Advertisement for orthosearch.org.uk
Results 1 - 50 of 166
Results per page:
Bone & Joint Research
Vol. 5, Issue 2 | Pages 37 - 45
1 Feb 2016
Roh YH Kim W Park KU Oh JH

Objectives. This study was conducted to evaluate the cytokine-release kinetics of platelet-rich plasma (PRP) according to different activation protocols. Methods. Two manual preparation procedures (single-spin (SS) at 900 g for five minutes; double-spin (DS) at 900 g for five minutes and then 1500 g for 15 minutes) were performed for each of 14 healthy subjects. Both preparations were tested for platelet activation by one of three activation protocols: no activation, activation with calcium (Ca) only, or calcium with a low dose (50 IU per 1 ml PRP) of thrombin. Each preparation was divided into four aliquots and incubated for one hour, 24 hours, 72 hours, and seven days. The cytokine-release kinetics were evaluated by assessing PDGF, TGF, VEGF, FGF, IL-1, and MMP-9 concentrations with bead-based sandwich immunoassay. Results. The concentration of cytokine released from PRP varied over time and was influenced by various activation protocols. Ca-only activation had a significant effect on the DS PRPs (where the VEGF, FGF, and IL-1 concentrations were sustained) while Ca/thrombin activation had effects on both SS and DS PRPs (where the PDGF and VEGF concentrations were sustained and the TGF and FGF concentrations were short). The IL-1 content showed a significant increase with Ca-only or Ca/thrombin activation while these activations did not increase the MMP-9 concentration. Conclusion. The SS and DS methods differed in their effect on cytokine release, and this effect varied among the cytokines analysed. In addition, low dose of thrombin/calcium activation increased the overall cytokine release of the PRP preparations over seven days, relative to that with a calcium-only supplement or non-activation. Cite this article: Professor J. H. Oh. Cytokine-release kinetics of platelet-rich plasma according to various activation protocols. Bone Joint Res 2016;5:37–45. doi: 10.1302/2046-3758.52.2000540


Bone & Joint Research
Vol. 3, Issue 5 | Pages 155 - 160
1 May 2014
Carr AJ Rees JL Ramsay CR Fitzpatrick R Gray A Moser J Dawson J Bruhn H Cooper CD Beard DJ Campbell MK

This protocol describes a pragmatic multicentre randomised controlled trial (RCT) to assess the clinical and cost effectiveness of arthroscopic and open surgery in the management of rotator cuff tears. This trial began in 2007 and was modified in 2010, with the removal of a non-operative arm due to high rates of early crossover to surgery. . Cite this article: Bone Joint Res 2014;3:155–60


Aims

This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with iron overload, and also explore the role of VIT in osteoblast and osteoclast differentiation.

Methods

In this study, 60 rats were included in a titanium rod implantation model and underwent subsequent guanylate cyclase treatment. Imaging, histology, and biomechanics were used to evaluate the osseointegration of rats in each group. First, the impact of VIT on bone integration in aged rats with iron overload was investigated. Subsequently, VIT was employed to modulate the differentiation of MC3T3-E1 cells and RAW264.7 cells under conditions of iron overload.


Bone & Joint Research
Vol. 6, Issue 6 | Pages 385 - 390
1 Jun 2017
Yang Y Lin S Wang B Gu W Li G

Objectives. Distraction osteogenesis (DO) mobilises bone regenerative potential and avoids the complications of other treatments such as bone graft. The major disadvantage of DO is the length of time required for bone consolidation. Mesenchymal stem cells (MSCs) have been used to promote bone formation with some good results. Methods. We hereby review the published literature on the use of MSCs in promoting bone consolidation during DO. Results. Studies differed in animal type (mice, rabbit, dog, sheep), bone type (femur, tibia, skull), DO protocols and cell transplantation methods. Conclusion. The majority of studies reported that the transplantation of MSCs enhanced bone consolidation or formation in DO. Many questions relating to animal model, DO protocol and cell transplantation regime remain to be further investigated. Clinical trials are needed to test and confirm these findings from animal studies. Cite this article: Y. Yang, S. Lin, B. Wang, W. Gu, G. Li. Stem cell therapy for enhancement of bone consolidation in distraction osteogenesis: A contemporary review of experimental studies. Bone Joint Res 2017;6:385–390. DOI: 10.1302/2046-3758.66.BJR-2017-0023


Bone & Joint Research
Vol. 6, Issue 1 | Pages 66 - 72
1 Jan 2017
Mayne E Memarzadeh A Raut P Arora A Khanduja V

Objectives. The aim of this study was to systematically review the literature on measurement of muscle strength in patients with femoroacetabular impingement (FAI) and other pathologies and to suggest guidelines to standardise protocols for future research in the field. Methods. The Cochrane and PubMed libraries were searched for any publications using the terms ‘hip’, ‘muscle’, ‘strength’, and ‘measurement’ in the ‘Title, Abstract, Keywords’ field. A further search was performed using the terms ‘femoroacetabular’ or ‘impingement’. The search was limited to recent literature only. Results. A total of 29 articles were reviewed to obtain information on a number of variables. These comprised the type of device used for measurement, rater standardisation, the type of movements tested, body positioning and comparative studies of muscle strength in FAI versus normal controls. The studies found that hip muscle strength is lower in patients with FAI; this is also true for the asymptomatic hip in patients with FAI. Conclusions. Current literature on this subject is limited and examines multiple variables. Our recommendations for achieving reproducible results include stabilising the patient, measuring isometric movements and maximising standardisation by using a single tester and familiarising the participants with the protocol. Further work must be done to demonstrate the reliability of any new testing method. Cite this article: E. Mayne, A. Memarzadeh, P. Raut, A. Arora, V. Khanduja. Measuring hip muscle strength in patients with femoroacetabular impingement and other hip pathologies: A systematic review. Bone Joint Res 2017;6:66–72. DOI: 10.1302/2046-3758.61.BJR-2016-0081


Bone & Joint 360
Vol. 11, Issue 4 | Pages 44 - 46
1 Aug 2022
Evans JT Walton TJ Whitehouse MR


