Objectives. The objective of this study was to develop a test for the rapid (within 25 minutes) intraoperative detection of bacteria from synovial fluid to diagnose periprosthetic joint infection (PJI). Methods. The 16s rDNA test combines a polymerase chain reaction (PCR) for amplification of 16s rDNA with a lateral flow immunoassay in one fully automated system. The synovial fluid of 77 patients undergoing joint aspiration or primary or revision total hip or knee surgery was prospectively collected. The cohort was divided into a proof-of-principle cohort (n = 17) and a validation cohort (n = 60). Using the proof-of-principle cohort, an optimal cut-off for the discrimination between PJI and non-PJI samples was determined. PJI was defined as detection of the same bacterial species in a minimum of two microbiological samples, positive histology, and presence of a sinus tract or intra-articular pus. Results. The 16s rDNA test proved to be very robust and was able to provide a result in 97% of all samples within 25 minutes. The 16s rDNA test was able to diagnose PJI with a sensitivity of 87.5% and 82%, and a specificity of 100% and 89%, in the proof-of-principle and validation cohorts, respectively. The microbiological culture of synovial fluid achieved a sensitivity of 80% and a specificity of 93% in the validation cohort. Conclusion. The 16s rDNA test offers reliable intraoperative detection of all bacterial species within 25 minutes with a
Objectives. To assess the
The Cochrane Collaboration has produced three new reviews relevant to bone and joint surgery since the publication of the last Cochrane Corner. These are relevant to a wide range of musculoskeletal specialists, and include reviews in lateral elbow pain, osteoarthritis of the big toe joint, and cervical spine injury in paediatric trauma patients.
The Cochrane Collaboration has produced five new reviews relevant to bone and joint surgery since the publication of the last Cochrane Corner These reviews are relevant to a wide range of musculoskeletal specialists, and include reviews in Morton’s neuroma, scoliosis, vertebral fractures, carpal tunnel syndrome, and lower limb arthroplasty.
This study looked to analyse the expression levels of microRNA-140-3p and microRNA-140-5p in synovial fluid, and their correlations to the severity of disease regarding knee osteoarthritis (OA). Knee joint synovial fluid samples were collected from 45 patients with OA of the knee (15 mild, 15 moderate and 15 severe), ten healthy volunteers, ten patients with gouty arthritis, and ten with rheumatoid arthritis. The Kellgren–Lawrence grading (KLG) was used to assess the radiological severity of knee OA, and the patients were stratified into mild (KLG < 2), moderate (KLG = 2), and severe (KLG > 2). The expression of miR-140-3p and miR-140-5p of individual samples was measured by SYBR Green quantitative polymerase chain reaction (PCR) analysis. The expression of miR-140-3p and miR-140-5p was normalised to U6 internal control using the 2-△△CT method. All data were processed using SPSS software.Objectives
Methods
Intramedullary fixation is considered the most stable treatment for pertrochanteric fractures of the proximal femur and cut-out is one of the most frequent mechanical complications. In order to determine the role of clinical variables and radiological parameters in predicting the risk of this complication, we analysed the data pertaining to a group of patients recruited over the course of six years. A total of 571 patients were included in this study, which analysed the incidence of cut-out in relation to several clinical variables: age; gender; the AO Foundation and Orthopaedic Trauma Association classification system (AO/OTA); type of nail; cervical-diaphyseal angle; surgical wait times; anti-osteoporotic medication; complete post-operative weight bearing; and radiological parameters (namely the lag-screw position with respect to the femoral head, the Cleveland system, the tip-apex distance (TAD), and the calcar-referenced tip-apex distance (CalTAD)).Objectives
Methods
Studies on the migration of an implant may be the only way of monitoring the early performance of metal-on-metal prostheses. The Ein Bild Roentgen Analyse - femoral component analysis (EBRA-FCA) method was adapted to measure migration of the femoral component in a metal-on-metal surface arthroplasty of the hip using standard antero-posterior radiographs. In order to determine the accuracy and precision of this method a prosthesis was implanted into cadaver bones. Eleven series of radiographs were used to perform a zero-migration study. After adjustment of the femoral component to simulate migration of 3 mm the radiographs were repeated. All were measured independently by three different observers. The accuracy of the method was found to be ± 1.6 mm for the x-direction and ± 2 mm for the y-direction (95% percentile). The method was validated using 28 hips with a minimum follow-up of 3.5 years after arthroplasty. Seventeen were sound, but 11 had failed because of loosening of the femoral component. The normal (control) group had a different pattern of migration compared with that of the loose group. At 29.2 months, the control group showed a mean migration of 1.62 mm and 1.05 mm compared with 4.39 mm and 4.05 mm in the failed group, for the centre of the head and the tip of the stem, respectively (p = 0.001). In the failed group, the mean time to migration greater than 2 mm was earlier than the onset of clinical symptoms or radiological evidence of failure, 19.1 EBRA-FCA is a reliable and valid tool for measuring migration of the femoral component after surface arthroplasty and can be used to predict early failure of the implant. It may be of value in determining the long-term performance of surface arthroplasty.
