Advertisement for orthosearch.org.uk
Results 1 - 50 of 427
Results per page:
The Bone & Joint Journal
Vol. 103-B, Issue 7 | Pages 1247 - 1253
1 Jul 2021
Slullitel PA Oñativia JI Zanotti G Comba F Piccaluga F Buttaro MA

Aims. There is a paucity of long-term studies analyzing risk factors for failure after single-stage revision for periprosthetic joint infection (PJI) following total hip arthroplasty (THA). We report the mid- to long-term septic and non-septic failure rate of single-stage revision for PJI after THA. Methods. We retrospectively reviewed 88 cases which met the Musculoskeletal Infection Society (MSIS) criteria for PJI. Mean follow-up was seven years (1 to 14). Septic failure was diagnosed with a Delphi-based consensus definition. Any reoperation for mechanical causes in the absence of evidence of infection was considered as non-septic failure. A competing risk regression model was used to evaluate factors associated with septic and non-septic failures. A Kaplan-Meier estimate was used to analyze mortality. Results. The cumulative incidence of septic failure was 8% (95% confidence interval (CI) 3.5 to 15) at one year, 13.8% (95% CI 7.6 to 22) at two years, and 19.7% (95% CI 12 to 28.6) at five and ten years of follow-up. A femoral bone defect worse than Paprosky IIIA (hazard ratio (HR) 13.58 (95% CI 4.86 to 37.93); p < 0.001) and obesity (BMI ≥ 30 kg/m. 2. ; HR 3.88 (95% CI 1.49 to 10.09); p = 0.005) were significantly associated with septic failure. Instability and periprosthetic fracture were the most common reasons for mechanical failure (5.7% and 4.5%, respectively). The cumulative incidence of aseptic failure was 2% (95% CI 0.4 to 7) at two years, 9% (95% CI 4 to 17) at five years, and 12% (95% CI 5 to 22) at ten years. A previous revision to treat PJI was significantly associated with non-septic failure (HR 9.93 (95% CI 1.77 to 55.46); p = 0.009). At the five-year timepoint, 93% of the patients were alive (95% CI 84% to 96%), which fell to 86% (95% CI 75% to 92%) at ten-year follow-up. Conclusion. Massive femoral bone loss was associated with greater chances of developing a further septic failure. All septic failures occurred within the first five years following the one-stage exchange. Surgeons should be aware of instability and periprosthetic fracture being potential causes of further aseptic revision surgery. Cite this article: Bone Joint J 2021;103-B(7):1247–1253


Bone & Joint Open
Vol. 4, Issue 11 | Pages 881 - 888
21 Nov 2023
Denyer S Eikani C Sheth M Schmitt D Brown N

Aims. The diagnosis of periprosthetic joint infection (PJI) can be challenging as the symptoms are similar to other conditions, and the markers used for diagnosis have limited sensitivity and specificity. Recent research has suggested using blood cell ratios, such as platelet-to-volume ratio (PVR) and platelet-to-lymphocyte ratio (PLR), to improve diagnostic accuracy. The aim of the study was to further validate the effectiveness of PVR and PLR in diagnosing PJI. Methods. A retrospective review was conducted to assess the accuracy of different marker combinations for diagnosing chronic PJI. A total of 573 patients were included in the study, of which 124 knees and 122 hips had a diagnosis of chronic PJI. Complete blood count and synovial fluid analysis were collected. Recently published blood cell ratio cut-off points were applied to receiver operating characteristic curves for all markers and combinations. The area under the curve (AUC), sensitivity, specificity, and positive and negative predictive values were calculated. Results. The results of the analysis showed that the combination of ESR, CRP, synovial white blood cell count (Syn. WBC), and polymorphonuclear neutrophil percentage (PMN%) with PVR had the highest AUC of 0.99 for knees, with sensitivity of 97.73% and specificity of 100%. Similarly, for hips, this combination had an AUC of 0.98, sensitivity of 96.15%, and specificity of 100.00%. Conclusion. This study supports the use of PVR calculated from readily available complete blood counts, combined with established markers, to improve the accuracy in diagnosing chronic PJI in both total hip and knee arthroplasties. Cite this article: Bone Jt Open 2023;4(11):881–888


Bone & Joint Research
Vol. 11, Issue 9 | Pages 608 - 618
7 Sep 2022
Sigmund IK Luger M Windhager R McNally MA

Aims. This study evaluated the definitions developed by the European Bone and Joint Infection Society (EBJIS) 2021, the International Consensus Meeting (ICM) 2018, and the Infectious Diseases Society of America (IDSA) 2013, for the diagnosis of periprosthetic joint infection (PJI). Methods. In this single-centre, retrospective analysis of prospectively collected data, patients with an indicated revision surgery after a total hip or knee arthroplasty were included between 2015 and 2020. A standardized diagnostic workup was performed, identifying the components of the EBJIS, ICM, and IDSA criteria in each patient. Results. Of 206 included patients, 101 (49%) were diagnosed with PJI with the EBJIS definition. IDSA and ICM diagnosed 99 (48%) and 86 (42%) as infected, respectively. A total of 84 cases (41%) had an infection based on all three criteria. In 15 cases (n = 15/206; 7%), PJI was present when applying only the IDSA and EBJIS criteria. No infection was detected by one definition alone. Inconclusive diagnoses occurred more frequently with the ICM criteria (n = 30/206; 15%) compared to EBJIS (likely infections: n = 16/206; 8%) (p = 0.029). A better preoperative performance of the EBJIS definition was seen compared with the ICM and IDSA definitions (p < 0.001). Conclusion. The novel EBJIS definition identified all PJIs diagnosed by any other criteria. Use of the EBJIS definition significantly reduced the number of uncertain diagnoses, allowing easier clinical decision-making. Cite this article: Bone Joint Res 2022;11(9):608–618


The Bone & Joint Journal
Vol. 106-B, Issue 8 | Pages 802 - 807
1 Aug 2024
Kennedy JW Sinnerton R Jeyakumar G Kane N Young D Meek RMD

Aims. The number of revision arthroplasties being performed in the elderly is expected to rise, including revision for infection. The primary aim of this study was to measure the treatment success rate for octogenarians undergoing revision total hip arthroplasty (THA) for periprosthetic joint infection (PJI) compared to a younger cohort. Secondary outcomes were complications and mortality. Methods. Patients undergoing one- or two-stage revision of a primary THA for PJI between January 2008 and January 2021 were identified. Age, sex, BMI, American Society of Anesthesiologists grade, Charlson Comorbidity Index (CCI), McPherson systemic host grade, and causative organism were collated for all patients. PJI was classified as ‘confirmed’, ‘likely’, or ‘unlikely’ according to the 2021 European Bone and Joint Infection Society criteria. Primary outcomes were complications, reoperation, re-revision, and successful treatment of PJI. A total of 37 patients aged 80 years or older and 120 patients aged under 80 years were identified. The octogenarian group had a significantly lower BMI and significantly higher CCI and McPherson systemic host grades compared to the younger cohort. Results. The majority of patients were planned to undergo two-stage revision, although a significantly higher proportion of the octogenarians did not proceed with the second stage (38.7% (n = 12) vs 14.8% (n = 16); p = 0.003). Although there was some evidence of a lower complication rate in the younger cohort, this did not reach statistical significance (p = 0.065). No significant difference in reoperation (21.6% (n = 8) vs 25.0% (n = 30); p = 0.675) or re-revision rate (8.1% (n = 3) vs 16.7% (n = 20); p = 0.288) was identified between the groups. There was no difference in treatment success between groups (octogenarian 89.2% (n = 33) vs control 82.5% (n = 99); p = 0.444). Conclusion. When compared to a younger cohort, octogenarians did not show a significant difference in complication, re-revision, or treatment success rates. However, given they are less likely to be eligible to proceed with second stage revision, consideration should be given to either single-stage revision or use of an articulated spacer to maximize functional outcomes. Cite this article: Bone Joint J 2024;106-B(8):802–807


Bone & Joint Research
Vol. 13, Issue 1 | Pages 19 - 27
5 Jan 2024
Baertl S Rupp M Kerschbaum M Morgenstern M Baumann F Pfeifer C Worlicek M Popp D Amanatullah DF Alt V

Aims. This study aimed to evaluate the clinical application of the PJI-TNM classification for periprosthetic joint infection (PJI) by determining intraobserver and interobserver reliability. To facilitate its use in clinical practice, an educational app was subsequently developed and evaluated. Methods. A total of ten orthopaedic surgeons classified 20 cases of PJI based on the PJI-TNM classification. Subsequently, the classification was re-evaluated using the PJI-TNM app. Classification accuracy was calculated separately for each subcategory (reinfection, tissue and implant condition, non-human cells, and morbidity of the patient). Fleiss’ kappa and Cohen’s kappa were calculated for interobserver and intraobserver reliability, respectively. Results. Overall, interobserver and intraobserver agreements were substantial across the 20 classified cases. Analyses for the variable ‘reinfection’ revealed an almost perfect interobserver and intraobserver agreement with a classification accuracy of 94.8%. The category 'tissue and implant conditions' showed moderate interobserver and substantial intraobserver reliability, while the classification accuracy was 70.8%. For 'non-human cells,' accuracy was 81.0% and interobserver agreement was moderate with an almost perfect intraobserver reliability. The classification accuracy of the variable 'morbidity of the patient' reached 73.5% with a moderate interobserver agreement, whereas the intraobserver agreement was substantial. The application of the app yielded comparable results across all subgroups. Conclusion. The PJI-TNM classification system captures the heterogeneity of PJI and can be applied with substantial inter- and intraobserver reliability. The PJI-TNM educational app aims to facilitate application in clinical practice. A major limitation was the correct assessment of the implant situation. To eliminate this, a re-evaluation according to intraoperative findings is strongly recommended. Cite this article: Bone Joint Res 2024;13(1):19–27


The Bone & Joint Journal
Vol. 104-B, Issue 11 | Pages 1193 - 1195
1 Nov 2022
Rajput V Meek RMD Haddad FS

Periprosthetic joint infection (PJI) remains an extremely challenging complication. We have focused on this issue more over the last decade than previously, but there are still many unanswered questions. We now have a workable definition that everyone should align to, but we need to continue to focus on identifying the organisms involved. Surgical strategies are evolving and care is becoming more patient-centred. There are some good studies under way. There are, however, still numerous problems to resolve, and the challenge of PJI remains a major one for the orthopaedic community. This annotation provides some up-to-date thoughts about where we are, and the way forward. There is still scope for plenty of research in this area. Cite this article: Bone Joint J 2022;104-B(11):1193–1195


The Bone & Joint Journal
Vol. 105-B, Issue 3 | Pages 294 - 300
1 Mar 2023
Sangaletti R Zanna L Akkaya M Sandiford N Ekhtiari S Gehrke T Citak M

Aims. Despite numerous studies focusing on periprosthetic joint infections (PJIs), there are no robust data on the risk factors and timing of metachronous infections. Metachronous PJIs are PJIs that can arise in the same or other artificial joints after a period of time, in patients who have previously had PJI. Methods. Between January 2010 and December 2018, 661 patients with multiple joint prostheses in situ were treated for PJI at our institution. Of these, 73 patients (11%) developed a metachronous PJI (periprosthetic infection in patients who have previously had PJI in another joint, after a lag period) after a mean time interval of 49.5 months (SD 30.24; 7 to 82.9). To identify patient-related risk factors for a metachronous PJI, the following parameters were analyzed: sex; age; BMI; and pre-existing comorbidity. Metachronous infections were divided into three groups: Group 1, metachronous infections in ipsilateral joints; Group 2, metachronous infections of the contralateral lower limb; and Group 3, metachronous infections of the lower and upper limb. Results. We identified a total of 73 metachronous PJIs: 32 PJIs in Group 1, 38 in Group 2, and one in Group 3. The rate of metachronous infection was 11% (73 out 661 cases) at a mean of four years following first infection. Diabetes mellitus incidence was found significantly more frequently in the metachronous infection group than in non-metachronous infection group. The rate of infection in Group 1 (21.1%) was significantly higher (p = 0.049) compared to Groups 2 (6.2%) and 3 (3%). The time interval of metachronous infection development was shorter in adjacent joint infections. Concordance between the bacterium of the first PJI and that of the metachronous PJI in Group 1 (21/34) was significantly higher than Group 2 (13/38; p = 0.001). Conclusion. The findings of this study suggest that metachronous PJI occurs in more than one in ten patients with an index PJI. Female patients, diabetic patients, and patients with a polymicrobial index PJI are at significantly higher risk for developing a metachronous PJI. Furthermore, metachronous PJIs are significantly more likely to occur in an adjacent joint (e.g. ipsilateral hip and knee) as opposed to a more remote site (i.e. contralateral or upper vs lower limb). Additionally, adjacent joint PJIs occur significantly earlier and are more likely to be caused by the same bacteria as the index PJI. Cite this article: Bone Joint J 2023;105-B(3):294–300


