Aims. The aim of this study is to report the long-term outcomes of instrumented femoral revisions with
We identified 1305 femoral
Aims. Femoral
Loss of bone stock is a major problem in revision surgery of the hip. Impaction bone grafting of the femur is frequently used when dealing with deficient bone stock. In this retrospective study a consecutive series of 68 patients (69 hips) who had revision of a hip replacement with femoral impaction grafting were reviewed. Irradiated bone allograft was used in all hips. Radiological measurement of subsidence of the stem, incorporation of the graft and remodelling was carried out and showed incorporation of the graft in 26 of 69 hips (38%). However, there was no evidence of trabecular remodelling. Moderate subsidence of 5 mm to 10 mm occurred in ten hips (14.5%), and massive subsidence of >
10 mm in five (7.2%). The results of this study are less favourable than those of others describing studies of revision of the femoral stem using
This single-centre observational study aimed to describe the results of extensive bone impaction grafting of the whole acetabular cavity in combination with an uncemented component in acetabular revisions performed in a standardized manner since 1993. Between 1993 and 2013, 370 patients with a median age of 72 years (interquartile range (IQR) 63 to 79 years) underwent acetabular revision surgery. Of these, 229 were more than ten years following surgery and 137 were more than 15 years. All revisions were performed with extensive use of morcellized allograft firmly impacted into the entire acetabular cavity, followed by insertion of an uncemented component with supplementary screw fixation. All types of reoperation were captured using review of radiographs and medical charts, combined with data from the local surgical register and the Swedish Hip Arthroplasty Register.Aims
Methods
The increasing need for total hip replacement
(THR) in an ageing population will inevitably generate a larger number
of revision procedures. The difficulties encountered in dealing
with the bone deficient acetabulum are amongst the greatest challenges
in hip surgery. The failed acetabular component requires reconstruction
to restore the hip centre and improve joint biomechanics. Impaction
bone grafting is successful in achieving acetabular reconstruction
using both cemented and cementless techniques. Bone graft incorporation
restores bone stock whilst providing good component stability. We
provide a summary of the evidence and current literature regarding impaction
bone grafting using both cemented and cementless techniques in revision
THR. Cite this article:
Aims. The aim of this study was to determine the outcome of all primary total hip arthroplasties (THAs) and their subsequent revision procedures in patients aged under 50 years performed at our institution. Methods. All 1,049 primary THAs which were undertaken in 860 patients aged under 50 years between 1988 and 2018 in our tertiary care institution were included. We used cemented implants in both primary and revision surgery. Impaction bone grafting was used in patients with acetabular or femoral bone defects. Kaplan-Meier analyses were used to determine the survival of primary and revision THA with the endpoint of revision for any reason, and of revision for aseptic loosening. Results. The mean age of the patients at the time of the initial THA was 38.6 years (SD 9.3). The mean follow-up of the THA was 8.7 years (2.0 to 31.5). The rate of survival for all primary THAs, acetabular components only, and femoral components only at 20 years’ follow-up with the endpoint of revision for any reason, was 66.7% (95% confidence interval (CI) 60.5 to 72.2), 69.1% (95% CI 63.0 to 74.4), and 83.2% (95% CI 78.1 to 87.3), respectively. A total of 138 revisions were performed. The mean age at the time of revision was 48.2 years (23 to 72). Survival of all subsequent revision procedures, revised acetabular, and revised femoral components at 15 years’ follow-up with the endpoint of revision for any reason was 70.3% (95% CI 56.1 to 80.7), 69.7% (95% CI 54.3 to 80.7), and 76.2% (95% CI 57.8 to 87.4), respectively. A Girdlestone excision arthroplasty was required in six of 860 patients (0.7%). Conclusion. The long-term outcome of cemented primary and subsequent revision THA is promising in these young patients. We showed that our philosophy of using
We report the initial results of an ongoing randomised, prospective study on migration of the Exeter and Elite Plus femoral stems after impaction allografting, as measured by radiostereometry. Clinically, the impaction technique gave good results for both stems. The mean subsidence in the first year was 1.30 mm and 0.20 mm for the Exeter and the Elite Plus stems, respectively. In the second year, the Exeter stem continued to subside further by a mean of 0.42 mm, while the Elite Plus stem did not do so. Subsidence of the Exeter stem correlated with deficiency of bone stock as graded on the Gustilo and Pasternak scale. This correlation was not found for the Elite Plus stem. None of the other parameters which were studied predisposed to subsidence. There was no significant association between the amount of subsidence and the radiological appearance of the graft for either stem. Our findings do not support the theory that radial compression, due to subsidence of the Exeter stem, is the essential stimulus for remodelling in impaction allografting.
