Advertisement for orthosearch.org.uk
Results 1 - 50 of 409
Results per page:
The Bone & Joint Journal
Vol. 97-B, Issue 4 | Pages 498 - 502
1 Apr 2015
Deep K Eachempati KK Apsingi S

The restoration of knee alignment is an important goal during total knee arthroplasty (TKA). In the past surgeons aimed to restore neutral limb alignment during surgery. However, previous studies have demonstrated alignment to be dynamic, varying depending on the position of the limb and the degree of weight-bearing, and between patients. We used a validated computer navigation system to measure the femorotibial mechanical angle (FTMA) in 264 knees in 77 male and 55 female healthy volunteers aged 18 to 35 years (mean 26.2). We found the mean supine alignment to be a varus angle of 1.2° (standard deviation (. sd. ) 4), with few patients having neutral alignment. FTMA differs significantly between males and females (with a mean varus of 1.7° (. sd. 4) and 0.4° (. sd. 3.9), respectively; p = 0.008). It changes significantly with posture, the knee hyperextending by a mean of 5.6°, and coronal plane alignment becoming more varus by 2.2° (. sd. 3.6) on standing compared with supine. Knee alignment is different in different individuals and is dynamic in nature, changing with different postures. This may have implications for the assessment of alignment in TKA, which is achieved in non-weight-bearing conditions and which may not represent the situation observed during weight-bearing. Cite this article: Bone Joint J 2015; 97-B:498–502


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 81 - 83
1 Jan 2016
Allen MM Pagnano MW

The cause of dissatisfaction following total knee arthroplasty (TKA) remains elusive. Much attention has been focused on static mechanical alignment as a basis for surgical success and optimising outcomes. More recently, research on both normal and osteoarthritic knees, as well as kinematically aligned TKAs, has suggested that other specific and dynamic factors may be more important than a generic target of 0 ± 3º of a neutral axis. Consideration of these other variables is necessary to understand ideal targets and move beyond generic results. . Cite this article: Bone Joint J 2016;98-B(1 Suppl A):81–3


The Bone & Joint Journal
Vol. 106-B, Issue 8 | Pages 817 - 825
1 Aug 2024
Borukhov I Ismailidis P Esposito CI LiArno S Lyon J McEwen PJ

Aims. This study aimed to evaluate if total knee arthroplasty (TKA) femoral components aligned in either mechanical alignment (MA) or kinematic alignment (KA) are more biomimetic concerning trochlear sulcus orientation and restoration of trochlear height. Methods. Bone surfaces from 1,012 CT scans of non-arthritic femora were segmented using a modelling and analytics system. TKA femoral components (Triathlon; Stryker) were virtually implanted in both MA and KA. Trochlear sulcus orientation was assessed by measuring the distal trochlear sulcus angle (DTSA) in native femora and in KA and MA prosthetic femoral components. Trochlear anatomy restoration was evaluated by measuring the differences in medial, lateral, and sulcus trochlear height between native femora and KA and MA prosthetic femoral components. Results. Femoral components in both MA and KA alignments exhibited a more valgus DTSA compared to native femora. However, DTSA deviation from native was significantly less in KA than in MA (4.8° (SD 2.2°) vs 8.8° (SD 1.8°); p < 0.001). DTSA deviation from native orientation correlated positively with the mechanical lateral distal femoral angle (mLDFA) in KA and negatively in MA (r = 0.53, p < 0.001; r = -0.18, p < 0.001). Medial trochlear height was not restored with either MA or KA, with MA resulting in lower medial trochlear height than KA in the proximal 20% of the trochlea. Lateral and sulcus trochlear height was not restored with either alignment in the proximal 80% of the trochlea. At the terminal arc point, KA replicated sulcus and lateral trochlear height, while MA led to over-restoration. Conclusion. Femoral components aligned in KA demonstrated greater biomimetic qualities than those in MA regarding trochlear sulcus orientation and trochlear height restoration, particularly in valgus femora. Variability across knees was observed, warranting further research to evaluate the clinical implications of these findings. Cite this article: Bone Joint J 2024;106-B(8):817–825


Bone & Joint Open
Vol. 5, Issue 2 | Pages 109 - 116
8 Feb 2024
Corban LE van de Graaf VA Chen DB Wood JA Diwan AD MacDessi SJ

Aims. While mechanical alignment (MA) is the traditional technique in total knee arthroplasty (TKA), its potential for altering constitutional alignment remains poorly understood. This study aimed to quantify unintentional changes to constitutional coronal alignment and joint line obliquity (JLO) resulting from MA. Methods. A retrospective cohort study was undertaken of 700 primary MA TKAs (643 patients) performed between 2014 and 2017. Lateral distal femoral and medial proximal tibial angles were measured pre- and postoperatively to calculate the arithmetic hip-knee-ankle angle (aHKA), JLO, and Coronal Plane Alignment of the Knee (CPAK) phenotypes. The primary outcome was the magnitude and direction of aHKA, JLO, and CPAK alterations. Results. The mean aHKA and JLO increased by 0.1° (SD 3.4°) and 5.8° (SD 3.5°), respectively, from pre- to postoperatively. The most common phenotypes shifted from 76.3% CPAK Types I, II, or III (apex distal JLO) preoperatively to 85.0% IV, V, or VI (apex horizontal JLO) postoperatively. The proportion of knees with apex proximal JLO increased from 0.7% preoperatively to 11.1% postoperatively. Among all MA TKAs, 60.0% (420 knees) were changed from their constitutional alignments into CPAK Type V, while 40.0% (280 knees) either remained in constitutional Type V (5.0%, 35 knees) or were unintentionally aligned into other CPAK types (35.0%; 245 knees). Conclusion. Fixed MA targets in TKA lead to substantial changes from constitutional alignment, primarily a significant increase in JLO. These findings enhance our understanding of alignment alterations resulting from both unintended changes to knee phenotypes and surgical resection imprecision. Cite this article: Bone Jt Open 2024;5(2):109–116


Aims. Patient-specific instrumentation of total knee arthroplasty (TKA) is a technique permitting the targeting of individual kinematic alignment, but deviation from a neutral mechanical axis may have implications on implant fixation and therefore survivorship. The primary objective of this randomized controlled study was to compare the fixation of tibial components implanted with patient-specific instrumentation targeting kinematic alignment (KA+PSI) versus components placed using computer-assisted surgery targeting neutral mechanical alignment (MA+CAS). Tibial component migration measured by radiostereometric analysis was the primary outcome measure (compared longitudinally between groups and to published acceptable thresholds). Secondary outcome measures were inducible displacement after one year and patient-reported outcome measures (PROMS) over two years. The secondary objective was to assess the relationship between alignment and both tibial component migration and inducible displacement. Patients and Methods. A total of 47 patients due to undergo TKA were randomized to KA+PSI (n = 24) or MA+CAS (n = 23). In the KA+PSI group, there were 16 female and eight male patients with a mean age of 64 years (. sd. 8). In the MA+CAS group, there were 17 female and six male patients with a mean age of 63 years (. sd. 7). Surgery was performed using cemented, cruciate-retaining Triathlon total knees with patellar resurfacing, and patients were followed up for two years. The effect of alignment on tibial component migration and inducible displacement was analyzed irrespective of study group. Results. There was no difference over two years in longitudinal migration of the tibial component between the KA+PSI and MA+CAS groups (reaching median maximum total point motion migration at two years of 0.40 mm for the KA+PSI group and 0.37 mm for the MA+CAS group, p = 0.82; p = 0.68 adjusted for age, sex, and body mass index (BMI) for all follow-ups). Both groups had mean migrations below acceptable thresholds. There was no difference in inducible displacement (p = 0.34) or PROMS (p = 0.61 for the Oxford Knee Score) between groups. There was no correlation between alignment and tibial component migration or alignment and inducible displacement. These findings support non-neutral alignment as a viable option with this component, with no evidence that it compromises fixation. Conclusion. Kinematic alignment using patient-specific instrumentation in TKA was associated with acceptable tibial component migration, indicating stable fixation. These results are supportive of future investigations of kinematic alignment. Cite this article: Bone Joint J 2019;101-B:929–940


Bone & Joint Open
Vol. 3, Issue 10 | Pages 767 - 776
5 Oct 2022
Jang SJ Kunze KN Brilliant ZR Henson M Mayman DJ Jerabek SA Vigdorchik JM Sculco PK

Aims. Accurate identification of the ankle joint centre is critical for estimating tibial coronal alignment in total knee arthroplasty (TKA). The purpose of the current study was to leverage artificial intelligence (AI) to determine the accuracy and effect of using different radiological anatomical landmarks to quantify mechanical alignment in relation to a traditionally defined radiological ankle centre. Methods. Patients with full-limb radiographs from the Osteoarthritis Initiative were included. A sub-cohort of 250 radiographs were annotated for landmarks relevant to knee alignment and used to train a deep learning (U-Net) workflow for angle calculation on the entire database. The radiological ankle centre was defined as the midpoint of the superior talus edge/tibial plafond. Knee alignment (hip-knee-ankle angle) was compared against 1) midpoint of the most prominent malleoli points, 2) midpoint of the soft-tissue overlying malleoli, and 3) midpoint of the soft-tissue sulcus above the malleoli. Results. A total of 932 bilateral full-limb radiographs (1,864 knees) were measured at a rate of 20.63 seconds/image. The knee alignment using the radiological ankle centre was accurate against ground truth radiologist measurements (inter-class correlation coefficient (ICC) = 0.99 (0.98 to 0.99)). Compared to the radiological ankle centre, the mean midpoint of the malleoli was 2.3 mm (SD 1.3) lateral and 5.2 mm (SD 2.4) distal, shifting alignment by 0.34. o. (SD 2.4. o. ) valgus, whereas the midpoint of the soft-tissue sulcus was 4.69 mm (SD 3.55) lateral and 32.4 mm (SD 12.4) proximal, shifting alignment by 0.65. o. (SD 0.55. o. ) valgus. On the intermalleolar line, measuring a point at 46% (SD 2%) of the intermalleolar width from the medial malleoli (2.38 mm medial adjustment from midpoint) resulted in knee alignment identical to using the radiological ankle centre. Conclusion. The current study leveraged AI to create a consistent and objective model that can estimate patient-specific adjustments necessary for optimal landmark usage in extramedullary and computer-guided navigation for tibial coronal alignment to match radiological planning. Cite this article: Bone Jt Open 2022;3(10):767–776


