with proportional offsets (Centris, Mathys). We measured the distance between the templated and the anatomical and 5 mm medialized hip rotation centre. Results. Both rotation centres could be restored within 5 mm in 94% and 92% of cases, respectively. The cemented undersized stem performed best, combining freedom of stem positioning and a large offset range. The uncemented straight stem performed well because of its large and well-chosen offset range, and despite the need for cortical bone contact limiting stem positioning. The cemented line-to-line stem performed less well due to a small range of sizes and offsets. The uncemented calcar-guided stem performed worst, despite 24 sizes and a large and well-chosen offset range. This was attributed to the calcar curvature restricting the stem insertion depth along the femoral axis. Conclusion. In the majority of non-deformed femora, leg length, offset, and anteversion can be restored accurately with non-modular stems during 3D templating. Failure to restore hip biomechanics is mostly due to surgical inaccuracy. Small calcar guided stems offer no advantage to restore hip biomechanics compared to more traditional designs. Cite this article: Bone Jt Open 2021;2(7):476–485


Bone & Joint Open
Vol. 2, Issue 10 | Pages 834 - 841
11 Oct 2021
O'Connor PB Thompson MT Esposito CI Poli N McGree J Donnelly T Donnelly W

Aims. Pelvic tilt (PT) can significantly change the functional orientation of the acetabular component and may differ markedly between patients undergoing total hip arthroplasty (THA). Patients with stiff spines who have little change in PT are considered at high risk for instability following THA. Femoral component position also contributes to the limits of impingement-free range of motion (ROM), but has been less studied. Little is known about the impact of combined anteversion on risk of impingement with changing pelvic position. Methods. We used a virtual hip ROM (vROM) tool to investigate whether there is an ideal functional combined anteversion for reduced risk of hip impingement. We collected PT information from functional lateral radiographs (standing and sitting) and a supine CT scan, which was then input into the vROM tool. We developed a novel vROM scoring system, considering both seated flexion and standing extension manoeuvres, to quantify whether hips had limited ROM and then correlated the vROM score to component position. Results. The vast majority of THA planned with standing combined anteversion between 30° to 50° and sitting combined anteversion between 45° to 65° had a vROM score > 99%, while the majority of vROM scores less than 99% were outside of this zone. The range of PT in supine, standing, and sitting positions varied widely between patients. Patients who had little change in PT from standing to sitting positions had decreased hip vROM. Conclusion. It has been shown previously that an individual’s unique spinopelvic alignment influences functional cup anteversion. But functional combined anteversion, which also considers stem position, should be used to identify an ideal THA position for impingement-free ROM. We found a functional combined anteversion zone for THA that may be used moving forward to place total hip components. Cite this article: Bone Jt Open 2021;2(10):834–841


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 9 - 16
1 Jul 2021
Hadden WJ Ibrahim M Taha M Ure K Liu Y Paish ADM Holdsworth DW Abdelbary H

Aims. The aims of this study were to develop an in vivo model of periprosthetic joint infection (PJI) in cemented hip hemiarthroplasty, and to monitor infection and biofilm formation in real-time. Methods. Sprague-Dawley rats underwent cemented hip hemiarthroplasty via the posterior approach with pre- and postoperative gait assessments. Infection with Staphylococcus aureus Xen36 was monitored with in vivo photoluminescent imaging in real-time. Pre- and postoperative gait analyses were performed and compared. Postmortem micro (m) CT was used to assess implant integration; field emission scanning electron microscopy (FE-SEM) was used to assess biofilm formation on prosthetic surfaces. Results. All animals tolerated surgery well, with preservation of gait mechanics and weightbearing in control individuals. Postoperative in vivo imaging demonstrated predictable evolution of infection with logarithmic signal decay coinciding with abscess formation. Postmortem mCT qualitative volumetric analysis showed high contact area and both cement-bone and cement-implant interdigitation. FE-SEM revealed biofilm formation on the prosthetic head. Conclusion. This study demonstrates the utility of a new, high-fidelity model of in vivo PJI using cemented hip hemiarthroplasty in rats. Inoculation with bioluminescent bacteria allows for non-invasive, real-time monitoring of infection. Cite this article: Bone Joint J 2021;103-B(7 Supple B):9–16