We report the clinical and radiographic outcomes
of 208 consecutive femoral revision arthroplasties performed in 202
patients (119 women, 83 men) between March 1991 and December 2007
using the X-change Femoral Revision System, fresh-frozen morcellised
allograft and a cemented polished Exeter stem. All patients were
followed prospectively. The mean age of the patients at revision
was 65 years (30 to 86). At final review in December 2013 a total
of 130 patients with 135 reconstructions (64.9%) were alive and
had a non re-revised femoral component after a mean follow-up of
10.6 years (4.7 to 20.9). One patient was lost to follow-up at six
years, and their data were included up to this point.
Re-operation for any reason was performed in 33 hips (15.9%), in
13 of which the femoral component was re-revised (6.3%). The mean
pre-operative Harris hip score was 52 (19 to 95) (n = 73) and improved
to 80 (22 to 100) (n = 161) by the last follow-up. Kaplan–Meier
survival with femoral re-revision for any reason as the endpoint
was 94.9% (95% confidence intervals (CI) 90.2 to 97.4) at ten years;
with femoral re-revision for aseptic loosening as the endpoint it was
99.4% (95% CI 95.7 to 99.9); with femoral re-operation for any reason
as the endpoint it was 84.5% (95% CI 78.3 to 89.1); and with subsidence ≥ 5
mm it was 87.3% (95% CI 80.5 to 91.8). Femoral revision with the
use of
Aims. Bone stock restoration of acetabular bone defects using
We developed a method of applying vibration to the
Aims. The management of acetabular defects at the time of revision hip arthroplasty surgery is a challenge. This study presents the results of a long-term follow-up study of the use of irradiated allograft bone in acetabular reconstruction. Patients and Methods. Between 1990 and 2000, 123 hips in 110 patients underwent acetabular reconstruction for aseptic loosening, using
Aims. The aim of this study was to analyze the effect of a lateral rim mesh on the survival of primary total hip arthroplasty (THA) in young patients, aged 50 years or younger. Patients and Methods. We compared a study group of 235 patients (257 hips) who received a primary THA with the use of
We present the results of 62 consecutive acetabular
revisions using
Deficiencies of acetabular bone stock at revision hip replacement were reconstructed with two different types of allograft using
The duration of systemic antibiotic treatment following first-stage revision surgery for periprosthetic joint infection (PJI) after total hip arthroplasty (THA) is contentious. Our philosophy is to perform an aggressive debridement, and to use a high local concentration of targeted antibiotics in cement beads and systemic prophylactic antibiotics alone. The aim of this study was to assess the success of this philosophy in the management of PJI of the hip using our two-stage protocol. The study involved a retrospective review of our prospectively collected database from which we identified all patients who underwent an intended two-stage revision for PJI of the hip. All patients had a diagnosis of PJI according to the major criteria of the Musculoskeletal Infection Society (MSIS) 2013, a minimum five-year follow-up, and were assessed using the MSIS working group outcome-reporting tool. The outcomes were grouped into ‘successful’ or ‘unsuccessful’.Aims
Methods
We report the results of the revision of 123 acetabular components for aseptic loosening treated by
Between 1990 and 2000, 123 hips in 110 patients were reconstructed for aseptic loosening using
With increasing burden of revision hip arthroplasty (THA), one of the major challenges is the management of proximal femoral bone loss associated with previous multiple surgeries. Proximal femoral arthroplasty (PFA) has already been popularized for tumour surgeries. Our aim was to describe the outcome of using PFA in these demanding non-neoplastic cases. A retrospective review of 25 patients who underwent PFA for non-neoplastic indications between January 2009 and December 2015 was undertaken. Their clinical and radiological outcome, complication rates, and survival were recorded. All patients had the Stanmore Implant – Modular Endo-prosthetic Tumour System (METS).Aims
Methods
We present the results for 4762 revision total hip arthroplasties with no previous infection in the hip, which were reported to the Norwegian Arthroplasty Register between 1987 and 2003. The ten-year failure rate for revised prostheses was 26% (95% CI 25 to 26). Cox regression analyses were undertaken separately for acetabular and femoral revision components. Cemented revision components without allograft was the reference category. For acetabular components, we found a significantly reduced risk of failure for uncemented revisions both with (relative risk (RR) = 0.66; 95% CI 0.43 to 0.99) and without (RR = 0.37; 95% CI 0.22 to 0.61) allograft. For femoral components, we found a significantly reduced risk of failure for uncemented revisions, both with (RR = 0.27; 95% CI 0.16 to 0.46) and without (RR = 0.22; 95% CI 0.11 to 0.46) unimpacted allograft. This reduced risk of failure also applied to cemented revision components with allograft (RR = 0.53; 95% CI 0.33 to 0.84) and with
Femoral cement-in-cement revision is a well described technique to reduce morbidity and complications in hip revision surgery. Traditional techniques for septic revision of hip arthroplasty necessitate removal of all bone cement from the femur. In our two centres, we have been using a cement-in-cement technique, leaving the distal femoral bone cement in selected patients for septic hip revision surgery, both for single and the first of two-stage revision procedures. A prerequisite for adoption of this technique is that the surgeon considers the cement mantle to be intimately fixed to bone without an intervening membrane between cement and host bone. We aim to report our experience for this technique. We have analyzed patients undergoing this cement-in-cement technique for femoral revision in infection, and present a consecutive series of 89 patients. Follow-up was undertaken at a mean of 56.5 months (24.0 to 134.7) for the surviving cases.Aims