Objectives. Platelet-rich fibrin matrix (PRFM) has been proved to enhance tenocyte proliferation but has mixed results when used during rotator cuff repair. The optimal PRFM preparation protocol should be determined before clinical application. To screen the best PRFM to each individual’s tenocytes effectively, small-diameter culture wells should be used to increase variables. The gelling effect of PRFM will occur when small-diameter culture wells are used. A co-culture device should be designed to avoid this effect. Methods. Tenocytes harvested during rotator cuff repair and blood from a healthy volunteer were used. Tenocytes were seeded in 96-, 24-, 12-, and six-well plates and co-culture devices. Appropriate volumes of PRFM, according to the surface area of each culture well, were treated with tenocytes for seven days. The co-culture device was designed to avoid the gelling effect that occurred in the small-diameter culture well. Cell proliferation was analyzed by water soluble tetrazolium-1 (WST-1) bioassay. Results. The relative quantification (condition/control) of WST-1 assay on day seven revealed a significant decrease in tenocyte proliferation in small-diameter culture wells (96 and 24 wells) due to the gelling effect. PRFM in large-diameter culture wells (12 and six wells) and co-culture systems induced a significant increase in tenocyte proliferation compared with the control group. The gelling effect of PRFM was avoided by the co-culture device. Conclusion. When PRFM and tenocytes are cultured in small-diameter culture wells, the gelling effect will occur and make screening of personalized best-fit PRFM difficult. This effect can be avoided with the co-culture device. Cite this article: C-H. Chiu, P. Chen, W-L. Yeh, A. C-Y. Chen, Y-S. Chan, K-Y. Hsu, K-F. Lei. The gelling effect of platelet-rich fibrin matrix when exposed to human tenocytes from the rotator cuff in small-diameter culture wells and the design of a co-culture device to overcome this phenomenon. Bone Joint Res 2019;8:216–223. DOI: 10.1302/2046-3758.85.BJR-2018-0258.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 5 | Pages 717 - 725
1 May 2010
Kamali A Hussain A Li C Pamu J Daniel J Ziaee H Daniel J McMinn DJW

Hip simulators have been used for ten years to determine the tribological performance of large-head metal-on-metal devices using traditional test conditions. However, the hip simulator protocols were originally developed to test metal-on-polyethylene devices. We have used patient activity data to develop a more physiologically relevant test protocol for metal-on-metal devices. This includes stop/start motion, a more appropriate walking frequency, and alternating kinetic and kinematic profiles. There has been considerable discussion about the effect of heat treatments on the wear of metal-on-metal cobalt chromium molybdenum (CoCrMo) devices. Clinical studies have shown a higher rate of wear, levels of metal ions and rates of failure for the heat-treated metal compared to the as-cast metal CoCrMo devices. However, hip simulator studies in vitro under traditional testing conditions have thus far not been able to demonstrate a difference between the wear performance of these implants. Using a physiologically relevant test protocol, we have shown that heat treatment of metal-on-metal CoCrMo devices adversely affects their wear performance and generates significantly higher wear rates and levels of metal ions than in as-cast metal implants


Bone & Joint 360
Vol. 10, Issue 6 | Pages 48 - 50
1 Dec 2021
Evans JT French JMR Whitehouse MR


Bone & Joint Research
Vol. 6, Issue 8 | Pages 499 - 505
1 Aug 2017
Morrison RJM Tsang B Fishley W Harper I Joseph JC Reed MR

Objectives. We have increased the dose of tranexamic acid (TXA) in our enhanced total joint recovery protocol at our institution from 15 mg/kg to 30 mg/kg (maximum 2.5 g) as a single, intravenous (IV) dose. We report the clinical effect of this dosage change. Methods. We retrospectively compared two cohorts of consecutive patients undergoing total hip arthroplasty (THA) or total knee arthroplasty (TKA) surgery in our unit between 2008 and 2013. One group received IV TXA 15 mg/kg, maximum 1.2 g, and the other 30 mg/kg, maximum 2.5 g as a single pre-operative dose. The primary outcome for this study was the requirement for blood transfusion within 30 days of surgery. Secondary measures included length of hospital stay, critical care requirements, re-admission rate, medical complications and mortality rates. Results. A total of 1914 THA and 2537 TKA procedures were evaluated. In THA, the higher dose of TXA was associated with a significant reduction in transfusion (p = 0.02, risk ratio (RR) 0.74, 95% confidence interval (CI) 0.58 to 0.96) and rate of re-admission (p < 0.001, RR 0.50, 95% CI 0.35 to 0.71). There were reductions in the requirement for critical care (p = 0.06, RR 0.55, 95% CI 0.31 to 1.00), and in the length of stay from 4.7 to 4.3 days (p = 0.02). In TKA, transfusion requirements (p = 0.049, RR 0.64, 95% CI 0.41 to 0.99), re-admission rate (p = 0.001, RR 0.56, 95% CI 0.39 to 0.80) and critical care requirements (p < 0.003, RR 0.34, 95% CI 0.16 to 0.72) were reduced with the higher dose. Mean length of stay reduced from 4.6 days to 3.6 days (p < 0.01). There was no difference in the incidence of deep vein thrombosis, pulmonary embolism, gastrointestinal bleed, myocardial infarction, stroke or death in THA and TKA between cohorts. Conclusion. We suggest that a single pre-operative dose of TXA, 30 mg/kg, maximum 2.5g, results in a lower transfusion requirement compared with a lower dose in patients undergoing elective primary hip and knee arthroplasty. However, these findings should be interpreted in the context of the retrospective non-randomised study design. Cite this article: R. J. M. Morrison, B. Tsang, W. Fishley, I. Harper, J. C. Joseph, M. R. Reed. Dose optimisation of intravenous tranexamic acid for elective hip and knee arthroplasty: The effectiveness of a single pre-operative dose. Bone Joint Res 2017;6:499–505. DOI: 10.1302/2046-3758.68.BJR-2017-0005.R1