The Bone & Joint Journal
Vol. 101-B, Issue 10 | Pages 1218 - 1229
1 Oct 2019
Lerch TD Eichelberger P Baur H Schmaranzer F Liechti EF Schwab JM Siebenrock KA Tannast M

Aims. Abnormal femoral torsion (FT) is increasingly recognized as an additional cause for femoroacetabular impingement (FAI). It is unknown if in-toeing of the foot is a specific diagnostic sign for increased FT in patients with symptomatic FAI. The aims of this study were to determine: 1) the prevalence and diagnostic accuracy of in-toeing to detect increased FT; 2) if foot progression angle (FPA) and tibial torsion (TT) are different among patients with abnormal FT; and 3) if FPA correlates with FT. Patients and Methods. A retrospective, institutional review board (IRB)-approved, controlled study of 85 symptomatic patients (148 hips) with FAI or hip dysplasia was performed in the gait laboratory. All patients had a measurement of FT (pelvic CT scan), TT (CT scan), and FPA (optical motion capture system). We allocated all patients to three groups with decreased FT (< 10°, 37 hips), increased FT (> 25°, 61 hips), and normal FT (10° to 25°, 50 hips). Cluster analysis was performed. Results. We found a specificity of 99%, positive predictive value (PPV) of 93%, and sensitivity of 23% for in-toeing (FPA < 0°) to detect increased FT > 25°. Most of the hips with normal or decreased FT had no in-toeing (false-positive rate of 1%). Patients with increased FT had significantly (p < 0.001) more in-toeing than patients with decreased FT. The majority of the patients (77%) with increased FT walk with a normal foot position. The correlation between FPA and FT was significant (r = 0.404, p < 0.001). Five cluster groups were identified. Conclusion. In-toeing has a high specificity and high PPV to detect increased FT, but increased FT can be missed because of the low sensitivity and high false-negative rate. These results can be used for diagnosis of abnormal FT in patients with FAI or hip dysplasia undergoing hip arthroscopy or femoral derotation osteotomy. However, most of the patients with increased FT walk with a normal foot position. This can lead to underestimation or misdiagnosis of abnormal FT. We recommend measuring FT with CT/MRI scans in all patients with FAI. Cite this article: Bone Joint J 2019;101-B:1218–1229


The Bone & Joint Journal
Vol. 100-B, Issue 5 | Pages 570 - 578
1 May 2018
Gollwitzer H Suren C Strüwind C Gottschling H Schröder M Gerdesmeyer L Prodinger PM Burgkart R

Aims. Asphericity of the femoral head-neck junction is common in cam-type femoroacetabular impingement (FAI) and usually quantified using the alpha angle on radiographs or MRI. The aim of this study was to determine the natural alpha angle in a large cohort of patients by continuous circumferential analysis with CT. Methods. CT scans of 1312 femurs of 656 patients were analyzed in this cross-sectional study. There were 362 men and 294 women. Their mean age was 61.2 years (18 to 93). All scans had been performed for reasons other than hip disease. Digital circumferential analysis allowed continuous determination of the alpha angle around the entire head-neck junction. All statistical tests were conducted two-sided; a p-value < 0.05 was considered statistically significant. Results. The mean maximum alpha angle for the cohort was 59.0° (. sd. 9.4). The maximum was located anterosuperiorly at 01:36 on the clock face, with two additional maxima of asphericity at the posterior and inferior head-neck junction. The mean alpha angle was significantly larger in men (59.4°, . sd. 8.0) compared with women (53.5°, . sd. 7.4°; p = 0.0005), and in Caucasians (60.7°, . sd. 9.0°) compared with Africans (56.3°, . sd. 8.0; p = 0.007) and Asians (50.8°, . sd. 7.2; p = 0.0005). The alpha angle showed a weak positive correlation with age (p < 0.05). If measured at commonly used planes of the radially reconstructed CT or MRI, the alpha angle was largely underestimated; measurement at the 01:30 and 02:00 positions showed a mean underestimation of 4° and 6°, respectively. Conclusion. This study provides important data on the normal alpha angle dependent on age, gender, and ethnic origin. The normal alpha angle in men is > 55°, and this should be borne in mind when making a diagnosis of cam-type morphology. Cite this article: Bone Joint J 2018;100-B:570–8