Bone & Joint Open
Vol. 3, Issue 8 | Pages 656 - 665
23 Aug 2022
Tran T McEwen P Peng Y Trivett A Steele R Donnelly W Clark G

Aims. The mid-term results of kinematic alignment (KA) for total knee arthroplasty (TKA) using image derived instrumentation (IDI) have not been reported in detail, and questions remain regarding ligamentous stability and revisions. This paper aims to address the following: 1) what is the distribution of alignment of KA TKAs using IDI; 2) is a TKA alignment category associated with increased risk of failure or poor patient outcomes; 3) does extending limb alignment lead to changes in soft-tissue laxity; and 4) what is the five-year survivorship and outcomes of KA TKA using IDI?. Methods. A prospective, multicentre, trial enrolled 100 patients undergoing KA TKA using IDI, with follow-up to five years. Alignment measures were conducted pre- and postoperatively to assess constitutional alignment and final implant position. Patient-reported outcome measures (PROMs) of pain and function were also included. The Australian Orthopaedic Association National Joint Arthroplasty Registry was used to assess survivorship. Results. The postoperative HKA distribution varied from 9° varus to 11° valgus. All PROMs showed statistical improvements at one year (p < 0.001), with further improvements at five years for Knee Osteoarthritis Outcome Score symptoms (p = 0.041) and Forgotten Joint Score (p = 0.011). Correlation analysis showed no difference (p = 0.610) between the hip-knee-ankle and joint line congruence angle at one and five years. Sub-group analysis showed no difference in PROMs for patients placed within 3° of neutral compared to those placed > 3°. There were no revisions for tibial loosening; however, there were reports of a higher incidence of poor patella tracking and patellofemoral stiffness. Conclusion. PROMs were not impacted by postoperative alignment category. Ligamentous stability was maintained at five years with joint line obliquity. There were no revisions for tibial loosening despite a significant portion of tibiae placed in varus; however, KA executed with IDI resulted in a higher than anticipated rate of patella complications. Cite this article: Bone Jt Open 2022;3(8):656–665


Bone & Joint Open
Vol. 3, Issue 5 | Pages 390 - 397
1 May 2022
Hiranaka T Suda Y Saitoh A Tanaka A Arimoto A Koide M Fujishiro T Okamoto K

The kinematic alignment (KA) approach to total knee arthroplasty (TKA) has recently increased in popularity. Accordingly, a number of derivatives have arisen and have caused confusion. Clarification is therefore needed for a better understanding of KA-TKA. Calipered (or true, pure) KA is performed by cutting the bone parallel to the articular surface, compensating for cartilage wear. In soft-tissue respecting KA, the tibial cutting surface is decided parallel to the femoral cutting surface (or trial component) with in-line traction. These approaches are categorized as unrestricted KA because there is no consideration of leg alignment or component orientation. Restricted KA is an approach where the periarthritic joint surface is replicated within a safe range, due to concerns about extreme alignments that have been considered ‘alignment outliers’ in the neutral mechanical alignment approach. More recently, functional alignment and inverse kinematic alignment have been advocated, where bone cuts are made following intraoperative planning, using intraoperative measurements acquired with computer assistance to fulfill good coordination of soft-tissue balance and alignment. The KA-TKA approach aims to restore the patients’ own harmony of three knee elements (morphology, soft-tissue balance, and alignment) and eventually the patients’ own kinematics. The respective approaches start from different points corresponding to one of the elements, yet each aim for the same goal, although the existing implants and techniques have not yet perfectly fulfilled that goal


Bone & Joint Open
Vol. 3, Issue 3 | Pages 211 - 217
1 Mar 2022
Hsu C Chen C Wang S Huang J Tong K Huang K

Aims. The Coronal Plane Alignment of the Knee (CPAK) classification is a simple and comprehensive system for predicting pre-arthritic knee alignment. However, when the CPAK classification is applied in the Asian population, which is characterized by more varus and wider distribution in lower limb alignment, modifications in the boundaries of arithmetic hip-knee-ankle angle (aHKA) and joint line obliquity (JLO) should be considered. The purposes of this study were as follows: first, to propose a modified CPAK classification based on the actual joint line obliquity (aJLO) and wider range of aHKA in the Asian population; second, to test this classification in a cohort of Asians with healthy knees; third, to propose individualized alignment targets for different CPAK types in kinematically aligned (KA) total knee arthroplasty (TKA). Methods. The CPAK classification was modified by changing the neutral boundaries of aHKA to 0° ± 3° and using aJLO as a new variable. Radiological analysis of 214 healthy knees in 214 Asian individuals was used to assess the distribution and mean value of alignment angles of each phenotype among different classifications based on the coronal plane. Individualized alignment targets were set according to the mean lateral distal femoral angle (LDFA) and medial proximal tibial angle (MPTA) of different knee types. Results. A very high concentration, 191 from 214 individuals (89.3%), were found in knee types with apex distal JLO when the CPAK classification was applied in the Asian population. By using aJLO as a new variable, the high distribution percentage in knee types with apex distal JLO decreased to 125 from 214 individuals (58.4%). The most common types in order were Type II (n = 70; 32.7%), Type V (n = 55; 25.7%), and Type I (n = 46; 21.5%) in the modified CPAK classification. Conclusion. The modified CPAK classification corrected the uneven distribution when applying the CPAK classification in the Asian population. Setting individualized TKA alignment targets according to CPAK type may be a practical method to recreate optimal LDFA and MPTA in KA-TKA. Cite this article: Bone Jt Open 2022;3(3):211–217


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 59 - 66
1 Jun 2021
Abhari S Hsing TM Malkani MM Smith AF Smith LS Mont MA Malkani AL

Aims. Alternative alignment concepts, including kinematic and restricted kinematic, have been introduced to help improve clinical outcomes following total knee arthroplasty (TKA). The purpose of this study was to evaluate the clinical results, along with patient satisfaction, following TKA using the concept of restricted kinematic alignment. Methods. A total of 121 consecutive TKAs performed between 11 February 2018 to 11 June 2019 with preoperative varus deformity were reviewed at minimum one-year follow-up. Three knees were excluded due to severe preoperative varus deformity greater than 15°, and a further three due to requiring revision surgery, leaving 109 patients and 115 knees to undergo primary TKA using the concept of restricted kinematic alignment with advanced technology. Patients were stratified into three groups based on the preoperative limb varus deformity: Group A with 1° to 5° varus (43 knees); Group B between 6° and 10° varus (56 knees); and Group C with varus greater than 10° (16 knees). This study group was compared with a matched cohort of 115 TKAs and 115 patients using a neutral mechanical alignment target with manual instruments performed from 24 October 2016 to 14 January 2019. Results. Mean overall patient satisfaction for the entire cohort was 4.7 (SE 0.1) on a 5-point Likert scale, with 93% being either very satisfied or satisfied compared with a Likert of 4.3 and patient satisfaction of 81% in the mechanical alignment group (p < 0.001 and p < 0.006 respectively). At mean follow-up of 17 months (11 to 27), the mean overall Likert, Knee Injury and Osteoarthritis Outcome Score for Joint Replacement, Western Ontario and McMaster Universities Osteoarthritis Index, Forgotten Joint Score, and Knee Society Knee and Function Scores were significantly better in the kinematic group than in the neutral mechanical alignment group. The most common complication in both groups was contracture requiring manipulation under anaesthesia, involving seven knees (6.1%) in the kinematic group and nine knees (7.8%) in the mechanical alignment group. Conclusion. With the advent of advanced technology, and the ability to obtain accurate bone cuts, the target limb alignment, and soft-tissue balance within millimetres, using a restricted kinematic alignment concept demonstrated excellent patient satisfaction following primary TKA. Longer-term analysis is required as to the durability of this method. Cite this article: Bone Joint J 2021;103-B(6 Supple A):59–66


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 329 - 337
1 Feb 2021
MacDessi SJ Griffiths-Jones W Harris IA Bellemans J Chen DB

Aims. A comprehensive classification for coronal lower limb alignment with predictive capabilities for knee balance would be beneficial in total knee arthroplasty (TKA). This paper describes the Coronal Plane Alignment of the Knee (CPAK) classification and examines its utility in preoperative soft tissue balance prediction, comparing kinematic alignment (KA) to mechanical alignment (MA). Methods. A radiological analysis of 500 healthy and 500 osteoarthritic (OA) knees was used to assess the applicability of the CPAK classification. CPAK comprises nine phenotypes based on the arithmetic HKA (aHKA) that estimates constitutional limb alignment and joint line obliquity (JLO). Intraoperative balance was compared within each phenotype in a cohort of 138 computer-assisted TKAs randomized to KA or MA. Primary outcomes included descriptive analyses of healthy and OA groups per CPAK type, and comparison of balance at 10° of flexion within each type. Secondary outcomes assessed balance at 45° and 90° and bone recuts required to achieve final knee balance within each CPAK type. Results. There was similar frequency distribution between healthy and arthritic groups across all CPAK types. The most common categories were Type II (39.2% healthy vs 32.2% OA), Type I (26.4% healthy vs 19.4% OA) and Type V (15.4% healthy vs 14.6% OA). CPAK Types VII, VIII, and IX were rare in both populations. Across all CPAK types, a greater proportion of KA TKAs achieved optimal balance compared to MA. This effect was largest, and statistically significant, in CPAK Types I (100% KA vs 15% MA; p < 0.001), Type II (78% KA vs 46% MA; p = 0.018). and Type IV (89% KA vs 0% MA; p < 0.001). Conclusion. CPAK is a pragmatic, comprehensive classification for coronal knee alignment, based on constitutional alignment and JLO, that can be used in healthy and arthritic knees. CPAK identifies which knee phenotypes may benefit most from KA when optimization of soft tissue balance is prioritized. Further, it will allow for consistency of reporting in future studies. Cite this article: Bone Joint J 2021;103-B(2):329–337


Bone & Joint Open
Vol. 4, Issue 4 | Pages 262 - 272
11 Apr 2023
Batailler C Naaim A Daxhelet J Lustig S Ollivier M Parratte S