Bone & Joint 360
Vol. 10, Issue 3 | Pages 38 - 39
1 Jun 2021
Das A


Bone & Joint Research
Vol. 6, Issue 1 | Pages 52 - 56
1 Jan 2017
Hothi HS Kendoff D Lausmann C Henckel J Gehrke T Skinner J Hart A

Objectives. Mechanical wear and corrosion at the head-stem junction of total hip arthroplasties (THAs) (trunnionosis) have been implicated in their early revision, most commonly in metal-on-metal (MOM) hips. We can isolate the role of the head-stem junction as the predominant source of metal release by investigating non-MOM hips; this can help to identify clinically significant volumes of material loss and corrosion from these surfaces. Methods. In this study we examined a series of 94 retrieved metal-on-polyethylene (MOP) hips for evidence of corrosion and material loss at the taper junction using a well published visual grading method and an established roundness-measuring machine protocol. Hips were retrieved from 74 male and 20 female patients with a median age of 57 years (30 to 76) and a median time to revision of 215 months (2 to 324). The reasons for revision were loosening of both the acetabular component and the stem (n = 29), loosening of the acetabular component (n = 58) and infection (n = 7). No adverse tissue reactions were reported by the revision surgeons. Results. Evidence of corrosion was observed in 55% of hips. The median Goldberg taper corrosion score was 2 (1 to 4) and the annual rate of material loss at the taper was 0.084 mm. 3. /year (0 to 0.239). The median trunnion corrosion score was 1 (1 to 3). Conclusions. We have reported a level of trunnionosis for MOP hips with large-diameter heads that were revised for reasons other than trunnionosis, and therefore may be clinically insignificant. Cite this article: H. S. Hothi, D. Kendoff, C. Lausmann, J. Henckel, T. Gehrke, J. Skinner, A. Hart. Clinically insignificant trunnionosis in large-diameter metal-on-polyethylene total hip arthroplasty. Bone Joint Res 2017;6:52–56. DOI: 10.1302/2046-3758.61.BJR-2016-0150.R2


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 8 | Pages 1189 - 1193
1 Nov 2002
Bushell AJ Klenerman L Davies H Grierson I McArdle A Jackson MJ

We have previously shown that prior exposure of rat hind limbs to ischaemia for five minutes and reperfusion for five minutes reduced the structural damage to skeletal muscle which followed a subsequent period of ischaemia for four hours and reperfusion for one hour. We have now examined the potential mechanisms by which this ischaemic preconditioning protocol may be effective in reducing damage to skeletal muscle induced by prolonged ischaemia and reperfusion. Prior exposure of the hindlimb to ischaemia for five minutes and reperfusion for five minutes did not prevent the fall in the ATP content of tibialis anterior which occurred after a subsequent period of ischaemia for four hours and reperfusion for one hour. Similarly, no effect of the preconditioning protocol was seen on the elevated muscle myeloperoxidase, indicative of an elevated neutrophil content, or abnormal muscle cation content. Reperfused ischaemic muscle was also found to have an increased content of heat-shock protein (HSP) 72, but the preconditioning protocol did not further increase the content of this or other HSPs indicating that it was not acting by increasing the expression of these cytoprotective proteins. The protective effects of preconditioning appeared to be mimicked by the infusion of adenosine to animals immediately before exposure to the four-hour period, indicating a potential mechanism by which skeletal muscle may be preconditioned to maintain structural viability


Bone & Joint Research
Vol. 2, Issue 6 | Pages 102 - 111
1 Jun 2013
Patel RA Wilson RF Patel PA Palmer RM

Objectives. To review the systemic impact of smoking on bone healing as evidenced within the orthopaedic literature. Methods. A protocol was established and studies were sourced from five electronic databases. Screening, data abstraction and quality assessment was conducted by two review authors. Prospective and retrospective clinical studies were included. The primary outcome measures were based on clinical and/or radiological indicators of bone healing. This review specifically focused on non-spinal orthopaedic studies. Results. Nine tibia studies and eight other orthopaedic studies were considered for systematic review. Of these 17 studies, 13 concluded that smoking negatively influenced bone healing. Conclusions. Smoking has a negative effect on bone healing, in terms of delayed union, nonunion and more complications


Bone & Joint Research
Vol. 5, Issue 2 | Pages 33 - 36
1 Feb 2016
Jenkins PJ Morton A Anderson G Van Der Meer RB Rymaszewski LA

Objectives. “Virtual fracture clinics” have been reported as a safe and effective alternative to the traditional fracture clinic. Robust protocols are used to identify cases that do not require further review, with the remainder triaged to the most appropriate subspecialist at the optimum time for review. The objective of this study was to perform a “top-down” analysis of the cost effectiveness of this virtual fracture clinic pathway. Methods. National Health Service financial returns relating to our institution were examined for the time period 2009 to 2014 which spanned the service redesign. Results. The total staffing costs rose by 4% over the time period (from £1 744 933 to £1 811 301) compared with a national increase of 16%. The total outpatient department rate of attendance fell by 15% compared with a national fall of 5%. Had our local costs increased in line with the national average, an excess expenditure of £212 705 would have been required for staffing costs. Conclusions. The virtual fracture clinic system was associated with less overall use of staff resources in comparison to national cost data. Adoption of this system nationally may have the potential to achieve significant cost savings. Cite this article: P. J. Jenkins. Fracture clinic redesign reduces the cost of outpatient orthopaedic trauma care. Bone Joint Res 2016;5:33–36. doi: 10.1302/2046-3758.52.2000506


Bone & Joint 360
Vol. 9, Issue 5 | Pages 49 - 50
1 Oct 2020
Das MA


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 2 | Pages 333 - 335
1 Mar 1999
Palmer SH Gibbons CLMH Athanasou NA

We analysed the histological findings in 1146 osteoarthritic femoral heads which would have been considered suitable for bone-bank donation to determine whether pathological lesions, other than osteoarthritis, were present. We found that 91 femoral heads (8%) showed evidence of disease. The most common conditions noted were chondrocalcinosis (63 cases), avascular necrosis (13), osteomas (6) and malignant tumours (one case of low-grade chondrosarcoma and two of well-differentiated lymphocytic lymphoma). There were two with metabolic bone disease (Paget’s disease and hyperparathyroid bone disease) and four with inflammatory (rheumatoid-like) arthritis. Our findings indicate that occult pathological conditions are common and it is recommended that histological examination of this regularly used source of bone allograft should be included as part of the screening protocol for bone-bank collection