Bone & Joint Research
Vol. 9, Issue 7 | Pages 360 - 367
1 Jul 2020
Kawahara S Hara T Sato T Kitade K Shimoto T Nakamura T Mawatari T Higaki H Nakashima Y

Aims. Appropriate acetabular component placement has been proposed for prevention of postoperative dislocation in total hip arthroplasty (THA). Manual placements often cause outliers in spite of attempts to insert the component within the intended safe zone; therefore, some surgeons routinely evaluate intraoperative pelvic radiographs to exclude excessive acetabular component malposition. However, their evaluation is often ambiguous in case of the tilted or rotated pelvic position. The purpose of this study was to develop the computational analysis to digitalize the acetabular component orientation regardless of the pelvic tilt or rotation. Methods. Intraoperative pelvic radiographs of 50 patients who underwent THA were collected retrospectively. The 3D pelvic bone model and the acetabular component were image-matched to the intraoperative pelvic radiograph. The radiological anteversion (RA) and radiological inclination (RI) of the acetabular component were calculated and those measurement errors from the postoperative CT data were compared relative to those of the 2D measurements. In addition, the intra- and interobserver differences of the image-matching analysis were evaluated. Results. Mean measurement errors of the image-matching analyses were significantly small (2.5° (SD 1.4°) and 0.1° (SD 0.9°) in the RA and RI, respectively) relative to those of the 2D measurements. Intra- and interobserver differences were similarly small from the clinical perspective. Conclusion. We have developed a computational analysis of acetabular component orientation using an image-matching technique with small measurement errors compared to visual evaluations regardless of the pelvic tilt or rotation. Cite this article: Bone Joint Res 2020;9(7):360–367


The Bone & Joint Journal
Vol. 101-B, Issue 3 | Pages 317 - 324
1 Mar 2019
Moon J Kim Y Hwang K Yang J Ryu J Kim Y

Aims. The present study investigated the five-year interval changes in pseudotumours and measured serum metal ions at long-term follow-up of a previous report of 28 mm diameter metal-on-metal (MoM) total hip arthroplasty (THA). Patients and Methods. A total of 72 patients (mean age 46.6 years (37 to 55); 43 men, 29 women; 91 hips) who underwent cementless primary MoM THA with a 28 mm modular head were included. The mean follow-up duration was 20.3 years (18 to 24). All patients had CT scans at a mean 15.1 years (13 to 19) after the index operation and subsequent follow-up at a mean of 20.2 years (18 to 24). Pseudotumour volume, type of mass, and new-onset pseudotumours were evaluated using CT scanning. Clinical outcomes were assessed by Harris Hip Score (HHS) and the presence of groin pain. Serum metal ion (cobalt (Co) and chromium (Cr)) levels were measured at the latest follow-up. Results. At final follow-up, pseudotumours were observed in 26/91 hips (28.6%). There was an increase in volume of the pseudotumour in four hips (15.4%), no change in volume in 21 hips (80.8%), and a decrease in volume in one hip (3.8%). There were no new-onset pseudotumours. There was no significant difference in HHS between patients with and without pseudotumours. At final follow-up, mean serum Co ion levels and median Co:Cr ratios were significantly greater in patients with pseudotumours, but the serum Cr ion levels were not significantly different. Conclusion. At a mean 20 years of follow-up, pseudotumours were observed in 26/91 hips (28.6%) with no new-onset pseudotumours during subsequent follow-up. Most pseudotumours in small-head MoM THA were static in volume and asymptomatic with normal serum metal ion levels. Cite this article: Bone Joint J 2019;101-B:317–324