Methods
There is a paucity of long-term studies analyzing risk factors for failure after single-stage revision for periprosthetic joint infection (PJI) following total hip arthroplasty (THA). We report the mid- to long-term septic and non-septic failure rate of single-stage revision for PJI after THA. We retrospectively reviewed 88 cases which met the Musculoskeletal Infection Society (MSIS) criteria for PJI. Mean follow-up was seven years (1 to 14). Septic failure was diagnosed with a Delphi-based consensus definition. Any reoperation for mechanical causes in the absence of evidence of infection was considered as non-septic failure. A competing risk regression model was used to evaluate factors associated with septic and non-septic failures. A Kaplan-Meier estimate was used to analyze mortality.Aims
Methods
Periprosthetic fractures (PPFs) around cemented taper-slip femoral prostheses often result in a femoral component that is loose at the prosthesis-cement interface, but where the cement-bone interface remains well-fixed and bone stock is good. We aim to understand how best to classify and manage these fractures by using a modification of the Vancouver classification. We reviewed 87 PPFs. Each was a first episode of fracture around a cemented femoral component, where surgical management consisted of revision surgery. Data regarding initial injury, intraoperative findings, and management were prospectively collected. Patient records and serial radiographs were reviewed to determine fracture classification, whether the bone cement was well fixed (B2W) or loose (B2L), and time to fracture union following treatment.Aims
Methods
The aim of this study was to report the medium-term outcomes of impaction bone allograft and fibular grafting for osteonecrosis of the femoral head (ONFH) and to define the optimal indications. A total of 67 patients (77 hips) with ONFH were enrolled in a single centre retrospective review. Success of the procedure was assessed using the Harris Hip Score (HHS) and rate of revision to total hip arthroplasty (THA). Risk factors were studied, including age, aetiology, duration of hip pain, as well as two classification systems (Association Research Circulation Osseous (ARCO) and Japanese Investigation Committee (JIC) systems).Aims
Methods
We previously reported the long-term results of the cementless Duraloc-Profile total hip arthroplasty (THA) system in a 12- to 15-year follow-up study. In this paper, we provide an update on the clinical and radiological results of a previously reported cohort of patients at 23 to 26 years´ follow-up. Of the 99 original patients (111 hips), 73 patients (82 hips) with a mean age of 56.8 years (21 to 70) were available for clinical and radiological study at a minimum follow-up of 23 years. There were 40 female patients (44 hips) and 33 male patients (38 hips).Aims
Patients and Methods
The aim of this study was to compare the incidence of aseptic
loosening after the use of a cemented acetabular component and a
Trabecular Metal (TM) acetabular component (Zimmer Inc., Warsaw,
Indiana) at acetabular revision with bone impaction grafting. A total of 42 patients were included in the study. Patients were
randomised to receive an all- polyethylene cemented acetabular component
(n = 19) or a TM component (n = 23). Radiostereometric analysis
and conventional radiographic examinations were performed regularly
up to two years post-operatively or until further revision.Aims
Patients and Methods
This review summarises the technique of impaction
grafting with mesh augmentation for the treatment of uncontained
acetabular defects in revision hip arthroplasty. The ideal acetabular revision should restore bone stock, use
a small socket in the near-anatomic position, and provide durable
fixation. Impaction bone grafting, which has been in use for over
40 years, offers the ability to achieve these goals in uncontained
defects. The precepts of modern, revision impaction grafting are
that the segmental or cavitary defects must be supported with a
mesh; the contained cavity is filled with vigorously impacted morselised
fresh-frozen allograft; and finally, acrylic cement is used to stabilise
the graft and provide rigid, long-lasting fixation of the revised
acetabular component. Favourable results have been published with this technique. While
having its limitations, it is a viable option to address large acetabular
defects in revision arthroplasty. Cite this article:
There are few reports describing the technique
of managing acetabular protrusio in primary total hip replacement. Most
are small series with different methods of addressing the challenges
of significant medial and proximal migration of the joint centre,
deficient medial bone and reduced peripheral bony support to the
acetabular component. We describe our technique and the clinical
and radiological outcome of using impacted morsellised autograft
with a porous-coated cementless cup in 30 primary THRs with mild
(n = 8), moderate (n = 10) and severe (n = 12) grades of acetabular
protrusio. The mean Harris hip score had improved from 52 pre-operatively
to 85 at a mean follow-up of 4.2 years (2 to 10). At final follow-up,
27 hips (90%) had a good or excellent result, two (7%) had a fair
result and one (3%) had a poor result. All bone grafts had united
by the sixth post-operative month and none of the hips showed any
radiological evidence of recurrence of protrusio, osteolysis or
loosening. By using impacted morsellised autograft and cementless
acetabular components it was possible to achieve restoration of
hip mechanics, provide a biological solution to bone deficiency
and ensure long-term fixation without recurrence in arthritic hips
with protrusio undergoing THR. Cite this article:
Impaction bone grafting for the reconstitution
of bone stock in revision hip surgery has been used for nearly 30 years.