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 1 | Pages 22 - 25
1 Jan 1996
Campbell DG Li P Oakeshott RD

Infection of human cartilage with HIV in vivo has not previously been reported. Specimens of articular cartilage taken at postmortem from ten patients who were HIV-positive were examined. Two had AIDS and eight were believed to have stage-2 disease. The standard polymerase chain reaction (PCR) protocol was modified to allow semiquantitative analysis of the samples. Oligonucleotide primers labelled with . 32. P gamma-ATP were used to detect a segment of HIV DNA and a control DNA gene segment (HLA genome) to estimate the ratio of infected cells. The . 32. P-labelled PCR products were separated on acrylamide gels and visualised directly by autoradiography and computer densitometry. Infection of human cartilage in vivo was demonstrated in nine of the ten samples in which the PCR analysis was positive. The other did not react sufficiently to produce detectable radiolabelled PCR product despite repeated DNA digestion and extraction. Cartilage infected with HIV could be a potential source of HIV when used in operations


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 5 | Pages 748 - 752
1 Jul 2002
Berlemann U Ferguson SJ Nolte L Heini PF

Vertebroplasty, which is the percutaneous injection of bone cement into vertebral bodies has recently been used to treat painful osteoporotic compression fractures. Early clinical results have been encouraging, but very little is known about the consequences of augmentation with cement for the adjacent, non-augmented level. We therefore measured the overall failure, strength and structural stiffness of paired osteoporotic two-vertebra functional spine units (FSUs). One FSU of each pair was augmented with polymethyl-methacrylate bone cement in the caudal vertebra, while the other served as an untreated control. Compared with the controls, the ultimate failure load for FSUs treated by injection of cement was lower. The geometric mean treated/untreated ratio of failure load was 0.81, with 95% confidence limits from 0.70 to 0.92, (p < 0.01). There was no significant difference in overall FSU stiffness. For treated FSUs, there was a trend towards lower failure loads with increased filling with cement (r. 2. = 0.262, p = 0.13). The current practice of maximum filling with cement to restore the stiffness and strength of a vertebral body may provoke fractures in adjacent, non-augmented vertebrae. Further investigation is required to determine an optimal protocol for augmentation


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 3 | Pages 457 - 461
1 Apr 2004
Sandén B Olerud C Petrén-Mallmin M Johansson C Larsson S

We examined the radiographs from a prospective clinical study of fixation by pedicle screws and those from an experimental study in a sheep model. In the clinical study, instruments were removed from 21 patients after implantation for 11 to 16 months and the extraction torques of the screws were recorded. A structured protocol was used for the radiological examinations. In the experimental study, loaded pedicle screw instrumentations were implanted in the sheep for six or 12 weeks. After radiological examination the pull-out resistance and the histological characteristics were studied. In the clinical study, all screws with radiolucent zones had a significantly reduced mean extraction torque compared with screws without radiolucent zones (16 ± 10 Ncm v 403 ± 220 Ncm; p < 0.0001). In the experimental study the mean maximum pull-out resistance for the screws with radiolucent zones was significantly lower than for those with no radiolucency (243 ± 156 N v 2214 ± 578 N; p = 0.0006) and the mean bone-to-screw contact was reduced for screws with zones compared with those without zones (8 ± 9% v 55 ± 29%; p = 0.0002). Our findings showed that all screws with radiolucent zones had low extraction torques or low pull-out resistance. A radiolucent zone is a good indicator of loosening of a pedicle screw


Bone & Joint Research
Vol. 8, Issue 1 | Pages 32 - 40
1 Jan 2019
Berger DR Centeno CJ Steinmetz NJ

Objectives

Platelet-rich plasma (PRP) is being used increasingly often in the clinical setting to treat tendon-related pathologies. Yet the optimal PRP preparations to promote tendon healing in different patient populations are poorly defined. Here, we sought to determine whether increasing the concentration of platelet-derived proteins within a derivative of PRP, platelet lysate (PL), enhances tenocyte proliferation and migration in vitro, and whether the mitogenic properties of PL change with donor age.

Methods

Concentrated PLs from both young (< 50 years) and aged (> 50 years) donors were prepared by exposing pooled PRP to a series of freeze-thaw cycles followed by dilution in plasma, and the levels of several platelet-derived proteins were measured using multiplex immunoassay technology. Human tenocytes were cultured with PLs to simulate a clinically relevant PRP treatment range, and cell growth and migration were assessed using DNA quantitation and gap closure assays, respectively.


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 6 | Pages 921 - 927
1 Aug 2000
Nafei A Kabel J Odgaard A Linde F Hvid I

We aimed to highlight the relationship between age and the architectural properties of trabecular bone, to outline the patterns in which the variations in these properties take place, and to investigate the influence of the architecture on the mechanical properties of trabecular bone in growing animals. We studied 30 lambs in three age groups and 20 sheep in two age groups. Cubes of subchondral bone were cut from the proximal tibia according to a standardised protocol. They were serially sectioned and their architectural properties were determined. Similar cubes were obtained from the identical anatomical position of the contralateral tibia and their compressive mechanical properties measured. The values obtained from the skeletally immature and mature individuals were compared. Multiple regression analyses were performed between the architectural and the mechanical properties. The bone volume fraction, the mean trabecular volume, the architectural and the mechanical anisotropy, the elastic modulus, the bone strength, the energy absorption to failure, and the elastic energy correlated positively with increasing age whereas the connectivity density, the bone surface density, the ultimate strain, the absorption of viscoelastic energy and the relative loss of energy correlated inversely. The values of all variables were significantly different in the skeletally mature and immature groups. We determined the patterns in which the variations took place. The bone volume fraction of the trabecular bone tissue was found to be the major predictor of its compressive mechanical properties. Together with the mean trabecular volume and the bone surface density, it explained 81% of the variations in the compressive elastic modulus of specimens obtained from the contralateral tibiae