Bone & Joint Open
Vol. 3, Issue 12 | Pages 924 - 932
23 Dec 2022
Bourget-Murray J Horton I Morris J Bureau A Garceau S Abdelbary H Grammatopoulos G

Aims. The aims of this study were to determine the incidence and factors for developing periprosthetic joint infection (PJI) following hemiarthroplasty (HA) for hip fracture, and to evaluate treatment outcome and identify factors associated with treatment outcome. Methods. A retrospective review was performed of consecutive patients treated for HA PJI at a tertiary referral centre with a mean 4.5 years’ follow-up (1.6 weeks to 12.9 years). Surgeries performed included debridement, antibiotics, and implant retention (DAIR) and single-stage revision. The effect of different factors on developing infection and treatment outcome was determined. Results. A total of 1,984 HAs were performed during the study period, and 44 sustained a PJI (2.2%). Multiple logistic regression analysis revealed that a higher CCI score (odds ratio (OR) 1.56 (95% confidence interval (CI) 1.117 to 2.187); p = 0.003), peripheral vascular disease (OR 11.34 (95% CI 1.897 to 67.810); p = 0.008), cerebrovascular disease (OR 65.32 (95% CI 22.783 to 187.278); p < 0.001), diabetes (OR 4.82 (95% CI 1.903 to 12.218); p < 0.001), moderate-to-severe renal disease (OR 5.84 (95% CI 1.116 to 30.589); p = 0.037), cancer without metastasis (OR 6.42 (95% CI 1.643 to 25.006); p = 0.007), and metastatic solid tumour (OR 15.64 (95% CI 1.499 to 163.087); p = 0.022) were associated with increasing PJI risk. Upon final follow-up, 17 patients (38.6%) failed initial treatment and required further surgery for HA PJI. One-year mortality was 22.7%. Factors associated with treatment outcome included lower preoperative Hgb level (97.9 g/l (SD 11.4) vs 107.0 g/l (SD 16.1); p = 0.009), elevated CRP level (99.1 mg/l (SD 63.4) vs 56.6 mg/l (SD 47.1); p = 0.030), and type of surgery. There was lower chance of success with DAIR (42.3%) compared to revision HA (66.7%) or revision with conversion to total hip arthroplasty (100%). Early-onset PJI (≤ six weeks) was associated with a higher likelihood of treatment failure (OR 3.5 (95% CI 1.2 to 10.6); p = 0.007) along with patients treated by a non-arthroplasty surgeon (OR 2.5 (95% CI 1.2 to 5.3); p = 0.014). Conclusion. HA PJI initially treated with DAIR is associated with poor chances of success and its value is limited. We strongly recommend consideration of a single-stage revision arthroplasty with cemented components. Cite this article: Bone Jt Open 2022;3(12):924–932


Bone & Joint Research
Vol. 12, Issue 9 | Pages 559 - 570
14 Sep 2023
Wang Y Li G Ji B Xu B Zhang X Maimaitiyiming A Cao L

Aims. To investigate the optimal thresholds and diagnostic efficacy of commonly used serological and synovial fluid detection indexes for diagnosing periprosthetic joint infection (PJI) in patients who have rheumatoid arthritis (RA). Methods. The data from 348 patients who had RA or osteoarthritis (OA) and had previously undergone a total knee (TKA) and/or a total hip arthroplasty (THA) (including RA-PJI: 60 cases, RA-non-PJI: 80 cases; OA-PJI: 104 cases, OA-non-PJI: 104 cases) were retrospectively analyzed. A receiver operating characteristic curve was used to determine the optimal thresholds of the CRP, ESR, synovial fluid white blood cell count (WBC), and polymorphonuclear neutrophil percentage (PMN%) for diagnosing RA-PJI and OA-PJI. The diagnostic efficacy was evaluated by comparing the area under the curve (AUC) of each index and applying the results of the combined index diagnostic test. Results. For PJI prediction, the results of serological and synovial fluid indexes were different between the RA-PJI and OA-PJI groups. The optimal cutoff value of CRP for diagnosing RA-PJI was 12.5 mg/l, ESR was 39 mm/hour, synovial fluid WBC was 3,654/μl, and PMN% was 65.9%; and those of OA-PJI were 8.2 mg/l, 31 mm/hour, 2,673/μl, and 62.0%, respectively. In the RA-PJI group, the specificity (94.4%), positive predictive value (97.1%), and AUC (0.916) of synovial fluid WBC were higher than those of the other indexes. The optimal cutoff values of synovial fluid WBC and PMN% for diagnosing RA-PJI after THA were significantly higher than those of TKA. The specificity and positive predictive value of the combined index were 100%. Conclusion. Serum inflammatory and synovial fluid indexes can be used for diagnosing RA-PJI, for which synovial fluid WBC is the best detection index. Combining multiple detection indexes can provide a reference basis for the early and accurate diagnosis of RA-PJI. Cite this article: Bone Joint Res 2023;12(9):559–570


Bone & Joint Research
Vol. 7, Issue 1 | Pages 85 - 93
1 Jan 2018
Saleh A George J Faour M Klika AK Higuera CA

Objectives. The diagnosis of periprosthetic joint infection (PJI) is difficult and requires a battery of tests and clinical findings. The purpose of this review is to summarize all current evidence for common and new serum biomarkers utilized in the diagnosis of PJI. Methods. We searched two literature databases, using terms that encompass all hip and knee arthroplasty procedures, as well as PJI and statistical terms reflecting diagnostic parameters. The findings are summarized as a narrative review. Results. Erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) were the two most commonly published serum biomarkers. Most evidence did not identify other serum biomarkers that are clearly superior to ESR and CRP. Other serum biomarkers have not demonstrated superior sensitivity and have failed to replace CRP and ESR as first-line screening tests. D-dimer appears to be a promising biomarker, but more research is necessary. Factors that influence serum biomarkers include temporal trends, stage of revision, and implant-related factors (metallosis). Conclusion. Our review helped to identify factors that can influence serum biomarkers’ level changes; the recognition of such factors can help improve their diagnostic utility. As such, we cannot rely on ESR and CRP alone for the diagnosis of PJI prior to second-stage reimplantation, or in metal-on-metal or corrosion cases. The future of serum biomarkers will likely shift towards using genomics and proteomics to identify proteins transcribed via messenger RNA in response to infection and sepsis. Cite this article: A. Saleh, J. George, M. Faour, A. K. Klika, C. A. Higuera. Serum biomarkers in periprosthetic joint infections. Bone Joint Res 2018;7:85–93. DOI: 10.1302/2046-3758.71.BJR-2017-0323


Bone & Joint Research
Vol. 12, Issue 10 | Pages 644 - 653
10 Oct 2023
Hinz N Butscheidt S Jandl NM Rohde H Keller J Beil FT Hubert J Rolvien T

Aims. The management of periprosthetic joint infection (PJI) remains a major challenge in orthopaedic surgery. In this study, we aimed to characterize the local bone microstructure and metabolism in a clinical cohort of patients with chronic PJI. Methods. Periprosthetic femoral trabecular bone specimens were obtained from patients suffering from chronic PJI of the hip and knee (n = 20). Microbiological analysis was performed on preoperative joint aspirates and tissue specimens obtained during revision surgery. Microstructural and cellular bone parameters were analyzed in bone specimens by histomorphometry on undecalcified sections complemented by tartrate-resistant acid phosphatase immunohistochemistry. Data were compared with control specimens obtained during primary arthroplasty (n = 20) and aseptic revision (n = 20). Results. PJI specimens exhibited a higher bone volume, thickened trabeculae, and increased osteoid parameters compared to both control groups, suggesting an accelerated bone turnover with sclerotic microstructure. On the cellular level, osteoblast and osteoclast parameters were markedly increased in the PJI cohort. Furthermore, a positive association between serum (CRP) but not synovial (white blood cell (WBC) count) inflammatory markers and osteoclast indices could be detected. Comparison between different pathogens revealed increased osteoclastic bone resorption parameters without a concomitant increase in osteoblasts in bone specimens from patients with Staphylococcus aureus infection, compared to those with detection of Staphylococcus epidermidis and Cutibacterium spp. Conclusion. This study provides insights into the local bone metabolism in chronic PJI, demonstrating osteosclerosis with high bone turnover. The fact that Staphylococcus aureus was associated with distinctly increased osteoclast indices strongly suggests early surgical treatment to prevent periprosthetic bone alterations. Cite this article: Bone Joint Res 2023;12(10):644–653


The Bone & Joint Journal
Vol. 105-B, Issue 12 | Pages 1286 - 1293
1 Dec 2023
Yang H Cheon J Jung D Seon J

Aims. Fungal periprosthetic joint infections (PJIs) are rare, but their diagnosis and treatment are highly challenging. The purpose of this study was to investigate the clinical outcomes of patients with fungal PJIs treated with two-stage exchange knee arthroplasty combined with prolonged antifungal therapy. Methods. We reviewed our institutional joint arthroplasty database and identified 41 patients diagnosed with fungal PJIs and treated with two-stage exchange arthroplasty after primary total knee arthroplasty (TKA) between January 2001 and December 2020, and compared them with those who had non-fungal PJIs during the same period. After propensity score matching based on age, sex, BMI, American Society of Anesthesiologists grade, and Charlson Comorbidity Index, 40 patients in each group were successfully matched. The surgical and antimicrobial treatment, patient demographic and clinical characteristics, recurrent infections, survival rates, and relevant risk factors that affected joint survivorship were analyzed. We defined treatment success as a well-functioning arthroplasty without any signs of a PJI, and without antimicrobial suppression, at a minimum follow-up of two years from the time of reimplantation. Results. The fungal PJI group demonstrated a significantly worse treatment success rate at the final follow-up than the non-fungal PJI group (65.0% (26/40) vs 85.0% (34/40); p < 0.001). The mean prosthesis-free interval was longer in the fungal PJI group than in the non-fungal PJI group (6.7 weeks (SD 5.8) vs 4.1 weeks (SD 2.5); p = 0.020). The rate of survivorship free from reinfection was worse in the fungal PJI group (83.4% (95% confidence interval (CI) 64.1 to 92.9) at one year and 76.4% (95% CI 52.4 to 89.4) at two years) than in the non-fungal PJI group (97.4% (95% CI 82.7 to 99.6) at one year and 90.3% (95% CI 72.2 to 96.9) at two years), but the differences were not significant (p = 0.270). Cox proportional hazard regression analysis identified the duration of the prosthesis-free interval as a potential risk factor for failure (hazard ratio 1.128 (95% CI 1.003 to 1.268); p = 0.043). Conclusion. Fungal PJIs had a lower treatment success rate than non-fungal PJIs despite two-stage revision arthroplasty and appropriate antifungal treatment. Our findings highlight the need for further developments in treating fungal PJIs. Cite this article: Bone Joint J 2023;105-B(12):1286–1293


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 372 - 379
1 Apr 2024
Straub J Staats K Vertesich K Kowalscheck L Windhager R Böhler C