Aims. The impact of a diaphyseal femoral deformity on knee alignment varies according to its severity and localization. The aims of this study were to determine a method of assessing the impact of diaphyseal femoral deformities on knee alignment for the varus knee, and to evaluate the reliability and the reproducibility of this method in a large cohort of osteoarthritic patients. Methods. All patients who underwent a knee arthroplasty from 2019 to 2021 were included. Exclusion criteria were genu valgus, flexion contracture (> 5°), previous femoral osteotomy or fracture, total hip arthroplasty, and femoral rotational disorder. A total of 205 patients met the inclusion criteria. The mean age was 62.2 years (SD 8.4). The mean BMI was 33.1 kg/m. 2. (SD 5.5). The radiological measurements were performed twice by two independent reviewers, and included hip knee ankle (HKA) angle, mechanical medial distal femoral angle (mMDFA), anatomical medial distal femoral angle (aMDFA), femoral neck shaft angle (NSA), femoral bowing angle (FBow), the distance between the knee centre and the top of the FBow (DK), and the angle representing the FBow impact on the knee (C’KS angle). Results. The FBow impact on the mMDFA can be measured by the C’KS angle. The C’KS angle took the localization (length DK) and the importance (FBow angle) of the FBow into consideration. The mean FBow angle was 4.4° (SD 2.4; 0 to 12.5). The mean C’KS angle was 1.8° (SD 1.1; 0 to 5.8). Overall, 84 knees (41%) had a severe FBow (> 5°). The radiological measurements showed very good to excellent intraobserver and interobserver agreements. The C’KS increased significantly when the length DK decreased and the FBow angle increased (p < 0.001). Conclusion. The impact of the diaphyseal femoral deformity on the mechanical femoral axis is measured by the C’KS angle, a reliable and reproducible measurement. Cite this article: Bone Jt Open 2023;4(4):262–272


Bone & Joint Open
Vol. 5, Issue 8 | Pages 628 - 636
2 Aug 2024
Eachempati KK Parameswaran A Ponnala VK Sunil A Sheth NP

Aims. The aims of this study were: 1) to describe extended restricted kinematic alignment (E-rKA), a novel alignment strategy during robotic-assisted total knee arthroplasty (RA-TKA); 2) to compare residual medial compartment tightness following virtual surgical planning during RA-TKA using mechanical alignment (MA) and E-rKA, in the same set of osteoarthritic varus knees; 3) to assess the requirement of soft-tissue releases during RA-TKA using E-rKA; and 4) to compare the accuracy of surgical plan execution between knees managed with adjustments in component positioning alone, and those which require additional soft-tissue releases. Methods. Patients who underwent RA-TKA between January and December 2022 for primary varus osteoarthritis were included. Safe boundaries for E-rKA were defined. Residual medial compartment tightness was compared following virtual surgical planning using E-rKA and MA, in the same set of knees. Soft-tissue releases were documented. Errors in postoperative alignment in relation to planned alignment were compared between patients who did (group A) and did not (group B) require soft-tissue releases. Results. The use of E-rKA helped restore all knees within the predefined boundaries, with appropriate soft-tissue balancing. E-rKA compared with MA resulted in reduced residual medial tightness following surgical planning, in full extension (2.71 mm (SD 1.66) vs 5.16 mm (SD 3.10), respectively; p < 0.001), and 90° of flexion (2.52 mm (SD 1.63) vs 6.27 mm (SD 3.11), respectively; p < 0.001). Among the study population, 156 patients (78%) were managed with minor adjustments in component positioning alone, while 44 (22%) required additional soft-tissue releases. The mean errors in postoperative alignment were 0.53 mm and 0.26 mm among patients in group A and group B, respectively (p = 0.328). Conclusion. E-rKA is an effective and reproducible alignment strategy during RA-TKA, permitting a large proportion of patients to be managed without soft-tissue releases. The execution of minor alterations in component positioning within predefined multiplanar boundaries is a better starting point for gap management than soft-tissue releases. Cite this article: Bone Jt Open 2024;5(8):628–636


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 507 - 514
1 Mar 2021
Chang JS Kayani B Wallace C Haddad FS

Aims. Total knee arthroplasty (TKA) using functional alignment aims to implant the components with minimal compromise of the soft-tissue envelope by restoring the plane and obliquity of the non-arthritic joint. The objective of this study was to determine the effect of TKA with functional alignment on mediolateral soft-tissue balance as assessed using intraoperative sensor-guided technology. Methods. This prospective study included 30 consecutive patients undergoing robotic-assisted TKA using the Stryker PS Triathlon implant with functional alignment. Intraoperative soft-tissue balance was assessed using sensor-guided technology after definitive component implantation; soft-tissue balance was defined as intercompartmental pressure difference (ICPD) of < 15 psi. Medial and lateral compartment pressures were recorded at 10°, 45°, and 90° of knee flexion. This study included 18 females (60%) and 12 males (40%) with a mean age of 65.2 years (SD 9.3). Mean preoperative hip-knee-ankle deformity was 6.3° varus (SD 2.7°). Results. TKA with functional alignment achieved balanced medial and lateral compartment pressures at 10° (25.0 psi (SD 6.1) vs 23.1 psi (SD 6.7), respectively; p = 0.140), 45° (21.4 psi (SD 5.9) vs 20.6 psi (SD 5.9), respectively; p = 0.510), and 90° (21.2 psi (SD 7.1) vs 21.6 psi (SD 9.0), respectively; p = 0.800) of knee flexion. Mean ICPD was 6.1 psi (SD 4.5; 0 to 14) at 10°, 5.4 psi (SD 3.9; 0 to 12) at 45°, and 4.9 psi (SD 4.45; 0 to 15) at 90° of knee flexion. Mean postoperative limb alignment was 2.2° varus (SD 1.0°). Conclusion. TKA using the functional alignment achieves balanced mediolateral soft-tissue tension through the arc of knee flexion as assessed using intraoperative pressure-sensor technology. Further clinical trials are required to determine if TKA with functional alignment translates to improvements in patient satisfaction and outcomes compared to conventional alignment techniques. Cite this article: Bone Joint J 2021;103-B(3):507–514


Bone & Joint Open
Vol. 2, Issue 5 | Pages 351 - 358
27 May 2021
Griffiths-Jones W Chen DB Harris IA Bellemans J MacDessi SJ

Aims. Once knee arthritis and deformity have occurred, it is currently not known how to determine a patient’s constitutional (pre-arthritic) limb alignment. The purpose of this study was to describe and validate the arithmetic hip-knee-ankle (aHKA) algorithm as a straightforward method for preoperative planning and intraoperative restoration of the constitutional limb alignment in total knee arthroplasty (TKA). Methods. A comparative cross-sectional, radiological study was undertaken of 500 normal knees and 500 arthritic knees undergoing TKA. By definition, the aHKA algorithm subtracts the lateral distal femoral angle (LDFA) from the medial proximal tibial angle (MPTA). The mechanical HKA (mHKA) of the normal group was compared to the mHKA of the arthritic group to examine the difference, specifically related to deformity in the latter. The mHKA and aHKA were then compared in the normal group to assess for differences related to joint line convergence. Lastly, the aHKA of both the normal and arthritic groups were compared to test the hypothesis that the aHKA can estimate the constitutional alignment of the limb by sharing a similar centrality and distribution with the normal population. Results. There was a significant difference in means and distributions of the mHKA of the normal group compared to the arthritic group (mean -1.33° (SD 2.34°) vs mean -2.88° (SD 7.39°) respectively; p < 0.001). However, there was no significant difference between normal and arthritic groups using the aHKA (mean -0.87° (SD 2.54°) vs mean -0.77° (SD 2.84°) respectively; p = 0.550). There was no significant difference in the MPTA and LDFA between the normal and arthritic groups. Conclusion. The arithmetic HKA effectively estimated the constitutional alignment of the lower limb after the onset of arthritis in this cross-sectional population-based analysis. This finding is of significant importance to surgeons aiming to restore the constitutional alignment of the lower limb during TKA. Cite this article: Bone Jt Open 2021;2(5):351–358


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 87 - 97
1 Jan 2021
Burssens A De Roos D Barg A Welck MJ Krähenbühl N Saltzman CL Victor J

Aims. Patients with a deformity of the hindfoot present a particular challenge when performing total knee arthroplasty (TKA). The literature contains little information about the relationship between TKA and hindfoot alignment. This systematic review aimed to determine from both clinical and radiological studies whether TKA would alter a preoperative hindfoot deformity and whether the outcome of TKA is affected by the presence of a postoperative hindfoot deformity. Methods. A systematic literature search was performed in the databases PubMed, EMBASE, Cochrane Library, and Web of Science. Search terms consisted of “total knee arthroplasty/replacement” combined with “hindfoot/ankle alignment”. Inclusion criteria were all English language studies analyzing the association between TKA and the alignment of the hindfoot, including the clinical or radiological outcomes. Exclusion criteria consisted of TKA performed with a concomitant extra-articular osteotomy and case reports or expert opinions. An assessment of quality was conducted using the modified Methodological Index for Non-Randomized Studies (MINORS). The review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines and registered in the PROSPERO database (CRD42019106980). Results. A total of 17 studies were found to be eligible for review. They included six prospective and ten retrospective studies, and one case-control study. The effects of TKA showed a clinical improvement in the hindfoot deformity in three studies, but did not if there was osteoarthritis (OA) of the ankle (one study) or a persistent deformity of the knee (one study). The radiological alignment of the hindfoot corrected in 11 studies, but did not in the presence of a rigid hindfoot varus deformity (in two studies). The effects of a hindfoot deformity on TKA included a clinical association with instability of the knee in one study, and a shift in the radiological weightbearing axis in two studies. The mean MINORS score was 9.4 out of 16 (7 to 12). Conclusion. TKA improves both the function and alignment of the hindfoot in patients with a preoperative deformity of the hindfoot. This may not apply if there is a persistent deformity of the knee, a rigid hindfoot varus deformity, or OA of the ankle. Moreover, a persistent deformity of the hindfoot may adversely affect the stability and longevity of a TKA. These findings should be interpreted with caution due to the moderate methodological quality of the studies which were included. Therefore, further prospective studies are needed in order to determine at which stage correction of a hindfoot deformity is required to optimize the outcome of a TKA. Cite this article: Bone Joint J 2021;103-B(1):87–97


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 6 | Pages 858 - 860
1 Aug 2002
Reed MR Bliss W Sher JL Emmerson KP Jones SMG Partington PF

We undertook a prospective, randomised study of 135 total knee arthroplasties to determine the most accurate and reliable technique for alignment of the tibial prosthesis. Tibial resection was guided by either intramedullary or extramedullary alignment jigs. Of the 135 knees, standardised postoperative radiographs suitable for assessment were available in 100. Correct tibial alignment was found in 85% of the intramedullary group compared with 65% of the extramedullary group (p = 0.019). We conclude that intramedullary guides are superior to extramedullary instruments for alignment of the tibial prosthesis