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 6 | Pages 910 - 920
1 Aug 2000
Nafei A Danielsen CC Linde F Hvid I

Our aim was to determine the relationship between age and the mechanical and physical properties of trabecular bone, to describe the patterns in which the variations in these properties take place, and to investigate the influence of the physical properties on the mechanical characteristics of trabecular bone during growth. We used 30 lambs in three age groups and 20 sheep in two age groups. Cubes of subchondral bone were cut from the proximal tibia according to a standardised protocol. We performed non-destructive compression tests of the specimens in three orthogonal directions and compression tests to failure in the axial direction. The physical properties of the specimens were also determined. The data were correlated with age and compared in skeletally immature and mature animals. Multiple regression analyses were performed between the mechanical and the physical properties. Age correlated positively with elastic modulus, bone strength, energy absorption to failure, elastic energy, mechanical anisotropy ratio, tissue density, apparent density, apparent ash density, and bone mineral content, and inversely with ultimate strain, viscoelastic energy absorption, relative energy loss, the collagen content of bone and the percentage porosity. The values of all variables were significantly different in the skeletally mature and immature groups. The apparent density of trabecular bone tissue was found to be the major predictor of its compressive mechanical properties. Together with the content of bone muscle and bone collagen, the apparent density could explain 84% of the variation in the elastic modulus, whereas only a small portion of the variation in ultimate strain could be explained by the variation in apparent density


Bone & Joint Research
Vol. 7, Issue 5 | Pages 343 - 350
1 May 2018
He A Ning Y Wen Y Cai Y Xu K Cai Y Han J Liu L Du Y Liang X Li P Fan Q Hao J Wang X Guo X Ma T Zhang F

Aim

Osteoarthritis (OA) is caused by complex interactions between genetic and environmental factors. Epigenetic mechanisms control the expression of genes and are likely to regulate the OA transcriptome. We performed integrative genomic analyses to define methylation-gene expression relationships in osteoarthritic cartilage.

Patients and Methods

Genome-wide DNA methylation profiling of articular cartilage from five patients with OA of the knee and five healthy controls was conducted using the Illumina Infinium HumanMethylation450 BeadChip (Illumina, San Diego, California). Other independent genome-wide mRNA expression profiles of articular cartilage from three patients with OA and three healthy controls were obtained from the Gene Expression Omnibus (GEO) database. Integrative pathway enrichment analysis of DNA methylation and mRNA expression profiles was performed using integrated analysis of cross-platform microarray and pathway software. Gene ontology (GO) analysis was conducted using the Database for Annotation, Visualization and Integrated Discovery (DAVID).


Objectives

Degenerative disc disease (DDD) and osteoarthritis (OA) are relatively frequent causes of disability amongst the elderly; they constitute serious socioeconomic costs and significantly impair quality of life. Previous studies to date have found that aggrecan variable number of tandem repeats (VNTR) contributes both to DDD and OA. However, current data are not consistent across studies. The purpose of this study was to evaluate systematically the relationship between aggrecan VNTR, and DDD and/or OA.

Methods

This study used a highly sensitive search strategy to identify all published studies related to the relationship between aggrecan VNTR and both DDD and OA in multiple databases from January 1996 to December 2016. All identified studies were systematically evaluated using specific inclusion and exclusion criteria. Cochrane methodology was also applied to the results of this study.


Bone & Joint 360
Vol. 7, Issue 3 | Pages 41 - 42
1 Jun 2018
Foy MA


Bone & Joint Research
Vol. 7, Issue 7 | Pages 494 - 500
1 Jul 2018
Jiang L Zhu X Rong J Xing B Wang S Liu A Chu M Huang G

Objectives

Given the function of adiponectin (ADIPOQ) on the inflammatory condition of obesity and osteoarthritis (OA), we hypothesized that the ADIPOQ gene might be a candidate gene for a marker of susceptibility to OA.

Methods

We systematically screened three tagging polymorphisms (rs182052, rs2082940 and rs6773957) in the ADIPOQ gene, and evaluated the association between the genetic variants and OA risk in a case-controlled study that included 196 OA patients and 442 controls in a northern Chinese population. Genotyping was performed using the Sequenom MassARRAY iPLEX platform.


Bone & Joint 360
Vol. 7, Issue 1 | Pages 38 - 39
1 Feb 2018
Das A


The Bone & Joint Journal
Vol. 100-B, Issue 3 | Pages 404 - 412
1 Mar 2018
Parker JD Lim KS Kieser DC Woodfield TBF Hooper GJ

Aims

The intra-articular administration of tranexamic acid (TXA) has been shown to be effective in reducing blood loss in unicompartmental knee arthroplasty and anterior cruciate reconstruction. The effects on human articular cartilage, however, remains unknown. Our aim, in this study, was to investigate any detrimental effect of TXA on chondrocytes, and to establish if there was a safe dose for its use in clinical practice. The hypothesis was that TXA would cause a dose-dependent damage to human articular cartilage.

Materials and Methods

The cellular morphology, adhesion, metabolic activity, and viability of human chondrocytes when increasing the concentration (0 mg/ml to 40 mg/ml) and length of exposure to TXA (0 to 12 hours) were analyzed in a 2D model. This was then repeated, excluding cellular adhesion, in a 3D model and confirmed in viable samples of articular cartilage.


Bone & Joint Research
Vol. 7, Issue 6 | Pages 414 - 421
1 Jun 2018
Yu CD Miao WH Zhang YY Zou MJ Yan XF

Objectives

The aim of this study was to investigate the role of miR-126 in the development of osteoarthritis, as well as the potential molecular mechanisms involved, in order to provide a theoretical basis for osteoarthritis treatment and a novel perspective for clinical therapy.

Methods

Human chondrocyte cell line CHON-001 was administrated by different doses of interleukin (IL)-1β to simulate inflammation. Cell viability, migration, apoptosis, IL-6, IL-8, and tumour necrosis factor (TNF)-α expression, as well as expression of apoptosis-related factors, were measured to assess inflammation. miR-126 expression was measured by quantitative polymerase chain reaction (qPCR). Cells were then transfected with miR-126 inhibitor to assess the effect of miR-126 on IL-1β-injured CHON-001 cells. Expression of B-cell lymphoma 2 (Bcl-2) and the activity of mitogen-activated protein kinase (MAPK) / Jun N-terminal kinase (JNK) signaling pathway were measured by Western blot to explore the underlying mechanism through which miR-126 affects IL-1β-induced inflammation.