Aims. Histology is widely used for diagnosis of persistent infection during reimplantation in two-stage revision hip and knee arthroplasty, although data on its utility remain scarce. Therefore, this study aims to assess the predictive value of permanent sections at reimplantation in relation to reinfection risk, and to compare results of permanent and frozen sections. Methods. We retrospectively collected data from 226 patients (90 hips, 136 knees) with periprosthetic joint infection who underwent two-stage revision between August 2011 and September 2021, with a minimum follow-up of one year. Histology was assessed via the SLIM classification. First, we analyzed whether patients with positive permanent sections at reimplantation had higher reinfection rates than patients with negative histology. Further, we compared permanent and frozen section results, and assessed the influence of anatomical regions (knee versus hip), low- versus high-grade infections, as well as first revision versus multiple prior revisions on the histological result at reimplantation. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), chi-squared tests, and Kaplan-Meier estimates were calculated. Results. Overall, the reinfection rate was 18%. A total of 14 out of 82 patients (17%) with positive permanent sections at reimplantation experienced reinfection, compared to 26 of 144 patients (18%) with negative results (p = 0.996). Neither permanent sections nor fresh frozen sections were significantly associated with reinfection, with a sensitivity of 0.35, specificity of 0.63, PPV of 0.17, NPV of 0.81, and accuracy of 58%. Histology was not significantly associated with reinfection or survival time for any of the analyzed sub-groups. Permanent and frozen section results were in agreement for 91% of cases. Conclusion. Permanent and fresh frozen sections at reimplantation in two-stage revision do not serve as a reliable predictor for reinfection. Cite this article: Bone Joint J 2024;106-B(4):372–379


Bone & Joint Research
Vol. 12, Issue 2 | Pages 113 - 120
1 Feb 2023
Cai Y Liang J Chen X Zhang G Jing Z Zhang R Lv L Zhang W Dang X

Aims. This study aimed to explore the diagnostic value of synovial fluid neutrophil extracellular traps (SF-NETs) in periprosthetic joint infection (PJI) diagnosis, and compare it with that of microbial culture, serum ESR and CRP, synovial white blood cell (WBC) count, and polymorphonuclear neutrophil percentage (PMN%). Methods. In a single health centre, patients with suspected PJI were enrolled from January 2013 to December 2021. The inclusion criteria were: 1) patients who were suspected to have PJI; 2) patients with complete medical records; and 3) patients from whom sufficient synovial fluid was obtained for microbial culture and NET test. Patients who received revision surgeries due to aseptic failure (AF) were selected as controls. Synovial fluid was collected for microbial culture and SF-WBC, SF-PNM%, and SF-NET detection. The receiver operating characteristic curve (ROC) of synovial NET, WBC, PMN%, and area under the curve (AUC) were obtained; the diagnostic efficacies of these diagnostic indexes were calculated and compared. Results. The levels of SF-NETs in the PJI group were significantly higher than those of the AF group. The AUC of SF-NET was 0.971 (95% confidence interval (CI) 0.903 to 0.996), the sensitivity was 93.48% (95% CI 82.10% to 98.63%), the specificity was 96.43% (95% CI 81.65% to 99.91%), the accuracy was 94.60% (95% CI 86.73% to 98.50%), the positive predictive value was 97.73%, and the negative predictive value was 90%. Further analysis showed that SF-NET could improve the diagnosis of culture-negative PJI, patients with PJI who received antibiotic treatment preoperatively, and fungal PJI. Conclusion. SF-NET is a novel and ideal synovial fluid biomarker for PJI diagnosis, which could improve PJI diagnosis greatly. Cite this article: Bone Joint Res 2023;12(2):113–120


The Bone & Joint Journal
Vol. 105-B, Issue 12 | Pages 1294 - 1302
1 Dec 2023
Knoll L Steppacher SD Furrer H Thurnheer-Zürcher MC Renz N

Aims. A higher failure rate has been reported in haematogenous periprosthetic joint infection (PJI) compared to non-haematogenous PJI. The reason for this difference is unknown. We investigated the outcome of haematogenous and non-haematogenous PJI to analyze the risk factors for failure in both groups of patients. Methods. Episodes of knee or hip PJI (defined by the European Bone and Joint Infection Society criteria) treated at our institution between January 2015 and October 2020 were included in a retrospective PJI cohort. Episodes with a follow-up of > one year were stratified by route of infection into haematogenous and non-haematogenous PJI. Probability of failure-free survival was estimated using the Kaplan-Meier method, and compared between groups using log-rank test. Univariate and multivariate analysis was applied to assess risk factors for failure. Results. A total of 305 PJI episodes (174 hips, 131 knees) were allocated to the haematogenous (n = 146) or the non-haematogenous group (n = 159). Among monomicrobial infections, Staphylococcus aureus was the dominant pathogen in haematogenous PJI (76/140, 54%) and coagulase-negative staphylococci in non-haematogenous PJI (57/133, 43%). In both groups, multi-stage exchange (n = 55 (38%) in haematogenous and n = 73 (46%) in non-haematogenous PJI) and prosthesis retention (n = 70 (48%) in haematogenous and n = 48 (30%) in non-haematogenous PJI) were the most common surgical strategies. Median duration of antimicrobial treatment was 13.5 weeks (range, 0.5 to 218 weeks) and similar in both groups. After six years of follow-up, the probability of failure-free survival was significantly lower in haematogenous compared to non-haematogenous PJI (55% vs 74%; p = 0.021). Infection-related mortality was significantly higher in haematogenous than non-haematogenous PJI (7% vs 0% episodes; p = 0.001). Pathogenesis of failure was similar in both groups. Retention of the prosthesis was the only independent risk factor for failure in multivariate analysis in both groups. Conclusion. Treatment failure was significantly higher in haematogenous compared to non-haematogenous PJI. Retention of the prosthesis was the only independent risk factor for failure in both groups. Cite this article: Bone Joint J 2023;105-B(12):1294–1302


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 183 - 188
1 Jan 2022
van Sloten M Gómez-Junyent J Ferry T Rossi N Petersdorf S Lange J Corona P Araújo Abreu M Borens O Zlatian O Soundarrajan D Rajasekaran S Wouthuyzen-Bakker M

Aims. The aim of this study was to analyze the prevalence of culture-negative periprosthetic joint infections (PJIs) when adequate methods of culture are used, and to evaluate the outcome in patients who were treated with antibiotics for a culture-negative PJI compared with those in whom antibiotics were withheld. Methods. A multicentre observational study was undertaken: 1,553 acute and 1,556 chronic PJIs, diagnosed between 2013 and 2018, were retrospectively analyzed. Culture-negative PJIs were diagnosed according to the Muskuloskeletal Infection Society (MSIS), International Consensus Meeting (ICM), and European Bone and Joint Society (EBJIS) definitions. The primary outcome was recurrent infection, and the secondary outcome was removal of the prosthetic components for any indication, both during a follow-up period of two years. Results. None of the acute PJIs and 70 of the chronic PJIs (4.7%) were culture-negative; a total of 36 culture-negative PJIs (51%) were treated with antibiotics, particularly those with histological signs of infection. After two years of follow-up, no recurrent infections occurred in patients in whom antibiotics were withheld. The requirement for removal of the components for any indication during follow-up was not significantly different in those who received antibiotics compared with those in whom antibiotics were withheld (7.1% vs 2.9%; p = 0.431). Conclusion. When adequate methods of culture are used, the incidence of culture-negative PJIs is low. In patients with culture-negative PJI, antibiotic treatment can probably be withheld if there are no histological signs of infection. In all other patients, diagnostic efforts should be made to identify the causative microorganism by means of serology or molecular techniques. Cite this article: Bone Joint J 2022;104-B(1):183–188


The Bone & Joint Journal
Vol. 104-B, Issue 5 | Pages 575 - 580
2 May 2022
Hamad C Chowdhry M Sindeldecker D Bernthal NM Stoodley P McPherson EJ

Periprosthetic joint infection (PJI) is a difficult complication requiring a comprehensive eradication protocol. Cure rates have essentially stalled in the last two decades, using methods of antimicrobial cement joint spacers and parenteral antimicrobial agents. Functional spacers with higher-dose antimicrobial-loaded cement and antimicrobial-loaded calcium sulphate beads have emphasized local antimicrobial delivery on the premise that high-dose local antimicrobial delivery will enhance eradication. However, with increasing antimicrobial pressures, microbiota have responded with adaptive mechanisms beyond traditional antimicrobial resistance genes. In this review we describe adaptive resistance mechanisms that are relevant to the treatment of PJI. Some mechanisms are well known, but others are new. The objective of this review is to inform clinicians of the known adaptive resistance mechanisms of microbes relevant to PJI. We also discuss the implications of these adaptive mechanisms in the future treatment of PJI. Cite this article: Bone Joint J 2022;104-B(5):575–580


Bone & Joint Research
Vol. 11, Issue 12 | Pages 843 - 853
1 Dec 2022
Cai Y Huang C Chen X Chen Y Huang Z Zhang C Zhang W Fang X

Aims. This study aimed to explore the role of small colony variants (SCVs) of Staphylococcus aureus in intraosseous invasion and colonization in patients with periprosthetic joint infection (PJI). Methods. A PJI diagnosis was made according to the MusculoSkeletal Infection Society (MSIS) for PJI. Bone and tissue samples were collected intraoperatively and the intracellular invasion and intraosseous colonization were detected. Transcriptomics of PJI samples were analyzed and verified by polymerase chain reaction (PCR). Results. SCVs can be isolated from samples collected from chronic PJIs intraoperatively. Transmission electron microscopy (TEM) and immunofluorescence (IF) showed that there was more S. aureus in bone samples collected from chronic PJIs, but much less in bone samples from acute PJIs, providing a potential mechanism of PJI. Immunofluorescence results showed that SCVs of S. aureus were more likely to invade osteoblasts in vitro. Furthermore, TEM and IF also demonstrated that SCVs of S. aureus were more likely to invade and colonize in vivo. Cluster analysis and principal component analysis (PCA) showed that there were substantial differences in gene expression profiles between chronic and acute PJI. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that these differentially expressed genes were enriched to chemokine-related signal pathways. PCR also verified these results. Conclusion. Our study has shown that the S. aureus SCVs have a greater ability to invade and colonize in bone, resulting in S. aureus remaining in bone tissues long-term, thus explaining the pathogenesis of chronic PJI. Cite this article: Bone Joint Res 2022;11(12):843–853


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 171 - 176
1 Jun 2021
Klasan A Schermuksnies A Gerber F Bowman M Fuchs-Winkelmann S Heyse TJ

Aims. The management of periprosthetic joint infection (PJI) after total knee arthroplasty (TKA) is challenging. The correct antibiotic management remains elusive due to differences in epidemiology and resistance between countries, and reports in the literature. Before the efficacy of surgical treatment is investigated, it is crucial to analyze the bacterial strains causing PJI, especially for patients in whom no organisms are grown. Methods. A review of all revision TKAs which were undertaken between 2006 and 2018 in a tertiary referral centre was performed, including all those meeting the consensus criteria for PJI, in which organisms were identified. Using a cluster analysis, three chronological time periods were created. We then evaluated the antibiotic resistance of the identified bacteria between these three clusters and the effectiveness of our antibiotic regime. Results. We identified 129 PJIs with 161 culture identified bacteria in 97 patients. Coagulase-negative staphylococci (CNS) were identified in 46.6% cultures, followed by Staphylococcus aureus in 19.8%. The overall resistance to antibiotics did not increase significantly during the study period (p = 0.454). However, CNS resistance to teicoplanin (p < 0.001), fosfomycin (p = 0.016), and tetracycline (p = 0.014) increased significantly. Vancomycin had an 84.4% overall sensitivity and 100% CNS sensitivity and was the most effective agent. Conclusion. Although we were unable to show an overall increase in antibiotic resistance in organisms that cause PJI after TKA during the study period, this was not true for CNS. It is concerning that resistance of CNS to new antibiotics, but not vancomycin, has increased in a little more than a decade. Our findings suggest that referral centres should continuously monitor their bacteriological analyses, as these have significant implications for prophylactic treatment in both primary arthroplasty and revision arthroplasty for PJI. Cite this article: Bone Joint J 2021;103-B(6 Supple A):171–176


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 26 - 31
4 Jan 2021
Kildow BJ Ryan SP Danilkowicz R Lazarides AL Penrose C Bolognesi MP Jiranek W Seyler TM