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 43 - 48
1 Jun 2020
D’Lima DP Huang P Suryanarayan P Rosen A D’Lima DD

Aims. The extensive variation in axial rotation of tibial components can lead to coronal plane malalignment. We analyzed the change in coronal alignment induced by tray malrotation. Methods. We constructed a computer model of knee arthroplasty and used a virtual cutting guide to cut the tibia at 90° to the coronal plane. The virtual guide was rotated axially (15° medial to 15° lateral) and with posterior slopes (0° to 7°). To assess the effect of axial malrotation, we measured the coronal plane alignment of a tibial tray that was axially rotated (25° internal to 15° external), as viewed on a standard anteroposterior (AP) radiograph. Results. Axial rotation of the cutting guide induced a varus-valgus malalignment up to 1.8° (for 15° of axial rotation combined with 7° of posterior slope). Axial malrotation of tibial tray induced a substantially higher risk of coronal plane malalignment ranging from 1.9° valgus with 15° external rotation, to over 3° varus with 25° of internal rotation. Coronal alignment of the tibial cut changed by 0.07° per degree of axial rotation and 0.22° per degree of posterior slope (linear regression, R. 2. > 0.99). Conclusion. While the effect of axial malalignment has been studied, the impact on coronal alignment is not known. Our results indicate that the direction of the cutting guide and malalignment in axial rotation alter coronal plane alignment and can increase the incidence of outliers. Cite this article: Bone Joint J 2020;102-B(6 Supple A):43–48


The Bone & Joint Journal
Vol. 103-B, Issue 9 | Pages 1505 - 1513
1 Sep 2021
Stockton DJ Schmidt AM Yung A Desrochers J Zhang H Masri BA Wilson DR

Aims. Anterior cruciate ligament (ACL) rupture commonly leads to post-traumatic osteoarthritis, regardless of surgical reconstruction. This study uses standing MRI to investigate changes in contact area, contact centroid location, and tibiofemoral alignment between ACL-injured knees and healthy controls, to examine the effect of ACL reconstruction on these parameters. Methods. An upright, open MRI was used to directly measure tibiofemoral contact area, centroid location, and alignment in 18 individuals with unilateral ACL rupture within the last five years. Eight participants had been treated nonoperatively and ten had ACL reconstruction performed within one year of injury. All participants were high-functioning and had returned to sport or recreational activities. Healthy contralateral knees served as controls. Participants were imaged in a standing posture with knees fully extended. Results. Participants’ mean age was 28.4 years (SD 7.3), the mean time since injury was 2.7 years (SD 1.6), and the mean International Knee Documentation Subjective Knee Form score was 84.4 (SD 13.5). ACL injury was associated with a 10% increase (p = 0.001) in contact area, controlling for compartment, sex, posture, age, body mass, and time since injury. ACL injury was associated with a 5.2% more posteriorly translated medial centroid (p = 0.001), equivalent to a 2.6 mm posterior translation on a representative tibia with mean posteroanterior width of 49.4 mm. Relative to the femur, the tibiae of ACL ruptured knees were 2.3 mm more anteriorly translated (p = 0.003) and 2.6° less externally rotated (p = 0.010) than healthy controls. ACL reconstruction was not associated with an improvement in any measure. Conclusion. ACL rupture was associated with an increased contact area, posteriorly translated medial centroid, anterior tibial translation, and reduced tibial external rotation in full extension. These changes were present 2.7 years post-injury regardless of ACL reconstruction status. Cite this article: Bone Joint J 2021;103-B(9):1505–1513


Bone & Joint Open
Vol. 1, Issue 7 | Pages 339 - 345
3 Jul 2020
MacDessi SJ Griffiths-Jones W Harris IA Bellemans J Chen DB

Aims. An algorithm to determine the constitutional alignment of the lower limb once arthritic deformity has occurred would be of value when undertaking kinematically aligned total knee arthroplasty (TKA). The purpose of this study was to determine if the arithmetic hip-knee-ankle angle (aHKA) algorithm could estimate the constitutional alignment of the lower limb following development of significant arthritis. Methods. A matched-pairs radiological study was undertaken comparing the aHKA of an osteoarthritic knee (aHKA-OA) with the mechanical HKA of the contralateral normal knee (mHKA-N). Patients with Grade 3 or 4 Kellgren-Lawrence tibiofemoral osteoarthritis in an arthritic knee undergoing TKA and Grade 0 or 1 osteoarthritis in the contralateral normal knee were included. The aHKA algorithm subtracts the lateral distal femoral angle (LDFA) from the medial proximal tibial angle (MPTA) measured on standing long leg radiographs. The primary outcome was the mean of the paired differences in the aHKA-OA and mHKA-N. Secondary outcomes included comparison of sex-based differences and capacity of the aHKA to determine the constitutional alignment based on degree of deformity. Results. A total of 51 radiographs met the inclusion criteria. There was no significant difference between aHKA-OA and mHKA-N, with a mean angular difference of −0.4° (95% SE −0.8° to 0.1°; p = 0.16). There was no significant sex-based difference when comparing aHKA-OA and mHKA-N (mean difference 0.8°; p = 0.11). Knees with deformities of more than 8° had a greater mean difference between aHKA-OA and mHKA-N (1.3°) than those with lesser deformities (-0.1°; p = 0.009). Conclusion. This study supports the arithmetic HKA algorithm for prediction of the constitutional alignment once arthritis has developed. The algorithm has similar accuracy between sexes and greater accuracy with lesser degrees of deformity. Cite this article: Bone Joint Open 2020;1-7:339–345


Bone & Joint Research
Vol. 8, Issue 3 | Pages 126 - 135
1 Mar 2019
Sekiguchi K Nakamura S Kuriyama S Nishitani K Ito H Tanaka Y Watanabe M Matsuda S

Objectives. Unicompartmental knee arthroplasty (UKA) is one surgical option for treating symptomatic medial osteoarthritis. Clinical studies have shown the functional benefits of UKA; however, the optimal alignment of the tibial component is still debated. The purpose of this study was to evaluate the effects of tibial coronal and sagittal plane alignment in UKA on knee kinematics and cruciate ligament tension, using a musculoskeletal computer simulation. Methods. The tibial component was first aligned perpendicular to the mechanical axis of the tibia, with a 7° posterior slope (basic model). Subsequently, coronal and sagittal plane alignments were changed in a simulation programme. Kinematics and cruciate ligament tensions were simulated during weight-bearing deep knee bend and gait motions. Translation was defined as the distance between the most medial and the most lateral femoral positions throughout the cycle. Results. The femur was positioned more medially relative to the tibia, with increasing varus alignment of the tibial component. Medial/lateral (ML) translation was smallest in the 2° varus model. A greater posterior slope posteriorized the medial condyle and increased anterior cruciate ligament (ACL) tension. ML translation was increased in the > 7° posterior slope model and the 0° model. Conclusion. The current study suggests that the preferred tibial component alignment is between neutral and 2° varus in the coronal plane, and between 3° and 7° posterior slope in the sagittal plane. Varus > 4° or valgus alignment and excessive posterior slope caused excessive ML translation, which could be related to feelings of instability and could potentially have negative effects on clinical outcomes and implant durability. Cite this article: K. Sekiguchi, S. Nakamura, S. Kuriyama, K. Nishitani, H. Ito, Y. Tanaka, M. Watanabe, S. Matsuda. Bone Joint Res 2019;8:126–135. DOI: 10.1302/2046-3758.83.BJR-2018-0208.R2


The Bone & Joint Journal
Vol. 97-B, Issue 1 | Pages 56 - 63
1 Jan 2015
Abane L Anract P Boisgard S Descamps S Courpied JP Hamadouche M

In this study we randomised 140 patients who were due to undergo primary total knee arthroplasty (TKA) to have the procedure performed using either patient-specific cutting guides (PSCG) or conventional instrumentation (CI). . The primary outcome measure was the mechanical axis, as measured at three months on a standing long-leg radiograph by the hip–knee–ankle (HKA) angle. This was undertaken by an independent observer who was blinded to the instrumentation. Secondary outcome measures were component positioning, operating time, Knee Society and Oxford knee scores, blood loss and length of hospital stay. A total of 126 patients (67 in the CI group and 59 in the PSCG group) had complete clinical and radiological data. There were 88 females and 52 males with a mean age of 69.3 years (47 to 84) and a mean BMI of 28.6 kg/m. 2. (20.2 to 40.8). The mean HKA angle was 178.9° (172.5 to 183.4) in the CI group and 178.2° (172.4 to 183.4) in the PSCG group (p = 0.34). Outliers were identified in 22 of 67 knees (32.8%) in the CI group and 19 of 59 knees (32.2%) in the PSCG group (p = 0.99). There was no significant difference in the clinical results (p = 0.95 and 0.59, respectively). Operating time, blood loss and length of hospital stay were not significantly reduced (p = 0.09, 0.58 and 0.50, respectively) when using PSCG. . The use of PSCG in primary TKA did not reduce the proportion of outliers as measured by post-operative coronal alignment. . Cite this article: Bone Joint J 2015;97-B:56–63


The Bone & Joint Journal
Vol. 102-B, Issue 1 | Pages 117 - 124
1 Jan 2020
MacDessi SJ Griffiths-Jones W Chen DB Griffiths-Jones S Wood JA Diwan AD Harris IA

Aims. It is unknown whether kinematic alignment (KA) objectively improves knee balance in total knee arthroplasty (TKA), despite this being the biomechanical rationale for its use. This study aimed to determine whether restoring the constitutional alignment using a restrictive KA protocol resulted in better quantitative knee balance than mechanical alignment (MA). Methods. We conducted a randomized superiority trial comparing patients undergoing TKA assigned to KA within a restrictive safe zone or MA. Optimal knee balance was defined as an intercompartmental pressure difference (ICPD) of 15 psi or less using a pressure sensor. The primary endpoint was the mean intraoperative ICPD at 10° of flexion prior to knee balancing. Secondary outcomes included balance at 45° and 90°, requirements for balancing procedures, and presence of tibiofemoral lift-off. Results. A total of 63 patients (70 knees) were randomized to KA and 62 patients (68 knees) to MA. Mean ICPD at 10° flexion in the KA group was 11.7 psi (SD 13.1) compared with 32.0 psi in the MA group (SD 28.9), with a mean difference in ICPD between KA and MA of 20.3 psi (p < 0.001). Mean ICPD in the KA group was significantly lower than in the MA group at 45° and 90°, respectively (25.2 psi MA vs 14.8 psi KA, p = 0.004; 19.1 psi MA vs 11.7 psi KA, p < 0.002, respectively). Overall, participants in the KA group were more likely to achieve optimal knee balance (80% vs 35%; p < 0.001). Bone recuts to achieve knee balance were more likely to be required in the MA group (49% vs 9%; p < 0.001). More participants in the MA group had tibiofemoral lift-off (43% vs 13%; p < 0.001). Conclusion. This study provides persuasive evidence that restoring the constitutional alignment with KA in TKA results in a statistically significant improvement in quantitative knee balance, and further supports this technique as a viable alternative to MA. Cite this article: Bone Joint J. 2020;102-B(1):117–124