Between 1995 and 2001 we used this technique in acetabular reconstruction,
in combination with a cemented component, in 304 hips in 292 patients
revised for aseptic loosening. The only additional supports used
were stainless steel meshes placed against the medial wall or laterally
around the acetabular rim to contain the graft. All Paprosky grades
of defect were included. Clinical and radiographic outcomes were
collected in surviving patients at a minimum of ten years after
the index operation. Mean follow-up was 12.4 years ( Cite this article:
We present an update of the clinical and radiological results of 62 consecutive acetabular revisions using impacted morsellised cancellous bone grafts and a cemented acetabular component in 58 patients, at a mean follow-up of 22.2 years (20 to 25). The Kaplan-Meier survivorship for the acetabular component with revision for any reason as the endpoint was 75% at 20 years (95% confidence interval (CI) 62 to 88) when 16 hips were at risk. Excluding two revisions for septic loosening at three and six years, the survivorship at 20 years was 79% (95% CI 67 to 93). With further exclusions of one revision of a well-fixed acetabular component after 12 years during a femoral revision and two after 17 years for wear of the acetabular component, the survivorship for aseptic loosening was 87% at 20 years (95% CI 76 to 97). At the final review 14 of the 16 surviving hips had radiographs available. There was one additional case of radiological loosening and four acetabular reconstructions showed progressive radiolucent lines in one or two zones. Acetabular revision using impacted large morsellised bone chips (0.5 cm to 1 cm in diameter) and a cemented acetabular component remains a reliable technique for reconstruction, even when assessed at more than 20 years after surgery.
We retrospectively reviewed 40 hips in 36 patients who had undergone acetabular reconstruction using a titanium Kerboull-type acetabular reinforcement device with bone allografts between May 2001 and April 2006. Impacted bone allografts were used for the management of American Academy of Orthopaedic Surgeons Type II defects in 17 hips, and bulk bone allografts together with impacted allografts were used for the management of Type III defects in 23 hips. A total of five hips showed radiological failure at a mean follow-up of 6.7 years (4.5 to 9.3), two of which were infected. The mean pre-operative Merle d’Aubigné score was 10 (5 to 15) This clinical study indicates that revision total hip replacement using the Kerboull-type acetabular reinforcement device with bone allografts yielded satisfactory mid-term results.
Previously, radiostereometric analysis following hip revision performed using impacted morsellised allograft bone and a cemented Exeter stem has shown continuous subsidence of the stem for up to five years. It is not known whether the subsidence continues thereafter. In our study, 17 of 25 consecutive osteo-arthritic patients with aseptically loose stems who underwent first-time revision using impacted morsellised allograft bone and a cemented Exeter stem were followed by yearly radiostereometric examinations for nine years. The mean subsidence at six weeks was 1.1 mm (0.1 to 2.3), from six weeks to one year 1.3 mm (0 to 2.6), from one to five years 0.7 mm (0 to 2.0), and from five to nine years 0.7 mm (0.1 to 3.1). That from six weeks to nine years was 2.7 mm (0 to 6.4) (95% confidence interval 2.0 to 3.5). The Charnley pain score significantly improved after revision, and was maintained at nine years, but walking ability deteriorated slightly as follow-up extended. Of the eight patients who were not followed for nine years, two had early subsidence exceeding 11 mm. Our findings show that in osteo-arthritic patients who undergo revision for aseptic loosening of the stem using impacted morsellised allograft bone and a cemented Exeter stem, migration of the stem continues over nine years at a slower rate after the first year, but without clinical deterioration or radiological loosening.
The outcome of 219 revision total hip arthroplasties
(THAs) in 98 male and 121 female patients, using 137 long length
and 82 standard length cemented collarless double-taper femoral
stems in 211 patients, with a mean age of 72 years (30 to 90) and
mean follow-up of six years (two to 18) have been described previously.