Bone & Joint Research
Vol. 6, Issue 9 | Pages 542 - 549
1 Sep 2017
Arnold M Zhao S Ma S Giuliani F Hansen U Cobb JP Abel RL Boughton O

Objectives

Microindentation has the potential to measure the stiffness of an individual patient’s bone. Bone stiffness plays a crucial role in the press-fit stability of orthopaedic implants. Arming surgeons with accurate bone stiffness information may reduce surgical complications including periprosthetic fractures. The question addressed with this systematic review is whether microindentation can accurately measure cortical bone stiffness.

Methods

A systematic review of all English language articles using a keyword search was undertaken using Medline, Embase, PubMed, Scopus and Cochrane databases. Studies that only used nanoindentation, cancellous bone or animal tissue were excluded.


Bone & Joint Research
Vol. 7, Issue 5 | Pages 362 - 372
1 May 2018
Ueda Y Inui A Mifune Y Sakata R Muto T Harada Y Takase F Kataoka T Kokubu T Kuroda R

Objectives

The aim of this study was to investigate the effect of hyperglycaemia on oxidative stress markers and inflammatory and matrix gene expression within tendons of normal and diabetic rats and to give insights into the processes involved in tendinopathy.

Methods

Using tenocytes from normal Sprague-Dawley rats, cultured both in control and high glucose conditions, reactive oxygen species (ROS) production, cell proliferation, messenger RNA (mRNA) expression of NADPH oxidase (NOX) 1 and 4, interleukin-6 (IL-6), matrix metalloproteinase (MMP)-2, tissue inhibitors of matrix metalloproteinase (TIMP)-1 and -2 and type I and III collagens were determined after 48 and 72 hours in vitro. In an in vivo study, using diabetic rats and controls, NOX1 and 4 expressions in Achilles tendon were also determined.


Bone & Joint Research
Vol. 7, Issue 4 | Pages 274 - 281
1 Apr 2018
Collins KH Hart DA Seerattan RA Reimer RA Herzog W

Objectives

Metabolic syndrome and low-grade systemic inflammation are associated with knee osteoarthritis (OA), but the relationships between these factors and OA in other synovial joints are unclear. The aim of this study was to determine if a high-fat/high-sucrose (HFS) diet results in OA-like joint damage in the shoulders, knees, and hips of rats after induction of obesity, and to identify potential joint-specific risks for OA-like changes.

Methods

A total of 16 male Sprague-Dawley rats were allocated to either the diet-induced obesity group (DIO, 40% fat, 45% sucrose, n = 9) or a chow control diet (n = 7) for 12 weeks. At sacrifice, histological assessments of the shoulder, hip, and knee joints were performed. Serum inflammatory mediators and body composition were also evaluated. The total Mankin score for each animal was assessed by adding together the individual Modified Mankin scores across all three joints. Linear regression modelling was conducted to evaluate predictive relationships between serum mediators and total joint damage.


Bone & Joint Research
Vol. 7, Issue 3 | Pages 244 - 251
1 Mar 2018
Tawonsawatruk T Sriwatananukulkit O Himakhun W Hemstapat W

Objectives

In this study, we compared the pain behaviour and osteoarthritis (OA) progression between anterior cruciate ligament transection (ACLT) and osteochondral injury in surgically-induced OA rat models.

Methods

OA was induced in the knee joints of male Wistar rats using transection of the ACL or induction of osteochondral injury. Changes in the percentage of high limb weight distribution (%HLWD) on the operated hind limb were used to determine the pain behaviour in these models. The development of OA was assessed and compared using a histological evaluation based on the Osteoarthritis Research Society International (OARSI) cartilage OA histopathology score.


Bone & Joint 360
Vol. 7, Issue 1 | Pages 41 - 42
1 Feb 2018
Foy MA


Bone & Joint Research
Vol. 7, Issue 3 | Pages 252 - 262
1 Mar 2018
Nishida K Matsushita T Takayama K Tanaka T Miyaji N Ibaraki K Araki D Kanzaki N Matsumoto T Kuroda R

Objectives

This study aimed to examine the effects of SRT1720, a potent SIRT1 activator, on osteoarthritis (OA) progression using an experimental OA model.

Methods

Osteoarthritis was surgically induced by destabilization of the medial meniscus in eight-week-old C57BL/6 male mice. SRT1720 was administered intraperitoneally twice a week after surgery. Osteoarthritis progression was evaluated histologically using the Osteoarthritis Research Society International (OARSI) score at four, eight, 12 and 16 weeks. The expression of SIRT1, matrix metalloproteinase 13 (MMP-13), a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5), cleaved caspase-3, PARP p85, and acetylated nuclear factor (NF)-κB p65 in cartilage was examined by immunohistochemistry. Synovitis was also evaluated histologically. Primary mouse epiphyseal chondrocytes were treated with SRT1720 in the presence or absence of interleukin 1 beta (IL-1β), and gene expression changes were examined by real-time polymerase chain reaction (PCR).


Bone & Joint Research
Vol. 7, Issue 2 | Pages 157 - 165
1 Feb 2018
Sun Y Kiraly AJ Sun AR Cox M Mauerhan DR Hanley EN

Objectives

The objectives of this study were: 1) to examine osteophyte formation, subchondral bone advance, and bone marrow lesions (BMLs) in osteoarthritis (OA)-prone Hartley guinea pigs; and 2) to assess the disease-modifying activity of an orally administered phosphocitrate ‘analogue’, Carolinas Molecule-01 (CM-01).