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 338 - 346
1 Feb 2021
Khow YZ Liow MHL Lee M Chen JY Lo NN Yeo SJ

Aims. This study aimed to identify the tibial component and femoral component coronal angles (TCCAs and FCCAs), which concomitantly are associated with the best outcomes and survivorship in a cohort of fixed-bearing, cemented, medial unicompartmental knee arthroplasties (UKAs). We also investigated the potential two-way interactions between the TCCA and FCCA. Methods. Prospectively collected registry data involving 264 UKAs from a single institution were analyzed. The TCCAs and FCCAs were measured on postoperative radiographs and absolute angles were analyzed. Clinical assessment at six months, two years, and ten years was undertaken using the Knee Society Knee score (KSKS) and Knee Society Function score (KSFS), the Oxford Knee Score (OKS), the 36-Item Short-Form Health Survey questionnaire (SF-36), and range of motion (ROM). Fulfilment of expectations and satisfaction was also recorded. Implant survivorship was reviewed at a mean follow-up of 14 years (12 to 16). Multivariate regression models included covariates, TCCA, FCCA, and two-way interactions between them. Partial residual graphs were generated to identify angles associated with the best outcomes. Kaplan-Meier analysis was used to compare implant survivorship between groups. Results. Significant two-way interaction effects between TCCA and FCCA were identified. Adjusted for each other and their interaction, a TCCA of between 2° and 4° and a FCCA of between 0° and 2° were found to be associated with the greatest improvements in knee scores and the probability of fulfilling expectations and satisfaction at ten years. Patients in the optimal group whose TCCA and FCCA were between 2° and 4°, and 0° and 2°, respectively, had a significant survival benefit at 15 years compared with the non-optimal group (optimal: survival = 100% vs non-optimal: survival = 92%, 95% confidence interval (CI) 88% to 96%). Conclusion. Significant two-way interactions between the TCCA and FCCA demonstrate the importance of evaluating the alignment of the components concomitantly in future studies. By doing so, we found that patients who concomitantly had both a TCCA of between 2° and 4° and a FCCA of between 0° and 2° had the best patient-reported outcome measures at ten years and better survivorship at 15 years. Cite this article: Bone Joint J 2021;103-B(2):338–346


The Bone & Joint Journal
Vol. 96-B, Issue 7 | Pages 857 - 862
1 Jul 2014
Abdel MP Oussedik S Parratte S Lustig S Haddad FS

Substantial healthcare resources have been devoted to computer navigation and patient-specific instrumentation systems that improve the reproducibility with which neutral mechanical alignment can be achieved following total knee replacement (TKR). This choice of alignment is based on the long-held tenet that the alignment of the limb post-operatively should be within 3° of a neutral mechanical axis. Several recent studies have demonstrated no significant difference in survivorship when comparing well aligned versus malaligned TKRs. Our aim was to review the anatomical alignment of the knee, the historical and contemporary data on a neutral mechanical axis in TKR, and the feasibility of kinematically-aligned TKRs. . Review of the literature suggests that a neutral mechanical axis remains the optimal guide to alignment. Cite this article: Bone Joint J 2014;96-B:857–62


Bone & Joint Research
Vol. 5, Issue 5 | Pages 198 - 205
1 May 2016
Wang WJ Liu F Zhu Y Sun M Qiu Y Weng WJ

Objectives. Normal sagittal spine-pelvis-lower extremity alignment is crucial in humans for maintaining an ergonomic upright standing posture, and pathogenesis in any segment leads to poor balance. The present study aimed to investigate how this sagittal alignment can be affected by severe knee osteoarthritis (KOA), and whether associated changes corresponded with symptoms of lower back pain (LBP) in this patient population. Methods. Lateral radiograph films in an upright standing position were obtained from 59 patients with severe KOA and 58 asymptomatic controls free from KOA. Sagittal alignment of the spine, pelvis, hip and proximal femur was quantified by measuring several radiographic parameters. Global balance was accessed according to the relative position of the C7 plumb line to the sacrum and femoral heads. The presence of chronic LBP was documented. Comparisons between the two groups were carried by independent samples t-tests or chi-squared test. Results. Patients with severe KOA showed significant backward femoral inclination (FI), hip flexion, forward spinal inclination, and higher prevalence of global imbalance (27.1% versus 3.4%, p < 0.001) compared with controls. In addition, patients with FI of 10° (n = 23) showed reduced lumbar lordosis and significant forward spinal inclination compared with controls, whereas those with FI > 10° (n = 36) presented with significant pelvic anteversion and hip flexion. A total of 39 patients with KOA (66.1%) suffered from LBP. There was no significant difference in sagittal alignment between KOA patients with and without LBP. Conclusions. The sagittal alignment of spine-pelvis-lower extremity axis was significantly influenced by severe KOA. The lumbar spine served as the primary source of compensation, while hip flexion and pelvic anteversion increased for further compensation. Changes in sagittal alignment may not be involved in the pathogenesis of LBP in this patient population. Cite this article: W. J. Wang, F. Liu, Y.W. Zhu, M.H. Sun, Y. Qiu, W. J. Weng. Sagittal alignment of the spine-pelvis-lower extremity axis in patients with severe knee osteoarthritis: A radiographic study. Bone Joint Res 2016;5:198–205. DOI:10.1302/2046-3758.55.2000538


The Bone & Joint Journal
Vol. 98-B, Issue 8 | Pages 1043 - 1049
1 Aug 2016
Huijbregts HJTAM Khan RJK Fick DP Hall MJ Punwar SA Sorensen E Reid MJ Vedove SD Haebich S

Aims. We conducted a randomised controlled trial to assess the accuracy of positioning and alignment of the components in total knee arthroplasty (TKA), comparing those undertaken using standard intramedullary cutting jigs and those with patient-specific instruments (PSI). Patients and Methods. There were 64 TKAs in the standard group and 69 in the PSI group. The post-operative hip-knee-ankle (HKA) angle and positioning was investigated using CT scans. Deviation of > 3° from the planned position was regarded as an outlier. The operating time, Oxford Knee Scores (OKS) and Short Form-12 (SF-12) scores were recorded. Results. There were 14 HKA-angle outliers (22%) in the standard group and nine (13%) in the PSI group (p = 0.251). The mean HKA-angle was 0.5° varus in the standard group and 0.2° varus in the PSI group (p = 0.492). The accuracy of alignment in the coronal and axial planes and the proportion of outliers was not different in the two groups. The femoral component was more flexed (p = 0.035) and there were significantly more tibial slope outliers (29% versus 13%) in the PSI group (p = 0.032). Operating time and the median three-month OKS were similar (p = 0.218 and p = 0.472, respectively). Physical and mental SF-12 scores were not significantly different at three months (p = 0.418 and p = 0.267, respectively) or at one year post-operatively (p = 0.114 and p = 0.569). The median one-year Oxford knee score was two points higher in the PSI group (p = 0.049). Conclusion. Compared with standard intramedullary jigs, the use of PSI did not significantly reduce the number of outliers or the mean operating time, nor did it clinically improve the accuracy of alignment or the median Oxford Knee Scores. Our data do not support the routine use of PSI when undertaking TKA. Cite this article: Bone Joint J 2016;98-B:1043–9


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 1 | Pages 44 - 48
1 Jan 2006
Keene G Simpson D Kalairajah Y

Twenty patients underwent simultaneous bilateral medial unicompartmental knee arthroplasty. Pre-operative hip-knee-ankle alignment and valgus stress radiographs were used to plan the desired post-operative alignment of the limb in accordance with established principles for unicompartmental arthroplasty. In each patient the planned alignment was the same for both knees. Overall, the mean planned post-operative alignment was to 2.3° of varus (0° to 5°). The side and starting order of surgery were randomised, using conventional instrumentation for one knee and computer-assisted surgery for the opposite side. The mean variation between the pre-operative plan and the achieved correction in the navigated and the non-navigated limb was 0.9° (. sd. 1.1; 0° to 4°) and 2.8° (. sd. 1.4; 1° to 7°), respectively. Using the Wilcoxon signed rank test, we found the difference in variation statistically significant (p < 0.001). Assessment of lower limb alignment in the non-navigated group revealed that 12 (60%) were within ± 2° of the pre-operative plan, compared to 17 (87%) of the navigated cases. Computer-assisted surgery significantly improves the post-operative alignment of medial unicompartmental knee arthroplasty compared to conventional techniques in patients undergoing bilateral simultaneous arthroplasty. Improved alignment after arthroplasty is associated with better function and increased longevity


Bone & Joint Research
Vol. 4, Issue 8 | Pages 128 - 133
1 Aug 2015
Kuwashima U Okazaki K Tashiro Y Mizu-Uchi H Hamai S Okamoto S Murakami K Iwamoto Y

Objectives. Because there have been no standard methods to determine pre-operatively the thickness of resection of the proximal tibia in unicompartmental knee arthroplasty (UKA), information about the relationship between the change of limb alignment and the joint line elevation would be useful for pre-operative planning. The purpose of this study was to clarify the correlation between the change of limb alignment and the change of joint line height at the medial compartment after UKA. Methods. A consecutive series of 42 medial UKAs was reviewed retrospectively. These patients were assessed radiographically both pre- and post-operatively with standing anteroposterior radiographs. The thickness of bone resection at the proximal tibia and the distal femur was measured radiographically. The relationship between the change of femorotibial angle (δFTA) and the change of joint line height, was analysed. Results. The mean pre- and post-operative FTA was 180.5° (172.2° to 184.8°) and 175.0° (168.5° to 178.9°), respectively. The mean δFTA was 5.5° (2.3° to 10.1°). The joint line elevation of the tibia (JLET) was 4.4 mm (2.1 to 7.8). The δFTA was correlated with the JLET (correlation coefficient 0.494, p = 0.0009). Conclusions. This study indicated that there is a significant correlation between the change of limb alignment and joint line elevation. This observation suggests that it is possible to know the requirement of elevation of the joint line to obtain the desired correction of limb alignment, and to predict the requirement of bone resection of the proximal tibia pre-operatively. Cite this article: Bone Joint Res 2015;4:128–133