Aims. Use of molecular sequencing methods in periprosthetic joint infection (PJI) diagnosis and organism identification have gained popularity. Next-generation sequencing (NGS) is a potentially powerful tool that is now commercially available. The purpose of this study was to compare the diagnostic accuracy of NGS, polymerase chain reaction (PCR), conventional culture, the Musculoskeletal Infection Society (MSIS) criteria, and the recently proposed criteria by Parvizi et al in the diagnosis of PJI. Methods. In this retrospective study, aspirates or tissue samples were collected in 30 revision and 86 primary arthroplasties for routine diagnostic investigation for PJI and sent to the laboratory for NGS and PCR. Concordance along with statistical differences between diagnostic studies were calculated. Results. Using the MSIS criteria to diagnose PJI as the reference standard, the sensitivity and specificity of NGS were 60.9% and 89.9%, respectively, while culture resulted in sensitivity of 76.9% and specificity of 95.3%. PCR had a low sensitivity of 18.4%. There was no significant difference based on sample collection method (tissue swab or synovial fluid) (p = 0.760). There were 11 samples that were culture-positive and NGS-negative, of which eight met MSIS criteria for diagnosing infection. Conclusion. In our series, NGS did not provide superior sensitivity or specificity results compared to culture. PCR has little utility as a standalone test for PJI diagnosis with a sensitivity of only 18.4%. Currently, several laboratory tests for PJI diagnosis should be obtained along with the overall clinical picture to help guide decision-making for PJI treatment. Cite this article: Bone Joint J 2021;103-B(1):26–31


The Bone & Joint Journal
Vol. 105-B, Issue 2 | Pages 158 - 165
1 Feb 2023
Sigmund IK Yeghiazaryan L Luger M Windhager R Sulzbacher I McNally MA

Aims. The aim of this study was to evaluate the optimal deep tissue specimen sample number for histopathological analysis in the diagnosis of periprosthetic joint infection (PJI). Methods. In this retrospective diagnostic study, patients undergoing revision surgery after total hip or knee arthroplasty (n = 119) between January 2015 and July 2018 were included. Multiple specimens of the periprosthetic membrane and pseudocapsule were obtained for histopathological analysis at revision arthroplasty. Based on the Infectious Diseases Society of America (IDSA) 2013 criteria, the International Consensus Meeting (ICM) 2018 criteria, and the European Bone and Joint Infection Society (EBJIS) 2021 criteria, PJI was defined. Using a mixed effects logistic regression model, the sensitivity and specificity of the histological diagnosis were calculated. The optimal number of periprosthetic tissue specimens for histopathological analysis was determined by applying the Youden index. Results. Based on the EBJIS criteria (excluding histology), 46 (39%) patients were classified as infected. Four to six specimens showed the highest Youden index (four specimens: 0.631; five: 0.634; six: 0.632). The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of five tissue specimens were 76.5% (95% confidence interval (CI) 67.6 to 81.4), 86.8% (95% CI 81.3 to 93.5), 66.0% (95% CI 53.2 to 78.7), and 84.3% (95% CI 79.4 to 89.3), respectively. The area under the curve (AUC) was calculated with 0.81 (as a function of the number of tissue specimens). Applying the ICM and IDSA criteria (excluding histology), 40 (34%) and 32 (27%) patients were categorized as septic. Three to five specimens had the highest Youden index (ICM 3: 0.648; 4: 0.651; 5: 0.649) (IDSA 3: 0.627; 4: 0.629; 5: 0.625). Conclusion. Three to six tissue specimens of the periprosthetic membrane and pseudocapsule should be collected at revision arthroplasty and analyzed by a pathologist experienced and skilled in interpreting periprosthetic tissue. Cite this article: Bone Joint J 2023;105-B(2):158–165


Bone & Joint Open
Vol. 2, Issue 10 | Pages 806 - 812
1 Oct 2021
Gerritsen M Khawar A Scheper H van der Wal R Schoones J de Boer M Nelissen R Pijls B

Aims. The aim of this meta-analysis is to assess the association between exchange of modular parts in debridement, antibiotics, and implant retention (DAIR) procedure and outcomes for hip and knee periprosthetic joint infection (PJI). Methods. We conducted a systematic search on PubMed, Embase, Web of Science, and Cochrane library from inception until May 2021. Random effects meta-analyses and meta-regression was used to estimate, on a study level, the success rate of DAIR related to component exchange. Risk of bias was appraised using the (AQUILA) checklist. Results. We included 65 studies comprising 6,630 patients. The pooled overall success after DAIR for PJI was 67% (95% confidence interval (CI) 63% to 70%). This was 70% (95% CI 65% to 75%) for DAIR for hip PJI and 63% (95% CI 58% to 69%) for knee PJI. In studies before 2004 (n = 27), our meta-regression analysis showed a 3.5% increase in success rates for each 10% increase in component exchange in DAIR for hip PJI and a 3.1% increase for each 10% increase in component exchange for knee PJI. When restricted to studies after 2004 (n = 37), this association changed: for DAIR for hip PJI a decrease in successful outcome by 0.5% for each 10% increase in component exchange and for DAIR for knee PJI this was a 0.01% increase in successful outcome for each 10% increase in component exchange. Conclusion. This systematic review and meta-regression found no benefit of modular component exchange on reduction of PJI failure. This limited effect should be weighed against the risks for the patient and cost on a case-by-case basis. The association between exchange of modular components and outcome changed before and after 2004. This suggests the effect seen after 2004 may reflect a more rigorous, evidence-based, approach to the infected implant compared to the years before. Level of Evidence: Level III. Cite this article: Bone Jt Open 2021;2(10):806–812


Bone & Joint Research
Vol. 9, Issue 12 | Pages 848 - 856
1 Dec 2020
Ramalhete R Brown R Blunn G Skinner J Coathup M Graney I Sanghani-Kerai A

Aims. Periprosthetic joint infection (PJI) is a debilitating condition with a substantial socioeconomic burden. A novel autologous blood glue (ABG) has been developed, which can be prepared during surgery and sprayed onto prostheses at the time of implantation. The ABG can potentially provide an antimicrobial coating which will be effective in preventing PJI, not only by providing a physical barrier but also by eluting a well-known antibiotic. Hence, this study aimed to assess the antimicrobial effectiveness of ABG when impregnated with gentamicin and stem cells. Methods. Gentamicin elution from the ABG matrix was analyzed and quantified in a time-dependent manner. The combined efficiency of gentamicin and ABG as an anti-biofilm coating was investigated on titanium disks. Results. ABG-gentamicin was bactericidal from 10 μg/ml and could release bactericidal concentrations over seven days, preventing biofilm formation. A concentration of 75 μg/ml of gentamicin in ABG showed the highest bactericidal effect up to day 7. On titanium disks, a significant bacterial reduction on ABG-gentamicin coated disks was observed when compared to both uncoated (mean 2-log reduction) and ABG-coated (mean 3-log reduction) disks, at days 3 and 7. ABG alone exhibited no antimicrobial or anti-biofilm properties. However, a concentration of 75 μg/ml gentamicin in ABG sustains release over seven days and significantly reduced biofilm formation. Its use as an implant coating in patients with a high risk of infection may prevent bacterial adhesion perioperatively and in the early postoperative period. Conclusion. ABG’s use as a carrier for stem cells was effective, as it supported cell growth. It has the potential to co-deliver compatible cells, drugs, and growth factors. However, ABG-gentamicin’s potential needs to be further justified using in vivo studies. Cite this article: Bone Joint Res 2020;9(12):848–856


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 1021 - 1030
1 Sep 2024
Oto J Herranz R Fuertes M Plana E Verger P Baixauli F Amaya JV Medina P

Aims. Bacterial infection activates neutrophils to release neutrophil extracellular traps (NETs) in bacterial biofilms of periprosthetic joint infections (PJIs). The aim of this study was to evaluate the increase in NET activation and release (NETosis) and haemostasis markers in the plasma of patients with PJI, to evaluate whether such plasma induces the activation of neutrophils, to ascertain whether increased NETosis is also mediated by reduced DNaseI activity, to explore novel therapeutic interventions for NETosis in PJI in vitro, and to evaluate the potential diagnostic use of these markers. Methods. We prospectively recruited 107 patients in the preoperative period of prosthetic surgery, 71 with a suspicion of PJI and 36 who underwent arthroplasty for non-septic indications as controls, and obtained citrated plasma. PJI was confirmed in 50 patients. We measured NET markers, inflammation markers, DNaseI activity, haemostatic markers, and the thrombin generation test (TGT). We analyzed the ability of plasma from confirmed PJI and controls to induce NETosis and to degrade in vitro-generated NETs, and explored the therapeutic restoration of the impairment to degrade NETs of PJI plasma with recombinant human DNaseI. Finally, we assessed the contribution of these markers to the diagnosis of PJI. Results. Patients with confirmed PJI had significantly increased levels of NET markers (cfDNA (p < 0.001), calprotectin (p < 0.001), and neutrophil elastase (p = 0.022)) and inflammation markers (IL-6; p < 0.001) in plasma. Moreover, the plasma of patients with PJI induced significantly more neutrophil activation than the plasma of the controls (p < 0.001) independently of tumour necrosis factor alpha. Patients with PJI also had a reduced DNaseI activity in plasma (p < 0.001), leading to a significantly impaired degradation of NETs (p < 0.001). This could be therapeutically restored with recombinant human DNaseI to the level in the controls. We developed a model to improve the diagnosis of PJI with cfDNA, calprotectin, and the start tail of TGT as predictors, though cfDNA alone achieved a good prediction and is simpler to measure. Conclusion. We confirmed that patients with PJI have an increased level of NETosis in plasma. Their plasma both induced NET release and had an impaired ability to degrade NETs mediated by a reduced DNaseI activity. This can be therapeutically restored in vitro with the approved Dornase alfa, Pulmozyme, which may allow novel methods of treatment. A combination of NETs and haemostatic biomarkers could improve the diagnosis of PJI, especially those patients in whom this diagnosis is uncertain. Cite this article: Bone Joint J 2024;106-B(9):1021–1030


Bone & Joint Research
Vol. 13, Issue 10 | Pages 535 - 545
2 Oct 2024
Zou C Guo W Mu W Wahafu T Li Y Hua L Xu B Cao L

Aims. We aimed to determine the concentrations of synovial vancomycin and meropenem in patients treated by single-stage revision combined with intra-articular infusion following periprosthetic joint infection (PJI), thereby validating this drug delivery approach. Methods. We included 14 patients with PJI as noted in their medical records between November 2021 and August 2022, comprising eight hip and seven knee joint infections, with one patient experiencing bilateral knee infections. The patients underwent single-stage revision surgery, followed by intra-articular infusion of vancomycin and meropenem (50,000 µg/ml). Synovial fluid samples were collected to assess antibiotic concentrations using high-performance liquid chromatography. Results. The peak concentrations of vancomycin and meropenem in the joint cavity were observed at one hour post-injection, with mean values of 14,933.9 µg/ml (SD 10,176.3) and 5,819.1 µg/ml (SD 6,029.8), respectively. The trough concentrations at 24 hours were 5,495.0 µg/ml (SD 2,360.5) for vancomycin and 186.4 µg/ml (SD 254.3) for meropenem. The half-life of vancomycin was 6 hours, while that of meropenem ranged between 2 and 3.5 hours. No significant adverse events related to the antibiotic administration were observed. Conclusion. This method can achieve sustained high antibiotic concentrations within the joint space, exceeding the reported minimum biofilm eradication concentration. Our study highlights the remarkable effectiveness of intra-articular antibiotic infusion in delivering high intra-articular concentrations of antibiotics. The method provided sustained high antibiotic concentrations within the joint cavity, and no severe side-effects were observed. These findings offer evidence to improve clinical treatment strategies. However, further validation is required through studies with larger sample sizes and higher levels of evidence. Cite this article: Bone Joint Res 2024;13(10):535–545


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1084 - 1092
1 Oct 2024
Hammat AS Nelson R Davis JS Manning L Campbell D Solomon LB Gnanamanickam ES Callary SA