We have extended the follow-up to a mean of 13 years (8 to 20) in
this cohort of patients in which the pre-operative bone deficiency Paprosky
grading was IIIA or worse in 79% and 73% of femurs with long and
standard stems, respectively. For the long stem revision group, survival to re-revision for
aseptic loosening at 14 years was 97% (95% confidence interval (CI)
91 to 100) and in patients aged >
70 years, survival was 100%. Two
patients (two revisions) were lost to follow-up and 86 patients
with 88 revisions had died. Worst-case analysis for survival to
re-revision for aseptic loosening at 14 years was 95% (95% CI 89
to 100) and 99% (95% CI 96 to 100) for patients aged >
70 years. One
additional long stem was classified as loose radiographically but
not revised. For the standard stem revision group, survival to re-revision
for aseptic loosening at 14 years was 91% (95% CI 83 to 99). No
patients were lost to follow-up and 49 patients with 51 hips had
died. No additional stems were classified as loose radiographically. Femoral revision using a cemented collarless double-taper stem,
particularly with a long length stem, and in patients aged >
70
years, continues to yield excellent results up to 20 years post-operatively,
including in hips with considerable femoral metaphyseal bone loss. Cite this article:
In revision total hip replacement, bone loss can be managed by impacting porous bone chips. In order to guarantee sufficient mechanical strength, the bone chips have to be compacted. The aim of this study was to determine in an We found that the pneumatic method reached higher values of impaction hardness, contact stiffness and bulk density suggesting an increase in stability of the implant. No significant differences were found between the two different methods concerning the penetration resistance. The pneumatic method might reduce the risk of fracture
Revision total hip replacement (THR) for young
patients is challenging because of technical complexity and the potential
need for subsequent further revisions. We have assessed the survivorship,
functional outcome and complications of this procedure in patients
aged <
50 years through a large longitudinal series with consistent treatment
algorithms. Of 132 consecutive patients (181 hips) who underwent
revision THR, 102 patients (151 hips) with a mean age of 43 years
(22 to 50) were reviewed at a mean follow-up of 11 years (2 to 26)
post-operatively. We attempted to restore bone stock with allograft
where indicated. Using further revision for any reason as an end point,
the survival of the acetabular component was 71% ( This overall perspective on the mid- to long-term results is
valuable when advising young patients on the prospects of revision
surgery at the time of primary replacement. Cite this article:
A total of 31 patients, (20 women, 11 men; mean
age 62.5 years old; 23 to 81), who underwent conversion of a Girdlestone
resection-arthroplasty (RA) to a total hip replacement (THR) were
compared with 93 patients, (60 women, 33 men; mean age 63.4 years
old; 20 to 89), who had revision THR surgery for aseptic loosening
in a retrospective matched case-control study. Age, gender and the
extent of the pre-operative bone defect were similar in all patients.
Mean follow-up was 9.3 years (5 to 18). Pre-operative function and range of movement were better in the
control group (p = 0.01 and 0.003, respectively) and pre-operative
leg length discrepancy (LLD) was greater in the RA group (p <
0.001). The post-operative clinical outcome was similar in both
groups except for mean post-operative LLD, which was greater in
the study group (p = 0.003). There was a significant interaction
effect for LLD in the study group (p <
0.001). A two-way analysis
of variance showed that clinical outcome depended on patient age
(patients older than 70 years old had worse pre-operative pain,
p = 0.017) or bone defect (patients with a large acetabular bone
defect had higher LLD, p = 0.006, worse post-operative function
p = 0.009 and range of movement, p = 0.005), irrespective of the
group. Despite major acetabular and femoral bone defects requiring complex
surgical reconstruction techniques, THR after RA shows a clinical
outcome similar to those obtained in aseptic revision surgery for
hips with similar sized bone defects. Cite this article:
We report the long-term results of revision total
hip replacement using femoral impaction allografting with both uncemented
and cemented Freeman femoral components. A standard design of component
was used in both groups, with additional proximal hydroxyapatite
coating in the uncemented group. A total of 33 hips in 30 patients received
an uncemented component and 31 hips in 30 patients a cemented component.
The mean follow-up was 9.8 years (2 to 17) in the uncemented group
and 6.2 years (1 to 11) in the cemented group. Revision procedures
(for all causes) were required in four patients (four hips) in the
uncemented group and in five patients (five hips) in the cemented
group. Harris hip scores improved significantly in both groups and
were maintained independently of the extent of any migration of
the femoral component within the graft or graft–cement mantle.
In this retrospective study, we investigated
the results of revision total hip replacement (THR) using a cemented long-stemmed
Exeter femoral component, with a minimum length of 205 mm in patients
with extensive femoral bone defects. The study included 37 consecutive
patients with a mean age of 76 years (39 to 93) and a mean follow-up
of nine years (5 to 16). A total of 26 patients (70%) had a pre-operative
Endo-Klinik score of 3 or 4. Impaction bone grafting was used in
24 patients (65%). At the time of evaluation, 22 patients (59%)
were still alive and were evaluated clinically and radiologically.