Methods

Young Hartley guinea pigs were divided into two groups. The first group (n = 12) had drinking water and the second group (n = 9) had drinking water containing CM-01. Three guinea pigs in each group were euthanized at age six, 12, and 18 months, respectively. Three guinea pigs in the first group were euthanized aged three months as baseline control. Radiological, histological, and immunochemical examinations were performed to assess cartilage degeneration, osteophyte formation, subchondral bone advance, BMLs, and the levels of matrix metalloproteinse-13 (MMP13) protein expression in the knee joints of hind limbs.


Bone & Joint Research
Vol. 6, Issue 8 | Pages 464 - 471
1 Aug 2017
Li QS Meng FY Zhao YH Jin CL Tian J Yi XJ

Objectives

This study aimed to investigate the functional effects of microRNA (miR)-214-5p on osteoblastic cells, which might provide a potential role of miR-214-5p in bone fracture healing.

Methods

Blood samples were obtained from patients with hand fracture or intra-articular calcaneal fracture and from healthy controls (HCs). Expression of miR-214-5p was monitored by qRT-PCR at day 7, 14 and 21 post-surgery. Mouse osteoblastic MC3T3-E1 cells were transfected with antisense oligonucleotides (ASO)-miR-214-5p, collagen type IV alpha 1 (COL4A1) vector or their controls; thereafter, cell viability, apoptotic rate, and the expression of collagen type I alpha 1 (COL1A1), type II collagen (COL-II), and type X collagen (COL-X) were determined. Luciferase reporter assay, qRT-PCR, and Western blot were performed to ascertain whether COL4A1 was a target of miR-214-5p.


Bone & Joint 360
Vol. 6, Issue 6 | Pages 41 - 43
1 Dec 2017
Foy MA


Bone & Joint Research
Vol. 6, Issue 9 | Pages 566 - 571
1 Sep 2017
Cheng T Zhang X Hu J Li B Wang Q

Objectives

Surgeons face a substantial risk of infection because of the occupational exposure to blood-borne pathogens (BBPs) from patients undergoing high-risk orthopaedic procedures. This study aimed to determine the seroprevalence of four BBPs among patients undergoing joint arthroplasty in Shanghai, China. In addition, we evaluated the significance of pre-operative screening by calculating a cost-to-benefit ratio.

Methods

A retrospective observational study of pre-operative screening for BBPs, including hepatitis B and C viruses (HBV and HCV), human immunodeficiency virus (HIV) and Treponema pallidum (TP), was conducted for sequential patients in the orthopaedic department of a large urban teaching hospital between 01 January 2009 and 30 May 2016. Medical records were analysed to verify the seroprevalence of these BBPs among the patients stratified by age, gender, local origin, type of surgery, history of previous transfusion and marital status.


Bone & Joint Research
Vol. 6, Issue 12 | Pages 649 - 655
1 Dec 2017
Liu Y Zhu H Hong H Wang W Liu F

Objectives

Recently, high failure rates of metal-on-metal (MOM) hip implants have raised concerns of cobalt toxicity. Adverse reactions occur to cobalt nanoparticles (CoNPs) and cobalt ions (Co2+) during wear of MOM hip implants, but the toxic mechanism is not clear.

Methods

To evaluate the protective effect of zinc ions (Zn2+), Balb/3T3 mouse fibroblast cells were pretreated with 50 μM Zn2+ for four hours. The cells were then exposed to different concentrations of CoNPs and Co2+ for four hours, 24 hours and 48 hours. The cell viabilities, reactive oxygen species (ROS) levels, and inflammatory cytokines were measured.


Bone & Joint Research
Vol. 6, Issue 12 | Pages 640 - 648
1 Dec 2017
Xia B Li Y Zhou J Tian B Feng L

Objectives

Osteoporosis is a chronic disease. The aim of this study was to identify key genes in osteoporosis.

Methods

Microarray data sets GSE56815 and GSE56814, comprising 67 osteoporosis blood samples and 62 control blood samples, were obtained from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified in osteoporosis using Limma package (3.2.1) and Meta-MA packages. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to identify biological functions. Furthermore, the transcriptional regulatory network was established between the top 20 DEGs and transcriptional factors using the UCSC ENCODE Genome Browser. Receiver operating characteristic (ROC) analysis was applied to investigate the diagnostic value of several DEGs.


Bone & Joint Research
Vol. 6, Issue 4 | Pages 231 - 244
1 Apr 2017
Zhang J Yuan T Zheng N Zhou Y Hogan MV Wang JH

Objectives

After an injury, the biological reattachment of tendon to bone is a challenge because healing takes place between a soft (tendon) and a hard (bone) tissue. Even after healing, the transition zone in the enthesis is not completely regenerated, making it susceptible to re-injury. In this study, we aimed to regenerate Achilles tendon entheses (ATEs) in wounded rats using a combination of kartogenin (KGN) and platelet-rich plasma (PRP).

Methods

Wounds created in rat ATEs were given three different treatments: kartogenin platelet-rich plasma (KGN-PRP); PRP; or saline (control), followed by histological and immunochemical analyses, and mechanical testing of the rat ATEs after three months of healing.


Bone & Joint Research
Vol. 6, Issue 3 | Pages 179 - 185
1 Mar 2017
Wu JH Thoreson AR Gingery A An KN Moran SL Amadio PC Zhao C

Objectives

The present study describes a novel technique for revitalising allogenic intrasynovial tendons by combining cell-based therapy and mechanical stimulation in an ex vivo canine model.

Methods

Specifically, canine flexor digitorum profundus tendons were used for this study and were divided into the following groups: (1) untreated, unprocessed normal tendon; (2) decellularised tendon; (3) bone marrow stromal cell (BMSC)-seeded tendon; and (4) BMSC-seeded and cyclically stretched tendon. Lateral slits were introduced on the tendon to facilitate cell seeding. Tendons from all four study groups were distracted by a servohydraulic testing machine. Tensile force and displacement data were continuously recorded at a sample rate of 20 Hz until 200 Newton of force was reached. Before testing, the cross-sectional dimensions of each tendon were measured with a digital caliper. Young’s modulus was calculated from the slope of the linear region of the stress-strain curve. The BMSCs were labeled for histological and cell viability evaluation on the decellularized tendon scaffold under a confocal microscope. Gene expression levels of selected extracellular matrix tendon growth factor genes were measured. Results were reported as mean ± SD and data was analyzed with one-way ANOVAs followed by Tukey’s post hoc multiple-comparison test.