Aims. Our aim was to estimate the total costs of all hospitalizations for treating periprosthetic joint infection (PJI) by main management strategy within 24 months post-diagnosis using activity-based costing. Additionally, we investigated the influence of individual PJI treatment pathways on hospital costs within the first 24 months. Methods. Using admission and procedure data from a prospective observational cohort in Australia and New Zealand, Australian Refined Diagnosis Related Groups were assigned to each admitted patient episode of care for activity-based costing estimates of 273 hip PJI patients and 377 knee PJI patients. Costs were aggregated at 24 months post-diagnosis, and are presented in Australian dollars. Results. The mean cost per hip and knee PJI patient was $64,585 (SD $53,550). Single-stage revision mean costs were $67,029 (SD $47,116) and $80,063 (SD $42,438) for hip and knee, respectively. Two-stage revision costs were $113,226 (SD $66,724) and $122,425 (SD $60,874) for hip and knee, respectively. Debridement, antibiotics, and implant retention in hips and knees mean costs were $53,537 (SD$ 39,342) and $48,463 (SD $33,179), respectively. Suppressive antibiotic therapy without surgical management mean costs were $20,296 (SD $8,875) for hip patients and $16,481 (SD $6,712) for knee patients. Hip patients had 16 different treatment pathways and knee patients had 18 treatment pathways. Additional treatment, episodes of care, and length of stay contributed to substantially increased costs up to a maximum of $369,948. Conclusion. Treating PJI incurs a substantial cost burden, which is substantially influenced by management strategy. With an annual PJI incidence of 3,900, the cost burden would be in excess of $250 million to the Australian healthcare system. Treatment pathways with additional surgery, more episodes of care, and a longer length of stay substantially increase the associated hospital costs. Prospectively monitoring individual patient treatment pathways beyond initial management is important when quantifying PJI treatment cost. Our study highlights the importance of optimizing initial surgical treatment, and informs treating hospitals of the resources required to provide care for PJI patients. Cite this article: Bone Joint J 2024;106-B(10):1084–1092


Bone & Joint Research
Vol. 13, Issue 10 | Pages 546 - 558
4 Oct 2024
Li Y Wuermanbieke S Wang F Mu W Ji B Guo X Zou C Chen Y Zhang X Cao L

Aims. The optimum type of antibiotics and their administration route for treating Gram-negative (GN) periprosthetic joint infection (PJI) remain controversial. This study aimed to determine the GN bacterial species and antibacterial resistance rates related to clinical GN-PJI, and to determine the efficacy and safety of intra-articular (IA) antibiotic injection after one-stage revision in a GN pathogen-induced PJI rat model of total knee arthroplasty. Methods. A total of 36 consecutive PJI patients who had been infected with GN bacteria between February 2015 and December 2021 were retrospectively recruited in order to analyze the GN bacterial species involvement and antibacterial resistance rates. Antibiotic susceptibility assays of the GN bacterial species were performed to screen for the most sensitive antibiotic, which was then used to treat the most common GN pathogen-induced PJI rat model. The rats were randomized either to a PJI control group or to three meropenem groups (intraperitoneal (IP), IA, and IP + IA groups). After two weeks of treatment, infection control level, the side effects, and the volume of antibiotic use were evaluated. Results. Escherichia coli was the most common pathogen in GN-PJI, and meropenem was the most sensitive antibiotic. Serum inflammatory markers, weightbearing activity, and Rissing score were significantly improved by meropenem, especially in the IA and IP + IA groups ( p < 0.05). Meropenem in the IA group eradicated E. coli from soft-tissue, bone, and prosthetic surfaces, with the same effect as in the IP + IA group. Radiological results revealed that IA and IP + IA meropenem were effective at relieving bone damage. Haematoxylin and eosin staining also showed that IA and IP + IA meropenem improved synovial inflammation and bone destruction. No pathological changes in the main organs or abnormal serum markers were observed in any of the meropenem-treated rats. The IA group required the lowest amount of meropenem, followed by the IP and IP + IA groups. Conclusion. IA-only meropenem with a two-week treatment course was effective and safe for PJI control following one-stage revision in a rat model, with less meropenem use. Cite this article: Bone Joint Res 2024;13(10):546–558


Bone & Joint Research
Vol. 13, Issue 7 | Pages 332 - 341
5 Jul 2024
Wang T Yang C Li G Wang Y Ji B Chen Y Zhou H Cao L

Aims. Although low-intensity pulsed ultrasound (LIPUS) combined with disinfectants has been shown to effectively eliminate portions of biofilm in vitro, its efficacy in vivo remains uncertain. Our objective was to assess the antibiofilm potential and safety of LIPUS combined with 0.35% povidone-iodine (PI) in a rat debridement, antibiotics, and implant retention (DAIR) model of periprosthetic joint infection (PJI). Methods. A total of 56 male Sprague-Dawley rats were established in acute PJI models by intra-articular injection of bacteria. The rats were divided into four groups: a Control group, a 0.35% PI group, a LIPUS and saline group, and a LIPUS and 0.35% PI group. All rats underwent DAIR, except for Control, which underwent a sham procedure. General status, serum biochemical markers, weightbearing analysis, radiographs, micro-CT analysis, scanning electron microscopy of the prostheses, microbiological analysis, macroscope, and histopathology evaluation were performed 14 days after DAIR. Results. The group with LIPUS and 0.35% PI exhibited decreased levels of serum biochemical markers, improved weightbearing scores, reduced reactive bone changes, absence of viable bacteria, and decreased inflammation compared to the Control group. Despite the greater antibiofilm activity observed in the PI group compared to the LIPUS and saline group, none of the monotherapies were successful in preventing reactive bone changes or eliminating the infection. Conclusion. In the rat model of PJI treated with DAIR, LIPUS combined with 0.35% PI demonstrated stronger antibiofilm potential than monotherapy, without impairing any local soft-tissue. Cite this article: Bone Joint Res 2024;13(7):332–341


Bone & Joint Research
Vol. 11, Issue 6 | Pages 398 - 408
22 Jun 2022
Xu T Zeng Y Yang X Liu G Lv T Yang H Jiang F Chen Y

Aims. We aimed to evaluate the utility of . 68. Ga-citrate positron emission tomography (PET)/CT in the differentiation of periprosthetic joint infection (PJI) and aseptic loosening (AL), and compare it with . 99m. Tc-methylene bisphosphonates (. 99m. Tc-MDP) bone scan. Methods. We studied 39 patients with suspected PJI or AL. These patients underwent . 68. Ga-citrate PET/CT, . 99m. Tc-MDP three-phase bone scan and single-photon emission CT (SPECT)/CT. PET/CT was performed at ten minutes and 60 minutes after injection, respectively. Images were evaluated by three nuclear medicine doctors based on: 1) visual analysis of the three methods based on tracer uptake model, and PET images attenuation-corrected with CT and those not attenuation-corrected with CT were analyzed, respectively; and 2) semi-quantitative analysis of PET/CT: maximum standardized uptake value (SUVmax) of lesions, SUVmax of the lesion/SUVmean of the normal bone, and SUVmax of the lesion/SUVmean of the normal muscle. The final diagnosis was based on the clinical and intraoperative findings, and histopathological and microbiological examinations. Results. Overall, 23 and 16 patients were diagnosed with PJI and AL, respectively. The sensitivity and specificity of three-phase bone scan and SPECT/CT were 100% and 62.5%, 82.6%, and 100%, respectively. Attenuation correction (AC) at 60 minutes and non-AC at 60 minutes of PET/CT had the same highest sensitivity and specificity (91.3% and 100%), and AC at 60 minutes combined with SPECT/CT could improve the diagnostic efficiency (sensitivity = 95.7%). Diagnostic efficacy of the SUVmax was low (area under the curve (AUC) of ten minutes and 60 minutes was 0.814 and 0.806, respectively), and SUVmax of the lesion/SUVmean of the normal bone at 60 minutes was the best semi-quantitative parameter (AUC = 0.969). Conclusion. 68. Ga-citrate showed the potential to differentiate PJI from AL, and visual analysis based on uptake pattern of tracer was reliable. The visual analysis method of AC at 60 minutes, combined with . 99m. Tc-MDP SPECT/CT, could improve the sensitivity from 91.3% to 95.7%. In addition, a major limitation of our study was that it had a limited sample size, and more detailed studies with a larger sample size are warranted. Cite this article: Bone Joint Res 2022;11(6):398–408


Bone & Joint Research
Vol. 10, Issue 8 | Pages 536 - 547
2 Aug 2021
Sigmund IK McNally MA Luger M Böhler C Windhager R Sulzbacher I

Aims. Histology is an established tool in diagnosing periprosthetic joint infections (PJIs). Different thresholds, using various infection definitions and histopathological criteria, have been described. This study determined the performance of different thresholds of polymorphonuclear neutrophils (≥ 5 PMN/HPF, ≥ 10 PMN/HPF, ≥ 23 PMN/10 HPF) , when using the European Bone and Joint Infection Society (EBJIS), Infectious Diseases Society of America (IDSA), and the International Consensus Meeting (ICM) 2018 criteria for PJI. Methods. A total of 119 patients undergoing revision total hip (rTHA) or knee arthroplasty (rTKA) were included. Permanent histology sections of periprosthetic tissue were evaluated under high power (400× magnification) and neutrophils were counted per HPF. The mean neutrophil count in ten HPFs was calculated (PMN/HPF). Based on receiver operating characteristic (ROC) curve analysis and the z-test, thresholds were compared. Results. Using the EBJIS criteria, a cut-off of ≥ five PMN/HPF showed a sensitivity of 93% (95% confidence interval (CI) 81 to 98) and specificity of 84% (95% CI 74 to 91). The optimal threshold when applying the IDSA and ICM criteria was ≥ ten PMN/HPF with sensitivities of 94% (95% CI 79 to 99) and 90% (95% CI 76 to 97), and specificities of 86% (95% CI 77 to 92) and 92% (95% CI 84 to 97), respectively. In rTKA, a better performance of histopathological analysis was observed in comparison with rTHA when using the IDSA criteria (p < 0.001). Conclusion. With high accuracy, histopathological analysis can be supported as a confirmatory criterion in diagnosing periprosthetic joint infections. A threshold of ≥ five PMN/HPF can be recommended to distinguish between septic and aseptic loosening, with an increased possibility of detecting more infections caused by low-virulence organisms. However, neutrophil counts between one and five should be considered suggestive of infection and interpreted carefully in conjunction with other diagnostic test methods. Cite this article: Bone Joint Res 2021;10(8):536–547


The Bone & Joint Journal
Vol. 105-B, Issue 3 | Pages 284 - 293
1 Mar 2023
Li Y Zhang X Ji B Wulamu W Yushan N Guo X Cao L

Aims. Gram-negative periprosthetic joint infection (PJI) has been poorly studied despite its rapidly increasing incidence. Treatment with one-stage revision using intra-articular (IA) infusion of antibiotics may offer a reasonable alternative with a distinct advantage of providing a means of delivering the drug in high concentrations. Carbapenems are regarded as the last line of defense against severe Gram-negative or polymicrobial infection. This study presents the results of one-stage revision using intra-articular carbapenem infusion for treating Gram-negative PJI, and analyzes the characteristics of bacteria distribution and drug sensitivity. Methods. We retrospectively reviewed 32 patients (22 hips and 11 knees) who underwent single-stage revision combined with IA carbapenem infusion between November 2013 and March 2020. The IA and intravenous (IV) carbapenem infusions were administered for a single Gram-negative infection, and IV vancomycin combined with IA carbapenems and vancomycin was applied for polymicrobial infection including Gram-negative bacteria. The bacterial community distribution, drug sensitivity, infection control rate, functional recovery, and complications were evaluated. Reinfection or death caused by PJI was regarded as a treatment failure. Results. Gram-negative PJI was mainly caused by Escherichia coli (8/34), Enterobacter cloacae (7/34), and Klebsiella pneumoniae (5/34). Seven cases (7/32) involved polymicrobial PJIs. The resistance rates of penicillin, cephalosporin, quinolones, and sulfonamides were > 10%, and all penicillin and partial cephalosporins (first and second generation) were > 30%. Of 32 cases, treatment failed to eradicate infection in only three cases (9.4%), at a mean follow-up of 55.1 months (SD 25 to 90). The mean postoperative Harris Hip Score and Hospital for Special Surgery knee score at the most recent follow-up were 81 (62 to 91) and 79 (56 to 89), respectively. One patient developed a fistula, and another presented with a local rash on an infected joint. Conclusion. The use of IA carbapenem delivered alongside one-stage revision effectively controlled Gram-negative infection and obtained acceptable clinical outcomes with few complications. Notably, first- and second-generation cephalosporins and penicillin should be administrated with caution, due to a high incidence of resistance. Cite this article: Bone Joint J 2023;105-B(3):284–293