A total of 14 patients died during follow-up and their data were
included until the time of their death. One reconstruction failed
after five years and five months owing to recurrent dislocation:
the hip was converted to an excision arthroplasty. Intra-operative
fractures or fissures were encountered in nine patients (24%), but
none occurred during impaction of the bone graft. Post-operative
peri-prosthetic fractures occurred in two patients (5%); both were
treated with plate fixation. At nine years, survival with the endpoint
of all-cause re-revision was 96.3% (95% CI 76.4 to 99.5); including
re-operations for any reason, it was 80.7% (95% CI 56.3 to 92.3%).
There were no re-revisions for aseptic loosening. The survival of long stem cemented femoral components following
revision THR is satisfactory in a fragile population with extensive
femoral defects. Cite this article:
Femoral revision after cemented total hip replacement
(THR) might include technical difficulties, following essential cement
removal, which might lead to further loss of bone and consequently
inadequate fixation of the subsequent revision stem. Femoral impaction allografting has been widely used in revision
surgery for the acetabulum, and subsequently for the femur. In combination
with a primary cemented stem, impaction grafting allows for femoral
bone restoration through incorporation and remodelling of the impacted
morsellized bone graft by the host skeleton. Cavitary bone defects
affecting meta-physis and diaphysis leading to a wide femoral shaft,
are ideal indications for this technique. Cancellous allograft bone
chips of 1 mm to 2 mm size are used, and tapered into the canal
with rods of increasing diameters. To impact the bone chips into
the femoral canal a prosthesis dummy of the same dimensions of the definitive
cemented stem is driven into the femur to ensure that the chips
are very firmly impacted. Finally, a standard stem is cemented into
the neo-medullary canal using bone cement. To date several studies have shown favourable results with this
technique, with some excellent long-term results reported in independent
clinical centres worldwide. Cite this article:
Between 1980 and 2000, 63 support rings were used in the management of acetabular deficiency in a series of 60 patients, with a mean follow-up of 8.75 years (2 months to 23.8 years). There was a minimum five-year follow-up for successful reconstructions. The indication for revision surgery was aseptic loosening in 30 cases and infection in 33. All cases were Paprosky III defects; IIIA in 33 patients (52.4%) and IIIB in 30 (47.6%), including four with pelvic dissociation. A total of 26 patients (43.3%) have died since surgery, and 34 (56.7%) remain under clinical review. With acetabular revision for infection or aseptic loosening as the definition of failure, we report success in 53 (84%) of the reconstructions. A total of 12 failures (19%) required further surgery, four (6.3%) for aseptic loosening of the acetabular construct, six (9.5%) for recurrent infection and two (3.2%) for recurrent dislocation requiring captive components. Complications, seen in 11 patients (18.3%), included six femoral or sciatic neuropraxias which all resolved, one grade III heterotopic ossification, one on-table acetabular revision for instability, and three early post-operative dislocations managed by manipulation under anaesthesia, with no further instability. We recommend support rings and morcellised bone graft for significant acetabular bone deficiency that cannot be reconstructed using mesh.
Femoral impaction bone allografting has been developed as a means of restoring bone stock in revision total hip replacement. We report the results of 75 consecutive patients (75 hips) with a mean age of 68 years (35 to 87) who underwent impaction grafting using the Exeter collarless, polished, tapered femoral stem between 1992 and 1998. The mean follow-up period was 10.5 years (6.3 to 14.1). The median pre-operative bone defect score was 3 (interquartile range (IQR) 2 to 3) using the Endo-Klinik classification. The median subsidence at one year post-operatively was 2 mm (IQR 1 to 3). At the final review the median Harris hip score was 80.6 (IQR 67.6 to 88.9) and the median subsidence 2 mm (IQR 1 to 4). Incorporation of the allograft into trabecular bone and secondary remodelling were noted radiologically at the final follow-up in 87% (393 of 452 zones) and 40% (181 of 452 zones), respectively. Subsidence of the Exeter stem correlated with the pre-operative Endo-Klinik bone loss score (p = 0.037). The degree of subsidence at one year had a strong association with long-term subsidence (p <
0.001). There was a significant correlation between previous revision surgery and a poor Harris Hip score (p = 0.028), and those who had undergone previous revision surgery for infection had a higher risk of complications (p = 0.048). Survivorship at 10.5 years with any further femoral operation as the end-point was 92% (95% confidence interval 82 to 97).