Bone & Joint Research
Vol. 6, Issue 6 | Pages 366 - 375
1 Jun 2017
Neves N Linhares D Costa G Ribeiro CC Barbosa MA

Objectives

This systematic review aimed to assess the in vivo and clinical effect of strontium (Sr)-enriched biomaterials in bone formation and/or remodelling.

Methods

A systematic search was performed in Pubmed, followed by a two-step selection process. We included in vivo original studies on Sr-containing biomaterials used for bone support or regeneration, comparing at least two groups that only differ in Sr addition in the experimental group.


Bone & Joint Research
Vol. 6, Issue 5 | Pages 277 - 283
1 May 2017
Yoshikawa M Nakasa T Ishikawa M Adachi N Ochi M

Objectives

Regenerative medicine is an emerging field aimed at the repair and regeneration of various tissues. To this end, cytokines (CKs), growth factors (GFs), and stem/progenitor cells have been applied in this field. However, obtaining and preparing these candidates requires invasive, costly, and time-consuming procedures. We hypothesised that skeletal muscle could be a favorable candidate tissue for the concept of a point-of-care approach. The purpose of this study was to characterize and confirm the biological potential of skeletal muscle supernatant for use in regenerative medicine.

Methods

Semitendinosus muscle was used after harvesting tendon from patients who underwent anterior cruciate ligament reconstructions. A total of 500 milligrams of stripped muscle was minced and mixed with 1 mL of saline. The collected supernatant was analysed by enzyme-linked immunosorbent assay (ELISA) and flow cytometry. The biological effects of the supernatant on cell proliferation, osteogenesis, and angiogenesis in vitro were evaluated using human mesenchymal stem cells (hMSCs) and human umbilical cord vein endothelial cells (HUVECs).


Bone & Joint Research
Vol. 6, Issue 3 | Pages 123 - 131
1 Mar 2017
Sasaki T Akagi R Akatsu Y Fukawa T Hoshi H Yamamoto Y Enomoto T Sato Y Nakagawa R Takahashi K Yamaguchi S Sasho T

Objectives

The aim of this study was to investigate the effect of granulocyte-colony stimulating factor (G-CSF) on mesenchymal stem cell (MSC) proliferation in vitro and to determine whether pre-microfracture systemic administration of G-CSF (a bone marrow stimulant) could improve the quality of repaired tissue of a full-thickness cartilage defect in a rabbit model.

Methods

MSCs from rabbits were cultured in a control medium and medium with G-CSF (low-dose: 4 μg, high-dose: 40 μg). At one, three, and five days after culturing, cells were counted. Differential potential of cultured cells were examined by stimulating them with a osteogenic, adipogenic and chondrogenic medium.

A total of 30 rabbits were divided into three groups. The low-dose group (n = 10) received 10 μg/kg of G-CSF daily, the high-dose group (n = 10) received 50 μg/kg daily by subcutaneous injection for three days prior to creating cartilage defects. The control group (n = 10) was administered saline for three days. At 48 hours after the first injection, a 5.2 mm diameter cylindrical osteochondral defect was created in the femoral trochlea. At four and 12 weeks post-operatively, repaired tissue was evaluated macroscopically and microscopically.


Bone & Joint Research
Vol. 6, Issue 4 | Pages 253 - 258
1 Apr 2017
Hsu C Lin C Jou I Wang P Lee J

Objectives

Osteoarthritis (OA) is the most common form of arthritis, affecting approximately 15% of the human population. Recently, increased concentration of nitric oxide in serum and synovial fluid in patients with OA has been observed. However, the exact role of nitric oxide in the initiation of OA has not been elucidated. The aim of the present study was to investigate the role of nitric oxide in innate immune regulation during OA initiation in rats.

Methods

Rat OA was induced by performing meniscectomy surgery while cartilage samples were collected 0, 7, and 14 days after surgery. Cartilage cytokine levels were determined by using enzyme-linked immunosorbent assay, while other proteins were assessed by using Western blot


Bone & Joint Research
Vol. 6, Issue 2 | Pages 73 - 81
1 Feb 2017
Ishihara K Okazaki K Akiyama T Akasaki Y Nakashima Y

Objectives

Osteophytes are products of active endochondral and intramembranous ossification, and therefore could theoretically provide significant efficacy as bone grafts. In this study, we compared the bone mineralisation effectiveness of osteophytes and cancellous bone, including their effects on secretion of growth factors and anabolic effects on osteoblasts.

Methods

Osteophytes and cancellous bone obtained from human patients were transplanted onto the calvaria of severe combined immunodeficient mice, with Calcein administered intra-peritoneally for fluorescent labelling of bone mineralisation. Conditioned media were prepared using osteophytes and cancellous bone, and growth factor concentration and effects of each graft on proliferation, differentiation and migration of osteoblastic cells were assessed using enzyme-linked immunosorbent assays, MTS ((3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium)) assays, quantitative real-time polymerase chain reaction, and migration assays.


Bone & Joint Research
Vol. 6, Issue 4 | Pages 208 - 215
1 Apr 2017
Decambron A Manassero M Bensidhoum M Lecuelle B Logeart-Avramoglou D Petite H Viateau V

Objectives

To compare the therapeutic potential of tissue-engineered constructs (TECs) combining mesenchymal stem cells (MSCs) and coral granules from either Acropora or Porites to repair large bone defects.

Materials and Methods

Bone marrow-derived, autologous MSCs were seeded on Acropora or Porites coral granules in a perfusion bioreactor. Acropora-TECs (n = 7), Porites-TECs (n = 6) and bone autografts (n = 2) were then implanted into 25 mm long metatarsal diaphyseal defects in sheep. Bimonthly radiographic follow-up was completed until killing four months post-operatively. Explants were subsequently processed for microCT and histology to assess bone formation and coral bioresorption. Statistical analyses comprised Mann-Whitney, t-test and Kruskal–Wallis tests. Data were expressed as mean and standard deviation.