Aims. Treatment outcomes for methicillin-resistant Staphylococcus aureus (MRSA) periprosthetic joint infection (PJI) using systemic vancomycin and antibacterial cement spacers during two-stage revision arthroplasty remain unsatisfactory. This study explored the efficacy and safety of intra-articular vancomycin injections for PJI control after debridement and cement spacer implantation in a rat model. Methods. Total knee arthroplasty (TKA), MRSA inoculation, debridement, and vancomycin-spacer implantation were performed successively in rats to mimic first-stage PJI during the two-stage revision arthroplasty procedure. Vancomycin was administered intraperitoneally or intra-articularly for two weeks to control the infection after debridement and spacer implantation. Results. Rats receiving intra-articular vancomycin showed the best outcomes among the four treatment groups, with negative bacterial cultures, increased weight gain, increased capacity for weightbearing activities, increased residual bone volume preservation, and reduced inflammatory reactions in the joint tissues, indicating MRSA eradication in the knee. The vancomycin-spacer and/or systemic vancomycin failed to eliminate the MRSA infections following a two-week antibiotic course. Serum vancomycin levels did not reach nephrotoxic levels in any group. Mild renal histopathological changes, without changes in serum creatinine levels, were observed in the intraperitoneal vancomycin group compared with the intra-articular vancomycin group, but no changes in hepatic structure or serum alanine aminotransferase or aspartate aminotransferase levels were observed. No local complications were observed, such as sinus tract or non-healing surgical incisions. Conclusion. Intra-articular vancomycin injection was effective and safe for PJI control following debridement and spacer implantation in a rat model during two-stage revision arthroplasties, with better outcomes than systemic vancomycin administration. Cite this article: Bone Joint Res 2022;11(6):371–385


Bone & Joint Research
Vol. 13, Issue 10 | Pages 525 - 534
1 Oct 2024
Mu W Xu B Wang F Maimaitiaimaier Y Zou C Cao L

Aims. This study aimed to assess the risk of acute kidney injury (AKI) associated with combined intravenous (IV) and topical antibiotic therapy in patients undergoing treatment for periprosthetic joint infections (PJIs) following total knee arthroplasty (TKA), utilizing the Kidney Disease: Improving Global Outcomes (KDIGO) criteria for classification. Methods. We conducted a retrospective analysis of 162 knees (162 patients) that received treatment for PJI post-TKA with combined IV and topical antibiotic infusions at a single academic hospital from 1 January 2010 to 31 December 2022. The incidence of AKI was evaluated using the KDIGO criteria, focussing on the identification of significant predictors and the temporal pattern of AKI development. Results. AKI was identified in 9.26% (15/162) of the cohort, predominantly presenting as stage 1 AKI, which was transient in nature and resolved prior to discharge. The analysis highlighted moderate anaemia and lower baseline serum creatinine levels as significant predictors for the development of AKI. Notably, the study found no instances of severe complications such as wound dehiscence, skin erosion, or the need for haemodialysis following treatment. Conclusion. The findings suggest that the combined use of IV and topical antibiotic therapy in the management of PJIs post-TKA is associated with a low incidence of primarily transient stage 1 AKI. This indicates a potentially favourable renal safety profile, advocating for further research to confirm these outcomes and potentially influence treatment protocols in PJI management. Cite this article: Bone Joint Res 2024;13(10):525–534


The Bone & Joint Journal
Vol. 104-B, Issue 7 | Pages 867 - 874
1 Jul 2022
Ji B Li G Zhang X Xu B Wang Y Chen Y Cao L

Aims. Periprosthetic joint infections (PJIs) with prior multiple failed surgery for reinfection represent a huge challenge for surgeons because of poor vascular supply and biofilm formation. This study aims to determine the results of single-stage revision using intra-articular antibiotic infusion in treating this condition. Methods. A retrospective analysis included 78 PJI patients (29 hips; 49 knees) who had undergone multiple prior surgical interventions. Our cohort was treated with single-stage revision using a supplementary intra-articular antibiotic infusion. Of these 78 patients, 59 had undergone more than two prior failed debridement and implant retentions, 12 patients had a failed arthroplasty resection, three hips had previously undergone failed two-stage revision, and four had a failed one-stage revision before their single-stage revision. Previous failure was defined as infection recurrence requiring surgical intervention. Besides intravenous pathogen-sensitive agents, an intra-articular infusion of vancomycin, imipenem, or voriconazole was performed postoperatively. The antibiotic solution was soaked into the joint for 24 hours for a mean of 16 days (12 to 21), then extracted before next injection. Recurrence of infection and clinical outcomes were evaluated. Results. A total of 68 patients (87.1%) were free of infection at a mean follow-up time of 85 months (24 to 133). The seven-year infection-free survival was 87.6% (95% confidence interval (CI) 79.4 to 95.8). No significant difference in infection-free survival was observed between hip and knee PJIs (91.5% (95% CI 79.9 to 100) vs 84.7% (95% CI 73.1 to 96.3); p = 0.648). The mean postoperative Harris Hip Score was 76.1 points (63.2 to 92.4) and Hospital for Special Surgery score was 78. 2 (63.2 to 92.4) at the most recent assessment. Polymicrobial and fungal infections accounted for 14.1% (11/78) and 9.0% (7/78) of all cases, respectively. Conclusion. Single-stage revision with intra-articular antibiotic infusion can provide high antibiotic concentration in synovial fluid, thereby overcoming reduced vascular supply and biofilm formation. This supplementary route of administration may be a viable option in treating PJI after multiple failed prior surgeries for reinfection. Cite this article: Bone Joint J 2022;104-B(7):867–874


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 53 - 58
1 Jan 2022
Tai DBG Wengenack NL Patel R Berbari EF Abdel MP Tande AJ

Aims. Fungal and mycobacterial periprosthetic joint infections (PJI) are rare events. Clinicians are wary of missing these diagnoses, often leading to the routine ordering of fungal and mycobacterial cultures on periprosthetic specimens. Our goal was to examine the utility of these cultures and explore a modern bacterial culture technique using bacterial blood culture bottles (BCBs) as an alternative. Methods. We performed a retrospective review of patients diagnosed with hip or knee PJI between 1 January 2010 and 31 December 2019, at the Mayo Clinic in Rochester, Minnesota, USA. We included patients aged 18 years or older who had fungal, mycobacterial, or both cultures performed together with bacterial cultures. Cases with positive fungal or mycobacterial cultures were reviewed using the electronic medical record to classify the microbiological findings as representing true infection or not. Results. There were 2,067 episodes of PJI diagnosed within the study period. A total of 3,629 fungal cultures and 2,923 mycobacterial cultures were performed, with at least one of these performed in 56% of episodes (n = 1,157). Test positivity rates of fungal and mycobacterial cultures were 5% (n = 179) and 1.2% (n = 34), respectively. After a comprehensive review, there were 40 true fungal and eight true mycobacterial PJIs. BCB were 90% sensitive in diagnosing true fungal PJI and 100% sensitive in detecting rapidly growing mycobacteria (RGM). Fungal stains were performed in 27 true fungal PJI but were only positive in four episodes (14.8% sensitivity). None of the mycobacterial stains was positive. Conclusion. Routine fungal and mycobacterial stains and cultures should not be performed as they have little clinical utility in the diagnosis of PJI and are associated with significant costs. Candida species and RGM are readily recovered using BCB. More research is needed to predict rare non-Candida fungal and slowly growing mycobacterial PJI that warrant specialized cultures. Cite this article: Bone Joint J 2022;104-B(1):53–58


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 46 - 55
1 Jan 2021
Grzelecki D Walczak P Szostek M Grajek A Rak S Kowalczewski J

Aims. Calprotectin (CLP) is produced in neutrophils and monocytes and released into body fluids as a result of inflammation or infection. The aim of this study was to evaluate the utility of blood and synovial CLP in the diagnosis of chronic periprosthetic joint infection (PJI). Methods. Blood and synovial fluid samples were collected prospectively from 195 patients undergoing primary or revision hip and knee arthroplasty. Patients were divided into five groups: 1) primary total hip and knee arthroplasty performed due to idiopathic osteoarthritis (OA; n = 60); 2) revision hip and knee arthroplasty performed due to aseptic failure of the implant (AR-TJR; n = 40); 3) patients with a confirmed diagnosis of chronic PJI awaiting surgery (n = 45); 4) patients who have finished the first stage of the PJI treatment with the use of cemented spacer and were qualified for replantation procedure (SR-TJR; n = 25), and 5) patients with rheumatoid arthritis undergoing primary total hip and knee arthroplasty (RA; n = 25). CLP concentrations were measured quantitatively in the blood and synovial fluid using an immunoturbidimetric assay. Additionally, blood and synovial CRP, blood interleukin-6 (IL-6), and ESR were measured, and a leucocyte esterase (LE) strip test was performed. Results. Patients with PJI had higher CLP concentrations than those undergoing aseptic revision in blood (median PJI 2.14 mg/l (interquartile range (IQR) 1.37 to 3.56) vs AR-TJR 0.66 mg/l (IQR 0.3 to 0.83); p < 0.001) and synovial fluid samples (median PJI 20.46 mg/l (IQR 14.3 to 22.36) vs AR-TJR 0.7 mg/l (IQR 0.41 to 0.95); p < 0.001). With a cut-off value of 1.0 mg/l, blood CLP showed a sensitivity, specificity, positive predictive value, and negative predictive value of 93.3%, 87.5%, 89.4%, and 92.1%, respectively. For synovial fluid with a cut-off value of 1.5 mg/l, these were 95.6%, 95%, 95.5%, and 95%, respectively. Conclusion. This small study suggests that synovial and blood CLP are useful markers in chronic PJI diagnosis with similar or higher sensitivity and specificity than routinely used markers such as CRP, ESR, IL-6, and LE. CLP was not useful to differentiate patients with PJI from those with rheumatoid arthritis. Cite this article: Bone Joint J 2021;103-B(1):46–55


Bone & Joint Research
Vol. 9, Issue 10 | Pages 701 - 708
1 Oct 2020
Chen X Li H Zhu S Wang Y Qian W

Aims. The diagnosis of periprosthetic joint infection (PJI) has always been challenging. Recently, D-dimer has become a promising biomarker in diagnosing PJI. However, there is controversy regarding its diagnostic value. We aim to investigate the diagnostic value of D-dimer in comparison to ESR and CRP. Methods. PubMed, Embase, and the Cochrane Library were searched in February 2020 to identify articles reporting on the diagnostic value of D-dimer on PJI. Pooled analysis was conducted to investigate the diagnostic value of D-dimer, CRP, and ESR. Results. Six studies with 1,255 cases were included (374 PJI cases and 881 non-PJI cases). Overall D-dimer showed sensitivity of 0.80 (95% confidence interval (CI) 0.69 to 0.87) and specificity of 0.76 (95% CI 0.63 to 0.86). Sub-group analysis by excluding patients with thrombosis and hyper-coagulation disorders showed sensitivity of 0.82 (95% CI 0.70 to 0.90) and specificity of 0.80 (95% CI 0.70 to 0.88). Serum D-dimer showed sensitivity of 0.85 (95% CI 0.76 to 0.92), specificity of 0.83 (95% CI 0.74 to 0.90). Plasma D-dimer showed sensitivity of 0.67 (95% CI 0.60 to 0.73), specificity of 0.58 (95% CI 0.45 to 0.72). CRP showed sensitivity of 0.78 (95% CI 0.72 to 0.83), specificity of 0.81 (95% CI 0.72 to 0.87). ESR showed sensitivity of 0.68 (95% CI 0.63 to 0.73), specificity of 0.83 (95% CI 0.78 to 0.87). Conclusion. In patients without thrombosis or a hyper-coagulation disorder, D-dimer has a higher diagnostic value compared to CRP and ESR. In patients with the aforementioned conditions, D-dimer has higher sensitivity but lower specificity compared to ESR and CRP. We do not recommend the use of serum D-dimer in patients with thrombosis and hyper-coagulation disorders for diagnosing PJI. Serum D-dimer may perform better than plasma D-dimer. Further studies are needed to compare serum D-dimer and plasma D-dimer in arthroplasty patients. Cite this article: Bone Joint Res 2020;9(10):701–708


