Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1375 - 1383
3 Oct 2020
Zhang T Sze KY Peng ZW Cheung KMC Lui YF Wong YW Kwan KYH Cheung JPY

Aims. To investigate metallosis in patients with magnetically controlled growing rods (MCGRs) and characterize the metal particle profile of the tissues surrounding the rod. Methods. This was a prospective observational study of patients with early onset scoliosis (EOS) treated with MCGRs and undergoing rod exchange who were consecutively recruited between February 2019 and January 2020. Ten patients were recruited (mean age 12 years (SD 1.3); 2 M:8 F). The configurations of the MCGR were studied to reveal the distraction mechanisms, with crucial rod parts being the distractable piston rod and the magnetically driven rotor inside the barrel of the MCGR. Metal-on-metal contact in the form of ring-like wear marks on the piston was found on the distracted portion of the piston immediately outside the barrel opening (BO) through which the piston rod distracts. Biopsies of paraspinal muscles and control tissue samples were taken over and away from the wear marks, respectively. Spectral analyses of the rod alloy and biopsies were performed to reveal the metal constituents and concentrations. Histological analyses of the biopsies were performed with haematoxylin and eosin staining. Results. Titanium (Ti), vanadium (V), and neodymium (Nd) concentrations in the biopsies taken near the wear marks were found to be significantly higher than those in the control tissue samples. Significantly increased Nd concentrations were also found in the tissues near the barrel of the MCGR. Chronic inflammation was revealed by the histological studies with fibrosis and macrophage infiltration. Black particles were present within the macrophages in the fibrotic tissues. Conclusion. Ti and V were generated mainly at the BO due to metal-on-metal contact, whereas the Nd from the rotor of the MCGR is likely released from the BO during distraction sessions. Phagocytotic immune cells with black particles inside raise concern regarding the long-term implications of metallosis. Cite this article: Bone Joint J 2020;102-B(10):1375–1383


The Bone & Joint Journal
Vol. 98-B, Issue 12 | Pages 1662 - 1667
1 Dec 2016
Teoh KH von Ruhland C Evans SL James SH Jones A Howes J Davies PR Ahuja S

Aims. We present a case series of five patients who had revision surgery following magnetic controlled growing rods (MGCR) for early onset scoliosis. Metallosis was found during revision in four out of five patients and we postulated a mechanism for rod failure based on retrieval analysis. Patients and Methods. Retrieval analysis was performed on the seven explanted rods. The mean duration of MCGR from implantation to revision was 35 months (17 to 46). The mean age at revision was 12 years (7 to 15; four boys, one girl). Results. A total of six out of seven rods had tissue metallosis and pseudo-capsule surrounding the actuator. A total of four out of seven rods were pistoning. There were two rods which were broken. All rods had abrasive circumferential markings. A significant amount of metal debris was found when the actuators were carefully cut open. Analytical electron microscopy demonstrated metal fragments of predominantly titanium with a mean particle size of 3.36 microns (1.31 to 6.61). Conclusion. This study highlights concerns with tissue metallosis in MCGR. We recommend careful follow-up of patients who have received this implant. Cite this article: Bone Joint J 2016;98-B:1662–7


Aims

In this investigation, we administered oxidative stress to nucleus pulposus cells (NPCs), recognized DNA-damage-inducible transcript 4 (DDIT4) as a component in intervertebral disc degeneration (IVDD), and devised a hydrogel capable of conveying small interfering RNA (siRNA) to IVDD.

Methods

An in vitro model for oxidative stress-induced injury in NPCs was developed to elucidate the mechanisms underlying the upregulation of DDIT4 expression, activation of the reactive oxygen species (ROS)-thioredoxin-interacting protein (TXNIP)-NLRP3 signalling pathway, and nucleus pulposus pyroptosis. Furthermore, the mechanism of action of small interfering DDIT4 (siDDIT4) on NPCs in vitro was validated. A triplex hydrogel named siDDIT4@G5-P-HA was created by adsorbing siDDIT4 onto fifth-generation polyamidoamine (PAMAM) dendrimer using van der Waals interactions, and then coating it with hyaluronic acid (HA). In addition, we established a rat puncture IVDD model to decipher the hydrogel’s mechanism in IVDD.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 7 | Pages 949 - 954
1 Jul 2011
Bisseling P Zeilstra DJ Hol AM van Susante JLC

The purpose of this study was to evaluate whether concerns about the release of metal ions in metal-on-metal total hip replacements (THR) should be extended to patients with metal-bearing total disc replacements (TDR).

Cobalt and chromium levels in whole blood and serum were measured in ten patients with a single-level TDR after a mean follow-up of 34.5 months (13 to 61) using inductively-coupled plasma mass spectrometry. These metal ion levels were compared with pre-operative control levels in 81 patients and with metal ion levels 12 months after metal-on-metal THR (n = 21) and resurfacing hip replacement (n = 36). Flexion-extension radiographs were used to verify movement of the TDR.

Cobalt levels in whole blood and serum were significantly lower in the TDR group than in either the THR (p = 0.007) or the resurfacing group (p < 0.001). Both chromium levels were also significantly lower after TDR versus hip resurfacing (p < 0.001), whereas compared with THR this difference was only significant for serum levels (p = 0.008). All metal ion levels in the THR and resurfacing groups were significantly higher than in the control group (p < 0.001). In the TDR group only cobalt in whole blood appeared to be significantly higher (p < 0.001). The median range of movement of the TDR was 15.5° (10° to 22°).

These results suggest that there is minimal cause for concern about high metal ion concentrations after TDR, as the levels appear to be only moderately elevated. However, spinal surgeons using a metal-on-metal TDR should still be aware of concerns expressed in the hip replacement literature about toxicity from elevated metal ion levels, and inform their patients appropriately.


Bone & Joint Research
Vol. 2, Issue 8 | Pages 169 - 178
1 Aug 2013
Rodrigues-Pinto R Richardson SM Hoyland JA

Mesenchymal stem-cell based therapies have been proposed as novel treatments for intervertebral disc degeneration, a prevalent and disabling condition associated with back pain. The development of these treatment strategies, however, has been hindered by the incomplete understanding of the human nucleus pulposus phenotype and by an inaccurate interpretation and translation of animal to human research. This review summarises recent work characterising the nucleus pulposus phenotype in different animal models and in humans and integrates their findings with the anatomical and physiological differences between these species. Understanding this phenotype is paramount to guarantee that implanted cells restore the native functions of the intervertebral disc.

Cite this article: Bone Joint Res 2013;2:169–78.