Despite the worldwide usage of the cemented Contemporary
acetabular component (Stryker), no published data are available
regarding its use in patients aged <
50 years. We undertook a
mid- to long-term follow-up study, including all consecutive patients
aged
<
50 years who underwent a primary total hip replacement using
the Contemporary acetabular component with the Exeter cemented stem
between January 1999 and January 2006. There were 152 hips in 126
patients, 61 men and 65 women, mean age at surgery 37.6 years (16
to 49 yrs). One patient was lost to follow-up. Mean clinical follow-up of all implants was 7.6 years (0.9 to
12.0). All clinical questionnaire scores, including Harris hip score,
Oxford hip score and several visual analogue scales, were found
to have improved. The eight year survivorship of all acetabular
components for the endpoints revision for any reason or revision
for aseptic loosening was 94.4% (95% confidence interval (CI) 89.2
to 97.2) and 96.4% (95% CI 91.6 to 98.5), respectively. Radiological follow-up
was complete for 146 implants. The eight year survival for the endpoint
radiological loosening was 93.1% (95% CI 86.2 to 96.6). Three surviving
implants were considered radiologically loose but were asymptomatic.
The presence of acetabular osteolysis (n = 17, 11.8%) and radiolucent
lines (n = 20, 13.9%) in the 144 surviving cups indicates a need
for continued observation in the second decade of follow-up in order
to observe their influence on long-term survival. The clinical and radiological data resulting in a ten-year survival
rate >
90% in young patients support the use of the Contemporary
acetabular component in this specific patient group. Cite this article:
The purpose of this prospective study was to
evaluate the long-term clinical and radiological outcomes of revision of
the femoral component of a total hip replacement using impaction
bone grafting. Femoral revision with an impacted allograft was performed
on 29 patients (31 hips). In all, 21 hips (68%) had grade III or
IV femoral defects according to the Endo-Klinik classification.
A total of 11 patients (12 hips) died before the ten-year follow-up
period. Of the remaining patients, 18 patients (19 hips) were followed
for 10 to 15 years; three further patients died during this time.
None of the 31 stems underwent further revision of their stem. However,
four stems showed extensive subsidence (>
15 mm). One of these patients
had a femoral fracture that required fixation. Three other patients
had a femoral fracture, two of which required fixation and the other
was treated conservatively. Patients with a femoral fracture and/or
severe subsidence had significantly more grade IV defects (six of
seven hips; p = 0.004). One patient needed a closed reduction for
dislocation. Impaction allografting in revision hip surgery gives good long-term
results for femora with grades I, II and III Endo-Klinik-classified
defects. Extensive subsidence and femoral fractures were seen mainly
in patients with grade IV damaged femora.
We prospectively followed 191 consecutive collarless
polished tapered (CPT) femoral stems, implanted in 175 patients
who had a mean age at operation of 64.5 years (21 to 85). At a mean
follow-up of 15.9 years (14 to 17.5), 86 patients (95 hips) were
still alive. The fate of all original stems is known. The 16-year
survivorship with re-operation for any reason was 80.7% (95% confidence
interval 72 to 89.4). There was no loss to follow-up, with clinical
data available on all 95 hips and radiological assessment performed
on 90 hips (95%). At latest follow-up, the mean Harris hip score
was 78 (28 to 100) and the mean Oxford hip score was 36 (15 to 48).
Stems subsided within the cement mantle, with a mean subsidence
of 2.1 mm (0.4 to 19.2). Among the original cohort, only one stem
(0.5%) has been revised due to aseptic loosening. In total seven
stems were revised for any cause, of which four revisions were required
for infection following revision of the acetabular component. A
total of 21 patients (11%) required some sort of revision procedure;
all except three of these resulted from failure of the acetabular
component. Cemented acetabular components had a significantly lower
revision burden (three hips, 2.7%) than Harris Galante uncemented
components (17 hips, 21.8%) (p <
0.001). The CPT stem continues to provide excellent radiological and
clinical outcomes at 15 years following implantation. Its results
are consistent with other polished tapered stem designs.
We describe the results of 81 consecutive revision
total hip replacements with impaction grafting in 79 patients using
a collared polished chrome–cobalt stem, customised in length according
to the extent of distal bone loss. Our hypothesis was that the features
of this stem would reduce the rate of femoral fracture and subsidence
of the stem. The mean follow-up was 12 years (8 to 15). No intra-operative
fracture or significant subsidence occurred. Only one patient suffered
a post-operative diaphyseal fracture, which was associated with
a fall. All but one femur showed incorporation of the graft. No
revision for aseptic loosening was recorded. The rate of survival of the femoral component at 12 years, using
further femoral revision as the endpoint, was 100% (95% confidence
interval (CI) 95.9 to 100), and at nine years using re-operation
for any reason as the endpoint, was 94.6% (95% CI 92.0 to 97.2). These results suggest that a customised cemented polished stem
individually adapted to the extent of bone loss and with a collar
may reduce subsidence and the rate of fracture while maintaining
the durability of the fixation.