This review briefly summarises some of the definitive
studies of articular cartilage by microscopic MRI (µMRI) that were
conducted with the highest spatial resolutions. The article has
four major sections. The first section introduces the cartilage
tissue, MRI and µMRI, and the concept of image contrast in MRI.
The second section describes the characteristic profiles of three
relaxation times (T1, T2 and T1ρ)
and self-diffusion in healthy articular cartilage. The third section
discusses several factors that can influence the visualisation of
articular cartilage and the detection of cartilage lesion by MRI
and µMRI. These factors include image resolution, image analysis
strategies, visualisation of the total tissue, topographical variations
of the tissue properties, surface fibril ambiguity, deformation
of the articular cartilage, and cartilage lesion. The final section
justifies the values of multidisciplinary imaging that correlates
MRI with other technical modalities, such as optical imaging. Rather
than an exhaustive review to capture all activities in the literature,
the studies cited in this review are merely illustrative.
There is no diagnostic, non-invasive method for the early detection of loosening after total hip arthroplasty. In a pilot study, we have analysed two serum markers of bone remodelling, procollagen I C-terminal extension peptide (PICP) and cross-linked N-terminal telopeptide (NTx), as well as the diagnostic performance of NTx for the assessment of osteolysis. We recruited 21 patients with loosening (group I), 18 with a well-fixed prosthesis (group II) and 17 at the time of primary arthroplasty for osteoarthritis (OA) (group III). Internal normal reference ranges were obtained from 30 healthy subjects (group IV). The serum PICP level was found to be significantly lower in patients with OA and those with loosening, when compared with those with stable implants, while the NTx level was significantly increased only in the group with loosening, suggesting that collagen degradation depended on the altered bone turnover induced by the implant. This hypothesis was reinforced by the finding that the values in the pre-surgery patients and stable subjects were comparable with the reference range of younger healthy subjects. A high specificity and positive predictive value for NTx provided good diagnostic evidence of agreement between the test and the clinical and radiological evaluations. The NTx level could be used to indicate stability of the implant. However, further prospective, larger studies are necessary.
Desiccation of articular cartilage during surgery is often unavoidable and may result in the death of chondrocytes, with subsequent joint degeneration. This study was undertaken to determine the extent of chondrocyte death caused by exposure to air and to ascertain whether regular rewetting of cartilage could decrease cell death. Macroscopically normal human cartilage was exposed to air for 0, 30, 60 or 120 minutes. Selected samples were wetted in lactated Ringer’s solution for ten seconds every ten or 20 minutes. The viability of chondrocytes was measured after three days by Live/Dead staining. Chondrocyte death correlated with the length of exposure to air and the depth of the cartilage. Drying for 120 minutes caused extensive cell death mainly in the superficial 500 μm of cartilage. Rewetting every ten or 20 minutes significantly decreased cell death. The superficial zone is most susceptible to desiccation. Loss of superficial chondrocytes likely decreases the production of essential lubricating glycoproteins and contributes to subsequent degeneration. Frequent wetting of cartilage during arthrotomy is therefore essential.