The Bone & Joint Journal
Vol. 102-B, Issue 11 | Pages 1505 - 1510
2 Nov 2020
Klemt C Limmahakhun S Bounajem G Xiong L Yeo I Kwon Y

Aims. The complex relationship between acetabular component position and spinopelvic mobility in patients following total hip arthroplasty (THA) renders it difficult to optimize acetabular component positioning. Mobility of the normal lumbar spine during postural changes results in alterations in pelvic tilt (PT) to maintain the sagittal balance in each posture and, as a consequence, markedly changes the functional component anteversion (FCA). This study aimed to investigate the in vivo association of lumbar degenerative disc disease (DDD) with the PT angle and with FCA during postural changes in THA patients. Methods. A total of 50 patients with unilateral THA underwent CT imaging for radiological evaluation of presence and severity of lumbar DDD. In all, 18 patients with lumbar DDD were compared to 32 patients without lumbar DDD. In vivo PT and FCA, and the magnitudes of changes (ΔPT; ΔFCA) during supine, standing, swing-phase, and stance-phase positions were measured using a validated dual fluoroscopic imaging system. Results. PT, FCA, ΔPT, and ΔFCA were significantly correlated with the severity of lumbar DDD. Patients with severe lumbar DDD showed marked differences in PT with changes in posture; there was an anterior tilt (-16.6° vs -12.3°, p = 0.047) in the supine position, but a posterior tilt in an upright posture (1.0° vs -3.6°, p = 0.005). A significant decrease in ΔFCA during stand-to-swing (8.6° vs 12.8°, p = 0.038) and stand-to-stance (7.3° vs 10.6°,p = 0.042) was observed in the severe lumbar DDD group. Conclusion. There were marked differences in the relationship between PT and posture in patients with severe lumbar DDD compared with healthy controls. Clinical decision-making should consider the relationship between PT and FCA in order to reduce the risk of impingement at large ranges of motion in THA patients with lumbar DDD. Cite this article: Bone Joint J 2020;102-B(11):1505–1510


Bone & Joint Open
Vol. 5, Issue 4 | Pages 260 - 268
1 Apr 2024
Broekhuis D Meurs WMH Kaptein BL Karunaratne S Carey Smith RL Sommerville S Boyle R Nelissen RGHH

Aims

Custom triflange acetabular components (CTACs) play an important role in reconstructive orthopaedic surgery, particularly in revision total hip arthroplasty (rTHA) and pelvic tumour resection procedures. Accurate CTAC positioning is essential to successful surgical outcomes. While prior studies have explored CTAC positioning in rTHA, research focusing on tumour cases and implant flange positioning precision remains limited. Additionally, the impact of intraoperative navigation on positioning accuracy warrants further investigation. This study assesses CTAC positioning accuracy in tumour resection and rTHA cases, focusing on the differences between preoperative planning and postoperative implant positions.

Methods

A multicentre observational cohort study in Australia between February 2017 and March 2021 included consecutive patients undergoing acetabular reconstruction with CTACs in rTHA (Paprosky 3A/3B defects) or tumour resection (including Enneking P2 peri-acetabular area). Of 103 eligible patients (104 hips), 34 patients (35 hips) were analyzed.