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 191 - 195
1 Jun 2021
Gausden EB Shirley MB Abdel MP Sierra RJ

Aims. To describe the risk of periprosthetic joint infection (PJI) and reoperation in patients who have an acute, traumatic wound dehiscence following total knee arthroplasty (TKA). Methods. From January 2002 to December 2018, 16,134 primary TKAs were performed at a single institution. A total of 26 patients (0.1%) had a traumatic wound dehiscence within the first 30 days. Mean age was 68 years (44 to 87), 38% (n = 10) were female, and mean BMI was 34 kg/m. 2. (23 to 48). Median time to dehiscence was 13 days (interquartile range (IQR) 4 to 15). The dehiscence resulted from a fall in 22 patients and sudden flexion after staple removal in four. The arthrotomy was also disrupted in 58% (n = 15), including a complete extensor mechanism disruption in four knees. An irrigation and debridement with component retention (IDCR) was performed within 48 hours in 19 of 26 knees and two-thirds were discharged on antibiotic therapy. The mean follow-up was six years (2 to 15). The association of wound dehiscence and the risk of developing a PJI was analyzed. Results. Patients who sustained a traumatic wound dehiscence had a 6.5-fold increase in the risk of PJI (95% confidence interval (CI) 1.6 to 26.2; p = 0.008). With the small number of PJIs, no variables were found to be significant risk factors. However, there were no PJIs in any of the patients who were treated with IDCR and a course of antibiotics. Three knees required reoperation including one two-stage exchange for PJI, one repeat IDCR for PJI, and one revision for aseptic loosening of the tibial component. Conclusion. Despite having a traumatic wound dehiscence, the risk of PJI was low, but much higher than experienced in all other TKAs during the same period. We recommend urgent IDCR and a course of postoperative antibiotics to decrease the risk of PJI. A traumatic wound dehiscence increases risk of PJI by 6.5-fold. Cite this article: Bone Joint J 2021;103-B(6 Supple A):191–195


The Bone & Joint Journal
Vol. 100-B, Issue 2 | Pages 134 - 142
1 Feb 2018
Hexter AT Hislop SM Blunn GW Liddle AD

Aims. Periprosthetic joint infection (PJI) is a serious complication of total hip arthroplasty (THA). Different bearing surface materials have different surface properties and it has been suggested that the choice of bearing surface may influence the risk of PJI after THA. The objective of this meta-analysis was to compare the rate of PJI between metal-on-polyethylene (MoP), ceramic-on-polyethylene (CoP), and ceramic-on-ceramic (CoC) bearings. Patients and Methods. Electronic databases (Medline, Embase, Cochrane library, Web of Science, and Cumulative Index of Nursing and Allied Health Literature) were searched for comparative randomized and observational studies that reported the incidence of PJI for different bearing surfaces. Two investigators independently reviewed studies for eligibility, evaluated risk of bias, and performed data extraction. Meta-analysis was performed using the Mantel–Haenzel method and random-effects model in accordance with methods of the Cochrane group. Results. Our search strategy revealed 2272 studies, of which 17 met the inclusion criteria and were analyzed. These comprised 11 randomized controlled trials and six observational studies. The overall quality of included studies was high but the observational studies were at high risk of bias due to inadequate adjustment for confounding factors. The overall cumulative incidence of PJI across all studies was 0.78% (1514/193 378). For each bearing combination, the overall incidence was as follows: MoP 0.85% (1353/158 430); CoP 0.38% (67/17 489); and CoC 0.53% (94/17 459). The meta-analysis showed no significant difference between the three bearing combinations in terms of risk of PJI. Conclusion. On the basis of the clinical studies available, there is no evidence that bearing choice influences the risk of PJI. Future research, including basic science studies and large, adequately controlled registry studies, may be helpful in determining whether implant materials play a role in determining the risk of PJI following arthroplasty surgery. Cite this article: Bone Joint J 2018;100-B:134–42


Aims. Achievement of accurate microbiological diagnosis prior to revision is key to reducing the high rates of persistent infection after revision knee surgery. The effect of change in the microorganism between the first- and second-stage revision of total knee arthroplasty for periprosthetic joint infection (PJI) on the success of management is not clear. Methods. A two-centre retrospective cohort study was conducted to review the outcome of patients who have undergone two-stage revision for treatment of knee arthroplasty PJI, focusing specifically on isolated micro-organisms at both the first- and second-stage procedure. Patient demographics, medical, and orthopaedic history data, including postoperative outcomes and subsequent treatment, were obtained from the electronic records and medical notes. Results. The study cohort consisted of 84 patients, of whom 59.5% (n = 50) had successful eradication of their infection at a mean follow-up of 4.7 years. For the 34 patients who had recurrence of infection, 58.8% (n = 20) had a change in isolated organism, compared to 18% (n = 9) in the infection eradication group (p < 0.001). When adjusting for confound, there was no association when the growth on the second stage was the same as the first (odd ratio (OR) 2.50, 95% confidence interval (CI) 0.49 to 12.50; p = 0.269); however, when a different organism was identified at the second stage, this was independently associated with failure of treatment (OR 8.40, 95% CI 2.91 to 24.39; p < 0.001). There were no other significant differences between the two cohorts with regard to patient demographics or type of organisms isolated. Conclusion. Change in the identified microorganism between first- and second-stage revision for PJI was associated with failure of management. Identification of this change in the microorganism prior to commencement of the second stage may help target antibiotic management and could improve the success of surgery in these patients. Cite this article: Bone Jt Open 2023;4(9):720–727


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 32 - 38
1 Jan 2021
Li R Li X Ni M Fu J Xu C Chai W Chen J

Aims. The aim of this study was to further evaluate the accuracy of ten promising synovial biomarkers (bactericidal/permeability-increasing protein (BPI), lactoferrin (LTF), neutrophil gelatinase-associated lipocalin (NGAL), neutrophil elastase 2 (ELA-2), α-defensin, cathelicidin LL-37 (LL-37), human β-defensin (HBD-2), human β-defensin 3 (HBD-3), D-dimer, and procalcitonin (PCT)) for the diagnosis of periprosthetic joint infection (PJI), and to investigate whether inflammatory joint disease (IJD) activity affects their concentration in synovial fluid. Methods. We included 50 synovial fluid samples from patients with (n = 25) and without (n = 25) confirmed PJI from an institutional tissue bank collected between May 2015 and December 2016. We also included 22 synovial fluid samples aspirated from patients with active IJD presenting to Department of Rheumatology, the first Medical Centre, Chinese PLA General Hospital. Concentrations of the ten candidate biomarkers were measured in the synovial fluid samples using standard enzyme-linked immunosorbent assays (ELISA). The diagnostic accuracy was evaluated by receiver operating characteristic (ROC) curves. Results. BPI, LTF, NGAL, ELA-2, and α-defensin were well-performing biomarkers for detecting PJI, with areas under the curve (AUCs) of 1.000 (95% confidence interval, 1.000 to 1.000), 1.000 (1.000 to 1.000), 1.000 (1.000 to 1.000), 1.000 (1.000 to 1.000), and 0.998 (0.994 to 1.000), respectively. The other markers (LL-37, HBD-2, D-dimer, PCT, and HBD-3) had limited diagnostic value. For the five well-performing biomarkers, elevated concentrations were observed in patients with active IJD. The original best thresholds determined by the Youden index, which discriminated PJI cases from non-PJI cases could not discriminate PJI cases from active IJD cases, while elevated thresholds resulted in good performance. Conclusion. BPI, LTF, NGAL, ELA-2, and α-defensin demonstrated excellent performance for diagnosing PJI. However, all five markers showed elevated concentrations in patients with IJD activity. For patients with IJD, elevated thresholds should be considered to accurately diagnose PJI. Cite this article: Bone Joint J 2021;103-B(1):32–38


The Bone & Joint Journal
Vol. 104-B, Issue 3 | Pages 386 - 393
1 Mar 2022
Neufeld ME Liechti EF Soto F Linke P Busch S Gehrke T Citak M

Aims. The outcome of repeat septic revision after a failed one-stage exchange for periprosthetic joint infection (PJI) in total knee arthroplasty (TKA) remains unknown. The aim of this study was to report the infection-free and all-cause revision-free survival of repeat septic revision after a failed one-stage exchange, and to determine whether the Musculoskeletal Infection Society (MSIS) stage is associated with subsequent infection-related failure. Methods. We retrospectively reviewed all repeat septic revision TKAs which were undertaken after a failed one-stage exchange between 2004 and 2017. A total of 33 repeat septic revisions (29 one-stage and four two-stage) met the inclusion criteria. The mean follow-up from repeat septic revision was 68.2 months (8.0 months to 16.1 years). The proportion of patients who had a subsequent infection-related failure and all-cause revision was reported and Kaplan-Meier survival for these endpoints was determined. Patients were categorized according to the MSIS staging system, and the association with subsequent infection was analyzed. Results. At the most recent follow-up, 17 repeat septic revisions (52%) had a subsequent infection-related failure and the five-year infection-free survival was 59% (95% confidence interval (CI) 39 to 74). A total of 19 underwent a subsequent all-cause revision (58%) and the five-year all-cause revision-free survival was 47% (95% CI 28 to 64). The most common indication for the first subsequent aseptic revision was loosening. The MSIS stage of the host status (p = 0.663) and limb status (p = 1.000) were not significantly associated with subsequent infection-related failure. Conclusion. Repeat septic revision after a failed one-stage exchange TKA for PJI is associated with a high rate of subsequent infection-related failure and all-cause revision. Patients should be counselled appropriately to manage expectations. The host and limb status according to the MSIS staging system were not associated with subsequent infection-related failure. Cite this article: Bone Joint J 2022;104-B(3):386–393


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 118 - 124
1 May 2024
Macheras GA Argyrou C Tzefronis D Milaras C Tsivelekas K Tsiamtsouris KG Kateros K Papadakis SA

Aims. Accurate diagnosis of chronic periprosthetic joint infection (PJI) presents a significant challenge for hip surgeons. Preoperative diagnosis is not always easy to establish, making the intraoperative decision-making process crucial in deciding between one- and two-stage revision total hip arthroplasty (THA). Calprotectin is a promising point-of-care novel biomarker that has displayed high accuracy in detecting PJI. We aimed to evaluate the utility of intraoperative calprotectin lateral flow immunoassay (LFI) in THA patients with suspected chronic PJI. Methods. The study included 48 THAs in 48 patients with a clinical suspicion of PJI, but who did not meet European Bone and Joint Infection Society (EBJIS) PJI criteria preoperatively, out of 105 patients undergoing revision THA at our institution for possible PJI between November 2020 and December 2022. Intraoperatively, synovial fluid calprotectin was measured with LFI. Cases with calprotectin levels ≥ 50 mg/l were considered infected and treated with two-stage revision THA; in negative cases, one-stage revision was performed. At least five tissue cultures were obtained; the implants removed were sent for sonication. Results. Calprotectin was positive (≥ 50 mg/l) in 27 cases; out of these, 25 had positive tissue cultures and/or sonication. Calprotectin was negative in 21 cases. There was one false negative case, which had positive tissue cultures. Calprotectin showed an area under the curve of 0.917, sensitivity of 96.2%, specificity of 90.9%, positive predictive value of 92.6%, negative predictive value of 95.2%, positive likelihood ratio of 10.6, and negative likelihood ratio of 0.04. Overall, 45/48 patients were correctly diagnosed and treated by our algorithm, which included intraoperative calprotectin measurement. This yielded a 93.8% concordance with postoperatively assessed EBJIS criteria. Conclusion. Calprotectin can be a valuable tool in facilitating the intraoperative decision-making process for cases in which chronic PJI is suspected and diagnosis cannot be established preoperatively. Cite this article: Bone Joint J 2024;106-B(5 Supple B):118–124