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 4 | Pages 469 - 474
1 Apr 2009
Gulati A Pandit H Jenkins C Chau R Dodd CAF Murray DW

Varus malalignment after total knee replacement is associated with a poor outcome. Our aim was to determine whether the same was true for medial unicompartmental knee replacement (UKR). The anatomical leg alignment was measured prospectively using a long-arm goniometer in 160 knees with an Oxford UKR. Patients were then grouped according to their mechanical leg alignment as neutral (5° to 10° of valgus), mild varus (0° to 4° of valgus) and marked varus (> 0° of varus). The groups were compared at five years in terms of absolute and change in the Oxford Knee score, American Knee Society score and the incidence of radiolucent lines. Post-operatively, 29 (18%) patients had mild varus and 13 (8%) had marked varus. The mean American Knee Society score worsened significantly (p < 0.001) with increasing varus. This difference disappeared if a three-point deduction for each degree of malalignment was removed. No other score deteriorated with increasing varus, and the frequency of occurrence of radiolucent lines was the same in each group. We therefore conclude that after Oxford UKR, about 25% of patients have varus alignment, but that this does not compromise their clinical or radiological outcome. Following UKR the deductions for malalignment in the American Knee Society score are not justified


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 5 | Pages 682 - 687
1 Jul 2004
Bäthis H Perlick L Tingart M Lüring C Zurakowski D Grifka J

Restoration of neutral alignment of the leg is an important factor affecting the long-term results of total knee arthroplasty (TKA). Recent developments in computer-assisted surgery have focused on systems for improving TKA. In a prospective study two groups of 80 patients undergoing TKA had operations using either a computer-assisted navigation system or a conventional technique. Alignment of the leg and the orientation of components were determined on post-operative long-leg coronal and lateral films. The mechanical axis of the leg was significantly better in the computer-assisted group (96%, within ±3° varus/valgus) compared with the conventional group (78%, within ±3° varus/valgus). The coronal alignment of the femoral component was also more accurate in the computer-assisted group. Computer-assisted TKA gives a better correction of alignment of the leg and orientation of the components compared with the conventional technique. Potential benefits in the long-term outcome and functional improvement require further investigation


The Bone & Joint Journal
Vol. 96-B, Issue 11_Supple_A | Pages 78 - 83
1 Nov 2014
Gustke KA

Total knee replacement (TKR) smart tibial trials have load-bearing sensors which will show quantitative compartment pressure values and femoral-tibial tracking patterns. Without smart trials, surgeons rely on feel and visual estimation of imbalance to determine if the knee is optimally balanced. Corrective soft-tissue releases are performed with minimal feedback as to what and how much should be released. The smart tibial trials demonstrate graphically where and how much imbalance is present, so that incremental releases can be performed. The smart tibial trials now also incorporate accelerometers which demonstrate the axial alignment. This now allows the surgeon the option to perform a slight recut of the tibia or femur to provide soft-tissue balance without performing soft-tissue releases. Using a smart tibial trial to assist with soft-tissue releases or bone re-cuts, improved patient outcomes have been demonstrated at one year in a multicentre study of 135 patients (135 knees). Cite this article: Bone Joint J 2014;96-B(11 Suppl A):78–83


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 8 | Pages 1025 - 1031
1 Aug 2008
Mizu-uchi H Matsuda S Miura H Okazaki K Akasaki Y Iwamoto Y

We compared the alignment of 39 total knee replacements implanted using the conventional alignment guide system with 37 implanted using a CT-based navigation system, performed by a single surgeon. The knees were evaluated using full-length weight-bearing anteroposterior radiographs, lateral radiographs and CT scans. The mean hip-knee-ankle angle, coronal femoral component angle and coronal tibial component angle were 181.8° (174.2° to 188.3°), 88.5° (84.0° to 91.8°) and 89.7° (86.3° to 95.1°), respectively for the conventional group and 180.8° (178.2° to 185.1°), 89.3° (85.8° to 92.0°) and 89.9° (88.0° to 93.0°), respectively for the navigated group. The mean sagittal femoral component angle was 85.5° (80.6° to 92.8°) for the conventional group and 89.6° (85.5° to 94.0°) for the navigated group. The mean rotational femoral and tibial component angles were −0.7° (−8.8° to 9.8°) and −3.3° (−16.8° to 5.8°) for the conventional group and −0.6° (−3.5° to 3.0°) and 0.3° (−5.3° to 7.7°) for the navigated group. The ideal angles of all alignments in the navigated group were obtained at significantly higher rates than in the conventional group. Our results demonstrated significant improvements in component positioning with a CT-based navigation system, especially with respect to rotational alignment


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 4 | Pages 471 - 476
1 Apr 2007
Kim Y Kim J Yoon S

Bilateral sequential total knee replacement was carried out under one anaesthetic in 100 patients. One knee was replaced using a CT-free computer-assisted navigation system and the other conventionally without navigation. The two methods were compared for accuracy of orientation and alignment of the components. There were 85 women and 15 men with a mean age of 67.6 years (54 to 83). Radiological and CT imaging was carried out to determine the alignment of the components. The mean follow-up was 2.3 years (2 to 3). The operating and tourniquet times were significantly longer in the navigation group (p < 0.001). There were no significant pre- or post-operative differences between the knee scores of the two groups (p = 0.288 and p = 0.429, respectively). The results of imaging and the number of outliers for all radiological parameters were not statistically different (p = 0.109 to p = 0.920). In this series computer-assisted navigated total knee replacement did not result in more accurate orientation and alignment of the components than that achieved by conventional total knee replacement


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 6 | Pages 819 - 824
1 Aug 2001
Prakash U Wigderowitz CA McGurty DW Rowley DI

Tibiofemoral alignment has a direct correlation with the survival of total knee arthroplasty. Traditionally, it has been measured using a goniometer on radiographs. We describe new software which measures this alignment on scanned radiographs by automatically detecting bones in the image. Two surgeons used conventional methods and two clerical officers used the computerised routine to assess 58 radiographs of the knee on two occasions. There were no significant differences between any of the paired comparisons. The largest mean difference detected was 1.19°. Across all comparisons, the mean correlation was 0.755. A standardised routine for measuring tibiofemoral alignment was the greatest factor in reducing error in our study. These results show that non-medical staff can reliably use the software to measure tibiofemoral alignment. It has the potential to measure all the parameters recommended by the Knee Society


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 1 | Pages 45 - 49
1 Jan 2007
Ikeuchi M Yamanaka N Okanoue Y Ueta E Tani T

We prospectively assessed the benefits of using either a range-of-movement technique or an anatomical landmark method to determine the rotational alignment of the tibial component during total knee replacement. We analysed the cut proximal tibia intraoperatively, determining anteroposterior axes by the range-of-movement technique and comparing them with the anatomical anteroposterior axis. We found that the range-of-movement technique tended to leave the tibial component more internally rotated than when anatomical landmarks were used. In addition, it gave widely variable results (mean 7.5°; 2° to 17°), determined to some extent by which posterior reference point was used. Because of the wide variability and the possibilities for error, we consider that it is inappropriate to use the range-of-movement technique as the sole method of determining alignment of the tibial component during total knee replacement


The Bone & Joint Journal
Vol. 96-B, Issue 5 | Pages 609 - 618
1 May 2014
Gøthesen Ø Espehaug B Havelin LI Petursson G Hallan G Strøm E Dyrhovden G Furnes O

We performed a randomised controlled trial comparing computer-assisted surgery (CAS) with conventional surgery (CONV) in total knee replacement (TKR). Between 2009 and 2011 a total of 192 patients with a mean age of 68 years (55 to 85) with osteoarthritis or arthritic disease of the knee were recruited from four Norwegian hospitals. At three months follow-up, functional results were marginally better for the CAS group. Mean differences (MD) in favour of CAS were found for the Knee Society function score (MD: 5.9, 95% confidence interval (CI) 0.3 to 11.4, p = 0.039), the Knee Injury and Osteoarthritis Outcome Score (KOOS) subscales for ‘pain’ (MD: 7.7, 95% CI 1.7 to 13.6, p = 0.012), ‘sports’ (MD: 13.5, 95% CI 5.6 to 21.4, p = 0.001) and ‘quality of life’ (MD: 7.2, 95% CI 0.1 to 14.3, p = 0.046). At one-year follow-up, differences favouring CAS were found for KOOS ‘sports’ (MD: 11.0, 95% CI 3.0 to 19.0, p = 0.007) and KOOS ‘symptoms’ (MD: 6.7, 95% CI 0.5 to 13.0, p = 0.035). The use of CAS resulted in fewer outliers in frontal alignment (> 3° malalignment), both for the entire TKR (37.9% vs 17.9%, p = 0.042) and for the tibial component separately (28.4% vs 6.3%, p = 0.002). Tibial slope was better achieved with CAS (58.9% vs 26.3%, p < 0.001). Operation time was 20 minutes longer with CAS. In conclusion, functional results were, statistically, marginally in favour of CAS. Also, CAS was more predictable than CONV for mechanical alignment and positioning of the prosthesis. However, the long-term outcomes must be further investigated. Cite this article: Bone Joint J 2014; 96-B:609–18


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 11 | Pages 1499 - 1505
1 Nov 2012
Kim J Kasat NS Bae J Kim S Oh S Lim H

The purpose of this study was to measure the radiological parameters of femoral component alignment of the Oxford Phase 3 unicompartmental knee replacement (UKR), and evaluate their effect on clinical outcome. Multiple regression analysis was used to examine the relative contributions of the radiological assessment of femoral component alignment in 189 consecutive UKRs performed by a single surgeon. The American Knee Society scores were compared between groups, defined as being within or outside recommended tolerances of the position of the femoral component. For the flexion/extension position 21 UKRs (11.1%) lay outside the recommended limits, and for posterior overhang of the femoral component nine (4.8%) lay outside the range. The pre-operative hip/knee/ankle (HKA) angle, narrowest canal distance from the distal femoral entry point of the alignment jig and coronal entry-point position had significant effects on the flexion/extension position. Pre-operative HKA angle had a significant influence on posterior overhang of the femoral component. However, there was no significant difference in American Knee Society scores relative to the position of the femoral component