The Bone & Joint Journal
Vol. 96-B, Issue 5 | Pages 597 - 603
1 May 2014
Nomura T Naito M Nakamura Y Ida T Kuroda D Kobayashi T Sakamoto T Seo H

Several radiological methods of measuring anteversion of the acetabular component after total hip replacement (THR) have been described. These studies used different definitions and reference planes to compare methods, allowing for misinterpretation of the results. We compared the reliability and accuracy of five current methods using plain radiographs (those of Lewinnek, Widmer, Liaw, Pradhan, and Woo and Morrey) with CT measurements, using the same definition and reference plane. We retrospectively studied the plain radiographs and CT scans in 84 hips of 84 patients who underwent primary THR. Intra- and inter-observer reliability were high for the measurement of inclination and anteversion with all methods on plain radiographs and CT scans. The measurements of inclination on plain radiographs were similar to the measurements using CT (p = 0.043). The mean difference between CT measurements was 0.6° (-5.9° to 6.8°). Measurements using Widmer’s method were the most similar to those using CT (p = 0.088), with a mean difference between CT measurements of -0.9° (-10.4° to 9.1°), whereas the other four methods differed significantly from those using CT (p < 0.001). This study has shown that Widmer’s method is the best for evaluating the anteversion of the acetabular component on plain radiographs. Cite this article: Bone Joint J 2014; 96-B:597–603


Bone & Joint Open
Vol. 5, Issue 10 | Pages 858 - 867
11 Oct 2024
Yamate S Hamai S Konishi T Nakao Y Kawahara S Hara D Motomura G Nakashima Y

Aims

The aim of this study was to evaluate the suitability of the tapered cone stem in total hip arthroplasty (THA) in patients with excessive femoral anteversion and after femoral osteotomy.

Methods

We included patients who underwent THA using Wagner Cone due to proximal femur anatomical abnormalities between August 2014 and January 2019 at a single institution. We investigated implant survival time using the endpoint of dislocation and revision, and compared the prevalence of prosthetic impingements between the Wagner Cone, a tapered cone stem, and the Taperloc, a tapered wedge stem, through simulation. We also collected Oxford Hip Score (OHS), visual analogue scale (VAS) satisfaction, and VAS pain by postal survey in August 2023 and explored variables associated with those scores.


Bone & Joint Open
Vol. 5, Issue 8 | Pages 671 - 680
14 Aug 2024
Fontalis A Zhao B Putzeys P Mancino F Zhang S Vanspauwen T Glod F Plastow R Mazomenos E Haddad FS

Aims

Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype, is paramount for stability in total hip arthroplasty (THA). Despite a few studies on instability prediction, there is a notable gap in research utilizing artificial intelligence (AI). The objective of our pilot study was to evaluate the feasibility of developing an AI algorithm tailored to individual spinopelvic mechanics and patient phenotype for predicting impingement.

Methods

This international, multicentre prospective cohort study across two centres encompassed 157 adults undergoing primary robotic arm-assisted THA. Impingement during specific flexion and extension stances was identified using the virtual range of motion (ROM) tool of the robotic software. The primary AI model, the Light Gradient-Boosting Machine (LGBM), used tabular data to predict impingement presence, direction (flexion or extension), and type. A secondary model integrating tabular data with plain anteroposterior pelvis radiographs was evaluated to assess for any potential enhancement in prediction accuracy.


Bone & Joint Open
Vol. 3, Issue 11 | Pages 867 - 876
10 Nov 2022
Winther SS Petersen M Yilmaz M Kaltoft NS Stürup J Winther NS

Aims

Pelvic discontinuity is a rare but increasingly common complication of total hip arthroplasty (THA). This single-centre study evaluated the performance of custom-made triflange acetabular components in acetabular reconstruction with pelvic discontinuity by determining: 1) revision and overall implant survival rates; 2) discontinuity healing rate; and 3) Harris Hip Score (HHS).

Methods

Retrospectively collected data of 38 patients (39 hips) with pelvic discontinuity treated with revision THA using a custom-made triflange acetabular component were analyzed. Minimum follow-up was two years (mean 5.1 years (2 to 11)).