Failure of total hip arthroplasty with acetabular deficiency occurred in 55 patients (60 hips) and was treated with acetabular revision using morsellised allograft and a cemented metal-backed component. A total of 50 patients (55 hips) were available for clinical and radiological evaluation at a mean follow-up of 5.8 years (3 to 9.5). No hip required further revision of the acetabular component because of aseptic loosening. All the hips except one had complete incorporation of the allograft demonstrated on the radiographs. A complete radiolucent line of >
1 mm was noted in two hips post-operatively. A good to excellent result occurred in 50 hips (91%). With radiological evidence of aseptic loosening of the acetabular component as the end-point, the survivorship at a mean of 5.8 years after surgery was 96.4%. The use of impacted allograft chips in combination with a cemented metal-backed acetabular component and screw fixation can achieve good medium-term results in patients with acetabular bone deficiency.
The hip joint is commonly involved in multiple epiphyseal dysplasia and patients may require total hip replacement before the age of 30 years. We retrospectively reviewed nine patients (16 hips) from four families. The diagnosis of multiple epiphyseal dysplasia was based on a family history, genetic counselling, clinical features and radiological findings. The mean age at surgery was 32 years (17 to 63), with a mean follow-up of 15.9 years (5.5 to 24). Of the 16 hips, ten required revision at a mean of 12.5 years (5 to 15) consisting of complete revision of the acetabular component in three hips and isolated exchange of the liner in seven. No femoral component has loosened or required revision during the period of follow-up. With revision for any reason, the 15-year survival was only 11.4% (95% confidence interval 1.4 to 21.4). However, when considering revision of the acetabular shell in isolation the survival at ten years was 93.7% (95% confidence interval 87.7 to 99.7), reducing to 76.7% (95% confidence interval 87.7 to 98.7) at 15 and 20 years, respectively.
We report the use of an allograft prosthetic composite for reconstruction of the skeletal defect in complex revision total hip replacement for severe proximal femoral bone loss. Between 1986 and 1999, 72 patients (20 men, 52 women) with a mean age of 59.9 years (38 to 78) underwent reconstruction using this technique. At a mean follow-up of 12 years (8 to 20) 57 patients were alive, 14 had died and one was lost to follow-up. Further revision was performed in 19 hips at a mean of 44.5 months (11 to 153) post-operatively. Causes of failure were aseptic loosening in four, allograft resorption in three, allograft nonunion in two, allograft fracture in four, fracture of the stem in one, and deep infection in five. The survivorship of the allograft-prosthesis composite at ten years was 69.0% (95% confidence interval 67.7 to 70.3) with 26 patients remaining at risk. Survivorship was statistically significantly affected by the severity of the pre-operative bone loss (Paprosky type IV; p = 0.019), the number of previous hip revisions exceeding two (p = 0.047), and the length of the allograft used (p = 0.005).
We evaluated the outcome of 104 consecutive primary cemented Exeter femoral components in 78 patients (34 men, 44 women) under the age of 40 years who underwent total hip replacement between October 1993 and May 2004. The mean age at operation was 31 years (16 to 39). No hip was lost to follow-up, but three patients (four hips) died. None of the deaths were related to the surgery. At a mean follow-up of 6.2 years (2 to 13), three femoral components had been revised for septic loosening. Using Kaplan-Meier survival analysis, the seven-year survival of the component with revision for any reason as the endpoint was 95.8% (95% confidence interval 86.67 to 98.7). The seven-year survival with aseptic femoral loosening as the endpoint was 100% (95% confidence interval 100). The cemented Exeter femoral component in patients under the age of 40 shows promising medium-term results. As it is available in a wide range of sizes and offsets, we could address all types of anatomical variation in this series without the need for custom-made components.
We reviewed the clinical and radiological results of 131 patients who underwent acetabular revision for aseptic loosening with impacted bone allograft and a cemented acetabular component. The mean follow-up was 51.7 months (24 to 156). The mean post-operative Merle D’Aubigné and Postel scores were 5.7 points (4 to 6) for pain, 5.2 (3 to 6) for gait and 4.5 (2 to 6) for mobility. Radiological evaluation revealed migration greater than 5 mm in four acetabular components. Radiological failure matched clinical failure. Asymptomatic radiolucent lines were observed in 31 of 426 areas assessed (7%). Further revision was required in six patients (4.5%), this was due to infection in three and mechanical failure in three. The survival rate for the reconstruction was 95.8% (95% confidence interval 92.3 to 99.1) overall, and 98%, excluding revision due to sepsis. Our study, from an independent centre, has reproduced the results of the originators of the method.
We assessed the outcome of patients with Vancouver type B2 and B3 periprosthetic fractures treated with femoral revision using an uncemented extensively porous-coated implant. A retrospective clinical and radiographic assessment of 22 patients with a mean follow-up of 33.7 months was performed. The mean time from the index procedure to fracture was 10.8 years. There were 17 patients with a satisfactory result. Complications in four patients included subsidence in two, deep sepsis in one, and delayed union in one. Concomitant acetabular revision was required in 19 patients. Uncemented extensively porous-coated femoral stems incorporate distally allowing stable fixation. We found good early survival rates and a low incidence of nonunion using this implant.