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 9 | Pages 1217 - 1222
1 Sep 2011
Bonner TJ Eardley WGP Patterson P Gregg PJ

Correct positioning and alignment of components during primary total knee replacement (TKR) is widely accepted to be an important predictor of patient satisfaction and implant durability. This retrospective study reports the effect of the post-operative mechanical axis of the lower limb in the coronal plane on implant survival following primary TKR. A total of 501 TKRs in 396 patients were divided into an aligned group with a neutral mechanical axis (± 3°) and a malaligned group where the mechanical axis deviated from neutral by > 3°. At 15 years’ follow-up, 33 of 458 (7.2%) TKRs were revised for aseptic loosening. Kaplan-Meier survival analysis showed a weak tendency towards improved survival with restoration of a neutral mechanical axis, but this did not reach statistical significance (p = 0.47). We found that the relationship between survival of a primary TKR and mechanical axis alignment is weaker than that described in a number of previous reports


The Bone & Joint Journal
Vol. 96-B, Issue 8 | Pages 1052 - 1061
1 Aug 2014
Thienpont E Schwab PE Fennema P

We conducted a meta-analysis, including randomised controlled trials (RCTs) and cohort studies, to examine the effect of patient-specific instruments (PSI) on radiological outcomes after total knee replacement (TKR) including: mechanical axis alignment and malalignment of the femoral and tibial components in the coronal, sagittal and axial planes, at a threshold of > 3º from neutral. Relative risks (RR) for malalignment were determined for all studies and for RCTs and cohort studies separately. Of 325 studies initially identified, 16 met the eligibility criteria, including eight RCTs and eight cohort studies. There was no significant difference in the likelihood of mechanical axis malalignment with PSI versus conventional TKR across all studies (RR = 0.84, p = 0.304), in the RCTs (RR = 1.14, p = 0.445) or in the cohort studies (RR = 0.70, p = 0.289). The results for the alignment of the tibial component were significantly worse using PSI TKR than conventional TKR in the coronal and sagittal planes (RR = 1.75, p = 0.028; and RR = 1.34, p = 0.019, respectively, on pooled analysis). PSI TKR showed a significant advantage over conventional TKR for alignment of the femoral component in the coronal plane (RR = 0.65, p = 0.028 on pooled analysis), but not in the sagittal plane (RR = 1.12, p = 0.437). Axial alignment of the tibial (p = 0.460) and femoral components (p = 0.127) was not significantly different. We conclude that PSI does not improve the accuracy of alignment of the components in TKR compared with conventional instrumentation. Cite this article: Bone Joint J 2014; 96-B:1052–61


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 3 | Pages 351 - 355
1 Apr 2002
Ridgeway SR McAuley JP Ammeen DJ Engh GA

Many authors have recommended undercorrection of the deformity when carrying out unicompartmental knee arthroplasty (UKA). The isolated effect of alignment of the knee on the outcome of UKA has, however, received little attention. We reviewed 185 UKAs at a minimum of five years after surgery. They had been carried out by a single surgeon using metal-backed tibial components in the management of arthritis of the medial compartment. We measured the tibiofemoral angle (TFA) before and at four months after operation and at the most recent assessment. The amount of correction of the TFA and any subsequent loss were recorded. While adjusting for the effects of age, weight and gender of the patients and the type and thickness of the implants, the mean correction was significantly less for those with a Marmor rating of failure (6.8°) than for those rated excellent (9.2°). The mean correction was also significantly less for patients with a Marmor rating of failure (6.8°) than for those rated poor (11.1°). The mean correction for the UKAs which were revised (6.6°) was significantly less than for those not revised (9.1°). Additionally, revised UKAs had a significantly higher percentage (63%) of thinner tibial implants (< 8 mm) than the surviving UKAs (27%). These findings suggest that undercorrection of the TFA in UKA of the medial compartment should be avoided, particularly if a thin tibial polyethylene insert is used


Bone & Joint Open
Vol. 5, Issue 8 | Pages 681 - 687
19 Aug 2024
van de Graaf VA Shen TS Wood JA Chen DB MacDessi SJ

Aims. Sagittal plane imbalance (SPI), or asymmetry between extension and flexion gaps, is an important issue in total knee arthroplasty (TKA). The purpose of this study was to compare SPI between kinematic alignment (KA), mechanical alignment (MA), and functional alignment (FA) strategies. Methods. In 137 robotic-assisted TKAs, extension and flexion stressed gap laxities and bone resections were measured. The primary outcome was the proportion and magnitude of medial and lateral SPI (gap differential > 2.0 mm) for KA, MA, and FA. Secondary outcomes were the proportion of knees with severe (> 4.0 mm) SPI, and resection thicknesses for each technique, with KA as reference. Results. FA showed significantly lower rates of medial and lateral SPI (2.9% and 2.2%) compared to KA (45.3%; p < 0.001, and 25.5%; p < 0.001) and compared to MA (52.6%; p < 0.001 and 29.9%; p < 0.001). There was no difference in medial and lateral SPI between KA and MA (p = 0.228 and p = 0.417, respectively). FA showed significantly lower rates of severe medial and lateral SPI (0 and 0%) compared to KA (8.0%; p < 0.001 and 7.3%; p = 0.001) and compared to MA (10.2%; p < 0.001 and 4.4%; p = 0.013). There was no difference in severe medial and lateral SPI between KA and MA (p = 0.527 and p = 0.307, respectively). MA resulted in thinner resections than KA in medial extension (mean difference (MD) 1.4 mm, SD 1.9; p < 0.001), medial flexion (MD 1.5 mm, SD 1.8; p < 0.001), and lateral extension (MD 1.1 mm, SD 1.9; p < 0.001). FA resulted in thinner resections than KA in medial extension (MD 1.6 mm, SD 1.4; p < 0.001) and lateral extension (MD 2.0 mm, SD 1.6; p < 0.001), but in thicker medial flexion resections (MD 0.8 mm, SD 1.4; p < 0.001). Conclusion. Mechanical and kinematic alignment (measured resection techniques) result in high rates of SPI. Pre-resection angular and translational adjustments with functional alignment, with typically smaller distal than posterior femoral resection, address this issue. Cite this article: Bone Jt Open 2024;5(8):681–687


Bone & Joint Open
Vol. 2, Issue 6 | Pages 397 - 404
1 Jun 2021
Begum FA Kayani B Magan AA Chang JS Haddad FS

Limb alignment in total knee arthroplasty (TKA) influences periarticular soft-tissue tension, biomechanics through knee flexion, and implant survival. Despite this, there is no uniform consensus on the optimal alignment technique for TKA. Neutral mechanical alignment facilitates knee flexion and symmetrical component wear but forces the limb into an unnatural position that alters native knee kinematics through the arc of knee flexion. Kinematic alignment aims to restore native limb alignment, but the safe ranges with this technique remain uncertain and the effects of this alignment technique on component survivorship remain unknown. Anatomical alignment aims to restore predisease limb alignment and knee geometry, but existing studies using this technique are based on cadaveric specimens or clinical trials with limited follow-up times. Functional alignment aims to restore the native plane and obliquity of the joint by manipulating implant positioning while limiting soft tissue releases, but the results of high-quality studies with long-term outcomes are still awaited. The drawbacks of existing studies on alignment include the use of surgical techniques with limited accuracy and reproducibility of achieving the planned alignment, poor correlation of intraoperative data to long-term functional outcomes and implant survivorship, and a paucity of studies on the safe ranges of limb alignment. Further studies on alignment in TKA should use surgical adjuncts (e.g. robotic technology) to help execute the planned alignment with improved accuracy, include intraoperative assessments of knee biomechanics and periarticular soft-tissue tension, and correlate alignment to long-term functional outcomes and survivorship


Bone & Joint Research
Vol. 13, Issue 5 | Pages 226 - 236
9 May 2024
Jürgens-Lahnstein JH Petersen ET Rytter S Madsen F Søballe K Stilling M

Aims. Micromotion of the polyethylene (PE) inlay may contribute to backside PE wear in addition to articulate wear of total knee arthroplasty (TKA). Using radiostereometric analysis (RSA) with tantalum beads in the PE inlay, we evaluated PE micromotion and its relationship to PE wear. Methods. A total of 23 patients with a mean age of 83 years (77 to 91), were available from a RSA study on cemented TKA with Maxim tibial components (Zimmer Biomet). PE inlay migration, PE wear, tibial component migration, and the anatomical knee axis were evaluated on weightbearing stereoradiographs. PE inlay wear was measured as the deepest penetration of the femoral component into the PE inlay. Results. At mean six years’ follow-up, the PE wear rate was 0.08 mm/year (95% confidence interval 0.06 to 0.09 mm/year). PE inlay external rotation was below the precision limit and did not influence PE wear. Varus knee alignment did not influence PE wear (p = 0.874), but increased tibial component total translation (p = 0.041). Conclusion. The PE inlay was well fixed and there was no relationship between PE stability and PE wear. The PE wear rate was low and similar in the medial and lateral compartments. Varus knee alignment did not influence PE wear. Cite this article: Bone Joint Res 2024;13(5):226–236


The Bone & Joint Journal
Vol. 106-B, Issue 7 | Pages 680 - 687
1 Jul 2024
Mancino F Fontalis A Grandhi TSP Magan A Plastow R Kayani B Haddad FS

Aims. Robotic arm-assisted surgery offers accurate and reproducible guidance in component positioning and assessment of soft-tissue tensioning during knee arthroplasty, but the feasibility and early outcomes when using this technology for revision surgery remain unknown. The objective of this study was to compare the outcomes of robotic arm-assisted revision of unicompartmental knee arthroplasty (UKA) to total knee arthroplasty (TKA) versus primary robotic arm-assisted TKA at short-term follow-up. Methods. This prospective study included 16 patients undergoing robotic arm-assisted revision of UKA to TKA versus 35 matched patients receiving robotic arm-assisted primary TKA. In all study patients, the following data were recorded: operating time, polyethylene liner size, change in haemoglobin concentration (g/dl), length of inpatient stay, postoperative complications, and hip-knee-ankle (HKA) alignment. All procedures were performed using the principles of functional alignment. At most recent follow-up, range of motion (ROM), Forgotten Joint Score (FJS), and Oxford Knee Score (OKS) were collected. Mean follow-up time was 21 months (6 to 36). Results. There were no differences between the two treatment groups with regard to mean change in haemoglobin concentration (p = 0.477), length of stay (LOS, p = 0.172), mean polyethylene thickness (p = 0.065), or postoperative complication rates (p = 0.295). At the most recent follow-up, the primary robotic arm-assisted TKA group had a statistically significantly improved OKS compared with the revision UKA to TKA group (44.6 (SD 2.7) vs 42.3 (SD 2.5); p = 0.004) but there was no difference in the overall ROM (p = 0.056) or FJS between the two treatment groups (86.1 (SD 9.6) vs 84.1 (4.9); p = 0.439). Conclusion. Robotic arm-assisted revision of UKA to TKA was associated with comparable intraoperative blood loss, early postoperative rehabilitation, functional outcomes, and complications to primary robotic TKA at short-term follow-up. Robotic arm-assisted surgery offers a safe and reproducible technique for revising failed UKA to TKA. Cite this article: Bone Joint J 2024;106-B(7):680–687