Bone & Joint Research
Vol. 10, Issue 2 | Pages 96 - 104
28 Jan 2021
Fang X Zhang L Cai Y Huang Z Li W Zhang C Yang B Lin J Wahl P Zhang W

Aims. Microbiological culture is a key element in the diagnosis of periprosthetic joint infection (PJI). However, cultures of periprosthetic tissue do not have optimal sensitivity. One of the main reasons for this is that microorganisms are not released from the tissues, either due to biofilm formation or intracellular persistence. This study aimed to optimize tissue pretreatment methods in order to improve detection of microorganisms. Methods. From December 2017 to September 2019, patients undergoing revision arthroplasty in a single centre due to PJI and aseptic failure (AF) were included, with demographic data and laboratory test results recorded prospectively. Periprosthetic tissue samples were collected intraoperatively and assigned to tissue-mechanical homogenization (T-MH), tissue-manual milling (T-MM), tissue-dithiothreitol (T-DTT) treatment, tissue-sonication (T-S), and tissue-direct culture (T-D). The yield of the microbial cultures was then analyzed. Results. A total of 46 patients were enrolled, including 28 patients in the PJI group and 18 patients in the AF group. In the PJI group, 23 cases had positive culture results via T-MH, 22 cases via T-DTT, 20 cases via T-S, 15 cases via T-MM, and 13 cases via T-D. Three cases under ongoing antibiotic treatment remained culture-negative. Five tissue samples provided the optimal yield. Any ongoing antibiotic treatment had a relevant influence on culture sensitivity, except for T-DTT. Conclusion. T-MH had the highest sensitivity. Combining T-MH with T-DTT, which requires no special equipment, may effectively improve bacterial detection in PJI. A total of five periprosthetic tissue biopsies should be sampled in revision arthroplasty for optimal detection of PJI. Cite this article: Bone Joint Res 2021;10(2):96–104


The Bone & Joint Journal
Vol. 106-B, Issue 7 | Pages 669 - 679
1 Jul 2024
Schnetz M Maluki R Ewald L Klug A Hoffmann R Gramlich Y

Aims. In cases of severe periprosthetic joint infection (PJI) of the knee, salvage procedures such as knee arthrodesis (KA) or above-knee amputation (AKA) must be considered. As both treatments result in limitations in quality of life (QoL), we aimed to compare outcomes and factors influencing complication rates, mortality, and mobility. Methods. Patients with PJI of the knee and subsequent KA or AKA between June 2011 and May 2021 were included. Demographic data, comorbidities, and patient history were analyzed. Functional outcomes and QoL were prospectively assessed in both groups with additional treatment-specific scores after AKA. Outcomes, complications, and mortality were evaluated. Results. A total of 98 patients were included, 52 treated with arthrodesis and 47 with AKA. The mean number of revision surgeries between primary arthroplasty and arthrodesis or AKA was 7.85 (SD 5.39). Mean follow-up was 77.7 months (SD 30.9), with a minimum follow-up of two years. Complications requiring further revision surgery occurred in 11.5% of patients after arthrodesis and in 37.0% of AKA patients. Positive intraoperative tissue cultures obtained during AKA was significantly associated with the risk of further surgical revision. Two-year mortality rate of arthrodesis was significantly lower compared to AKA (3.8% vs 28.3%), with age as an independent risk factor in the AKA group. Functional outcomes and QoL were better after arthrodesis compared to AKA. Neuropathic pain was reported by 19 patients after AKA, and only 45.7% of patients were fitted or were intended to be fitted with a prosthesis. One-year infection-free survival after arthrodesis was 88.5%, compared to 78.5% after AKA. Conclusion. Above-knee amputation in PJI results in high complication and mortality rates and poorer functional outcome compared to arthrodesis. Mortality rates after AKA depend on patient age and mobility, with most patients not able to be fitted with a prosthesis. Therefore, arthrodesis should be preferred whenever possible if salvage procedures are indicated. Cite this article: Bone Joint J 2024;106-B(7):669–679


Bone & Joint Research
Vol. 11, Issue 1 | Pages 8 - 9
7 Jan 2022
Walter N Rupp M Baertl S Ziarko TP Hitzenbichler F Geis S Brochhausen C Alt V


Bone & Joint Open
Vol. 1, Issue 12 | Pages 737 - 742
1 Dec 2020
Mihalič R Zdovc J Brumat P Trebše R

Aims. Synovial fluid white blood cell (WBC) count and percentage of polymorphonuclear cells (%PMN) are elevated at periprosthetic joint infection (PJI). Leucocytes produce different interleukins (IL), including IL-6, so we hypothesized that synovial fluid IL-6 could be a more accurate predictor of PJI than synovial fluid WBC count and %PMN. The main aim of our study was to compare the predictive performance of all three diagnostic tests in the detection of PJI. Methods. Patients undergoing total hip or knee revision surgery were included. In the perioperative assessment phase, synovial fluid WBC count, %PMN, and IL-6 concentration were measured. Patients were labeled as positive or negative according to the predefined cut-off values for IL-6 and WBC count with %PMN. Intraoperative samples for microbiological and histopathological analysis were obtained. PJI was defined as the presence of sinus tract, inflammation in histopathological samples, and growth of the same microorganism in a minimum of two or more samples out of at least four taken. Results. In total, 49 joints in 48 patients (mean age 68 years (SD 10; 26 females (54%), 25 knees (51%)) were included. Of these 11 joints (22%) were infected. The synovial fluid WBC count and %PMN predicted PJI with sensitivity, specificity, accuracy, PPV, and NPV of 82%, 97%, 94%, 90%, and 95%, respectively. Synovial fluid IL-6 predicted PJI with sensitivity, specificity, accuracy, PPV, and NPV of 73%, 95%, 90%, 80%, and 92%, respectively. A comparison of predictive performance indicated a strong agreement between tests. Conclusions. Synovial fluid IL-6 is not superior to synovial fluid WBC count and %PMN in detecting PJI. Level of Evidence: Therapeutic Level II. Cite this article: Bone Jt Open 2020;1-12:737–742


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 13 - 17
1 Jun 2021
Park KJ Chapleau J Sullivan TC Clyburn TA Incavo SJ

Aims. Infection complicating primary total knee arthroplasty (TKA) is a common reason for revision surgery, hospital readmission, patient morbidity, and mortality. Increasing incidence of methicillin-resistant Staphylococcus aureus (MRSA) is a particular concern. The use of vancomycin as prophylactic agent alone or in combination with cephalosporin has not demonstrated lower periprosthetic joint infection (PJI) rates, partly due to timing and dosing of intravenous (IV) vancomycin administration, which have proven important factors in effectiveness. This is a retrospective review of a consecutive series of primary TKAs examining incidence of PJI, adverse reactions, and complications using IV versus intraosseous (IO) vancomycin at 30-day, 90-day, and one-year follow-up. Methods. A retrospective review of 1,060 patients who underwent TKA between May 2016 to July 2020 was performed. There were 572 patients in the IV group and 488 in the IO group, with minimal 30 days of follow-up. Patients were followed up at regularly scheduled intervals (two, six, and 12 weeks). No differences between groups for age, sex, BMI, or baseline comorbidities existed. The IV group received an IV dose of 15 mg/kg vancomycin given over an hour preceding skin incision. The IO group received a 500 mg dose of vancomycin mixed in 150 ml of normal saline, injected into proximal tibia after tourniquet inflation, before skin incision. All patients received an additional dose of first generation cephalosporin. Evaluation included preoperative and postoperative serum creatinine values, tourniquet time, and adverse reactions attributable to vancomycin. Results. Incidence of PJI with minimum 90-day follow-up was 1.4% (eight knees) in the IV group and 0.22% (one knee) in IO group (p = 0.047). This preliminary report demonstrated an reduction in the incidence of infection in TKA using IO vancomycin combined with a first-generation cephalosporin. While the study suffers from limitations of a retrospective, multi-surgeon investigation, early findings are encouraging. Conclusion. IO delivery of vancomycin after tourniquet inflation is a safe and effective alternative to IV administration, eliminating the logistical challenges of timely dosing. Cite this article: Bone Joint J 2021;103-B(6 Supple A):13–17


The Bone & Joint Journal
Vol. 99-B, Issue 3 | Pages 330 - 336
1 Mar 2017
Sendi P Lötscher PO Kessler B Graber P Zimmerli W Clauss M

Aims. To analyse the effectiveness of debridement and implant retention (DAIR) in patients with hip periprosthetic joint infection (PJI) and the relationship to patient characteristics. The outcome was evaluated in hips with confirmed PJI and a follow-up of not less than two years. Patients and Methods. Patients in whom DAIR was performed were identified from our hip arthroplasty register (between 2004 and 2013). Adherence to criteria for DAIR was assessed according to a previously published algorithm. Results. DAIR was performed as part of a curative procedure in 46 hips in 42 patients. The mean age was 73.2 years (44.6 to 87.7), including 20 women and 22 men. In 34 hips in 32 patients (73.9%), PJI was confirmed. In 12 hips, the criteria for PJI were not fulfilled and antibiotics stopped. In 41 (89.1%) of all hips and in 32 (94.1%) of the confirmed PJIs, all criteria for DAIR were fulfilled. In patients with exogenous PJI, DAIR was performed not more than three days after referral. In haematogenous infections, the duration of symptoms did not exceed 21 days. In 28 hips, a single debridement and in six hips two surgical debridements were required. In 28 (87.5%) of 32 patients, the total treatment duration was three months. Failure was noted in three hips (9%). Long-term follow-up results (mean 4.0 years, 1.4 to 10) were available in 30 of 34 (88.2%) confirmed PJIs. The overall successful outcome rate was 91% in 34 hips, and 90% in 30 hips with long-term follow-up results. . Conclusion. Prompt surgical treatment with DAIR, following strict diagnostic and therapeutic criteria, in patients with suspected periprosthetic joint infection, can lead to high rates of success in eradicating the infection. Cite this article: Bone Joint J 2017;99-B:330–6


Bone & Joint Research
Vol. 7, Issue 1 | Pages 12 - 19
1 Jan 2018
Janz V Schoon J Morgenstern C Preininger B Reinke S Duda G Breitbach A Perka CF Geissler S

Objectives. The objective of this study was to develop a test for the rapid (within 25 minutes) intraoperative detection of bacteria from synovial fluid to diagnose periprosthetic joint infection (PJI). Methods. The 16s rDNA test combines a polymerase chain reaction (PCR) for amplification of 16s rDNA with a lateral flow immunoassay in one fully automated system. The synovial fluid of 77 patients undergoing joint aspiration or primary or revision total hip or knee surgery was prospectively collected. The cohort was divided into a proof-of-principle cohort (n = 17) and a validation cohort (n = 60). Using the proof-of-principle cohort, an optimal cut-off for the discrimination between PJI and non-PJI samples was determined. PJI was defined as detection of the same bacterial species in a minimum of two microbiological samples, positive histology, and presence of a sinus tract or intra-articular pus. Results. The 16s rDNA test proved to be very robust and was able to provide a result in 97% of all samples within 25 minutes. The 16s rDNA test was able to diagnose PJI with a sensitivity of 87.5% and 82%, and a specificity of 100% and 89%, in the proof-of-principle and validation cohorts, respectively. The microbiological culture of synovial fluid achieved a sensitivity of 80% and a specificity of 93% in the validation cohort. Conclusion. The 16s rDNA test offers reliable intraoperative detection of all bacterial species within 25 minutes with a sensitivity and specificity comparable with those of conventional microbiological culture of synovial fluid for the detection of PJI. The 16s rDNA test performance is independent of possible blood contamination, culture time and bacterial species. Cite this article: V. Janz, J. Schoon, C. Morgenstern, B. Preininger, S. Reinke, G. Duda, A. Breitbach, C. F. Perka, S. Geissler. Rapid detection of periprosthetic joint infection using a combination of 16s rDNA polymerase chain reaction and lateral flow immunoassay: A Pilot Study. Bone Joint Res 2018;7:12–19. DOI: 10.1302/2046-3758.71.BJR-2017-0103.R2