Bone & Joint Open
Vol. 5, Issue 2 | Pages 101 - 108
6 Feb 2024
Jang SJ Kunze KN Casey JC Steele JR Mayman DJ Jerabek SA Sculco PK Vigdorchik JM

Aims. Distal femoral resection in conventional total knee arthroplasty (TKA) utilizes an intramedullary guide to determine coronal alignment, commonly planned for 5° of valgus. However, a standard 5° resection angle may contribute to malalignment in patients with variability in the femoral anatomical and mechanical axis angle. The purpose of the study was to leverage deep learning (DL) to measure the femoral mechanical-anatomical axis angle (FMAA) in a heterogeneous cohort. Methods. Patients with full-limb radiographs from the Osteoarthritis Initiative were included. A DL workflow was created to measure the FMAA and validated against human measurements. To reflect potential intramedullary guide placement during manual TKA, two different FMAAs were calculated either using a line approximating the entire diaphyseal shaft, and a line connecting the apex of the femoral intercondylar sulcus to the centre of the diaphysis. The proportion of FMAAs outside a range of 5.0° (SD 2.0°) was calculated for both definitions, and FMAA was compared using univariate analyses across sex, BMI, knee alignment, and femur length. Results. The algorithm measured 1,078 radiographs at a rate of 12.6 s/image (2,156 unique measurements in 3.8 hours). There was no significant difference or bias between reader and algorithm measurements for the FMAA (p = 0.130 to 0.563). The FMAA was 6.3° (SD 1.0°; 25% outside range of 5.0° (SD 2.0°)) using definition one and 4.6° (SD 1.3°; 13% outside range of 5.0° (SD 2.0°)) using definition two. Differences between males and females were observed using definition two (males more valgus; p < 0.001). Conclusion. We developed a rapid and accurate DL tool to quantify the FMAA. Considerable variation with different measurement approaches for the FMAA supports that patient-specific anatomy and surgeon-dependent technique must be accounted for when correcting for the FMAA using an intramedullary guide. The angle between the mechanical and anatomical axes of the femur fell outside the range of 5.0° (SD 2.0°) for nearly a quarter of patients. Cite this article: Bone Jt Open 2024;5(2):101–108


Bone & Joint Open
Vol. 5, Issue 7 | Pages 592 - 600
18 Jul 2024
Faschingbauer M Hambrecht J Schwer J Martin JR Reichel H Seitz A

Aims. Patient dissatisfaction is not uncommon following primary total knee arthroplasty. One proposed method to alleviate this is by improving knee kinematics. Therefore, we aimed to answer the following research question: are there significant differences in knee kinematics based on the design of the tibial insert (cruciate-retaining (CR), ultra-congruent (UC), or medial congruent (MC))?. Methods. Overall, 15 cadaveric knee joints were examined with a CR implant with three different tibial inserts (CR, UC, and MC) using an established knee joint simulator. The effects on coronal alignment, medial and lateral femoral roll back, femorotibial rotation, bony rotations (femur, tibia, and patella), and patellofemoral length ratios were determined. Results. No statistically significant differences were found regarding coronal alignment (p = 0.087 to p = 0.832). The medial congruent insert demonstrated restricted femoral roll back (mean medial 37.57 mm; lateral 36.34 mm), while the CR insert demonstrated the greatest roll back (medial 42.21 mm; lateral 37.88 mm; p < 0.001, respectively). Femorotibial rotation was greatest with the CR insert with 2.45° (SD 4.75°), then the UC insert with 1.31° (SD 4.15°; p < 0.001), and lowest with the medial congruent insert with 0.8° (SD 4.24°; p < 0.001). The most pronounced patella shift, but lowest patellar rotation, was noted with the CR insert. Conclusion. The MC insert demonstrated the highest level of constraint of these inserts. Femoral roll back, femorotibial rotation, and single bony rotations were lowest with the MC insert. The patella showed less shifting with the MC insert, but there was significantly increased rotation. While the medial congruent insert was found to have highest constraint, it remains uncertain if this implant recreates native knee kinematics or if this will result in improved patient satisfaction. Cite this article: Bone Jt Open 2024;5(7):592–600


Aims. The aim of this study was to compare any differences in the primary outcome (biphasic flexion knee moment during gait) of robotic arm-assisted bi-unicompartmental knee arthroplasty (bi-UKA) with conventional mechanically aligned total knee arthroplasty (TKA) at one year post-surgery. Methods. A total of 76 patients (34 bi-UKA and 42 TKA patients) were analyzed in a prospective, single-centre, randomized controlled trial. Flat ground shod gait analysis was performed preoperatively and one year postoperatively. Knee flexion moment was calculated from motion capture markers and force plates. The same setup determined proprioception outcomes during a joint position sense test and one-leg standing. Surgery allocation, surgeon, and secondary outcomes were analyzed for prediction of the primary outcome from a binary regression model. Results. Both interventions were shown to be effective treatment options, with no significant differences shown between interventions for the primary outcome of this study (18/35 (51.4%) biphasic TKA patients vs 20/31 (64.5%) biphasic bi-UKA patients; p = 0.558). All outcomes were compared to an age-matched, healthy cohort that outperformed both groups, indicating residual deficits exists following surgery. Logistic regression analysis of primary outcome with secondary outcomes indicated that the most significant predictor of postoperative biphasic knee moments was preoperative knee moment profile and trochlear degradation (Outerbridge) (R. 2. = 0.381; p = 0.002, p = 0.046). A separate regression of alignment against primary outcome indicated significant bi-UKA femoral and tibial axial alignment (R. 2. = 0.352; p = 0.029), and TKA femoral sagittal alignment (R. 2. = 0.252; p = 0.016). The bi-UKA group showed a significant increased ability in the proprioceptive joint position test, but no difference was found in more dynamic testing of proprioception. Conclusion. Robotic arm-assisted bi-UKA demonstrated equivalence to TKA in achieving a biphasic gait pattern after surgery for osteoarthritis of the knee. Both treatments are successful at improving gait, but both leave the patients with a functional limitation that is not present in healthy age-matched controls. Cite this article: Bone Joint J 2022;103-B(4):433–443


Aims. Nearly 99,000 total knee arthroplasties (TKAs) are performed in UK annually. Despite plenty of research, the satisfaction rate of this surgery is around 80%. One of the important intraoperative factors affecting the outcome is alignment. The relationship between joint obliquity and functional outcomes is not well understood. Therefore, a study is required to investigate and compare the effects of two types of alignment (mechanical and kinematic) on functional outcomes and range of motion. Methods. The aim of the study is to compare navigated kinematically aligned TKAs (KA TKAs) with navigated mechanically aligned TKA (MA TKA) in terms of function and ROM. We aim to recruit a total of 96 patients in the trial. The patients will be recruited from clinics of various consultants working in the trust after screening them for eligibility criteria and obtaining their informed consent to participate in this study. Randomization will be done prior to surgery by a software. The primary outcome measure will be the Knee injury and Osteoarthritis Outcome Score The secondary outcome measures include Oxford Knee Score, ROM, EuroQol five-dimension questionnaire, EuroQol visual analogue scale, 12-Item Short-Form Health Survey (SF-12), and Forgotten Joint Score. The scores will be calculated preoperatively and then at six weeks, six months, and one year after surgery. The scores will undergo a statistical analysis. Discussion. There is no clear evidence on the best alignment for a knee arthroplasty. This randomized controlled trial will test the null hypothesis that navigated KA TKAs do not perform better than navigated MA TKAs. Cite this article: Bone Jt Open 2021;2(11):945–950


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 150 - 157
1 Jun 2021
Anderson LA Christie M Blackburn BE Mahan C Earl C Pelt CE Peters CL Gililland J

Aims. Porous metaphyseal cones can be used for fixation in revision total knee arthroplasty (rTKA) and complex TKAs. This metaphyseal fixation has led to some surgeons using shorter cemented stems instead of diaphyseal engaging cementless stems with a potential benefit of ease of obtaining proper alignment without being beholden to the diaphysis. The purpose of this study was to evaluate short term clinical and radiographic outcomes of a series of TKA cases performed using 3D-printed metaphyseal cones. Methods. A retrospective review of 86 rTKAs and nine complex primary TKAs, with an average age of 63.2 years (SD 8.2) and BMI of 34.0 kg/m. 2. (SD 8.7), in which metaphyseal cones were used for both femoral and tibial fixation were compared for their knee alignment based on the type of stem used. Overall, 22 knees had cementless stems on both sides, 52 had cemented stems on both sides, and 15 had mixed stems. Postoperative long-standing radiographs were evaluated for coronal and sagittal plane alignment. Adjusted logistic regression models were run to assess malalignment hip-knee-ankle (HKA) alignment beyond ± 3° and sagittal alignment of the tibial and femoral components ± 3° by stem type. Results. No patients had a revision of a cone due to aseptic loosening; however, two had revision surgery due to infection. In all, 26 (27%) patients had HKA malalignment; nine (9.5%) patients had sagittal plane malalignment, five (5.6%) of the tibia, and four (10.8%) of the femur. After adjusting for age, sex, and BMI, there was a significantly increased risk for malalignment when a cone was used and both the femur and tibia had cementless compared to cemented stems (odds ratio 3.19, 95% confidence interval 1.01 to 10.05). Conclusion. Porous 3D-printed cones provide excellent metaphyseal fixation. However, these central cones make the use of offset couplers difficult and may generate malalignment with cementless stems. We found 3.19-times higher odds of malalignment in our TKAs performed with metaphyseal cones and both femoral and tibial cementless stems. Cite this article: Bone Joint J 2021;103-B(6 Supple A):150–157