Advertisement for orthosearch.org.uk
Results 1 - 50 of 625
Results per page:
Bone & Joint Open
Vol. 3, Issue 11 | Pages 907 - 912
23 Nov 2022
Hurley RJ McCabe FJ Turley L Maguire D Lucey J Hurson CJ

Aims. The use of fluoroscopy in orthopaedic surgery creates risk of radiation exposure to surgeons. Appropriate personal protective equipment (PPE) can help mitigate this. The primary aim of this study was to assess if current radiation protection in orthopaedic trauma is safe. The secondary aims were to describe normative data of radiation exposure during common orthopaedic procedures, evaluate ways to improve any deficits in protection, and validate the use of electronic personal dosimeters (EPDs) in assessing radiation dose in orthopaedic surgery. Methods. Radiation exposure to surgeons during common orthopaedic trauma operations was prospectively assessed using EPDs and thermoluminescent dosimeters (TLDs). Normative data for each operation type were calculated and compared to recommended guidelines. Results. Current PPE appears to mitigate more than 90% of ionizing radiation in orthopaedic fluoroscopic procedures. There is a higher exposure to the inner thigh during seated procedures. EPDs provided results for individual procedures. Conclusion. PPE currently used by surgeons in orthopaedic trauma theatre adequately reduces radiation exposure to below recommended levels. Normative data per trauma case show specific anatomical areas of higher exposure, which may benefit from enhanced radiation protection. EPDs can be used to assess real-time radiation exposure in orthopaedic surgery. There may be a role in future medical wearables for orthopaedic surgeons. Cite this article: Bone Jt Open 2022;3(11):907–912


The Bone & Joint Journal
Vol. 103-B, Issue 4 | Pages 739 - 745
1 Apr 2021
Mehta JS Hodgson K Yiping L Kho JSB Thimmaiah R Topiwala U Sawlani V Botchu R

Aims. To benchmark the radiation dose to patients during the course of treatment for a spinal deformity. Methods. Our radiation dose database identified 25,745 exposures of 6,017 children (under 18 years of age) and adults treated for a spinal deformity between 1 January 2008 and 31 December 2016. Patients were divided into surgical (974 patients) and non-surgical (5,043 patients) cohorts. We documented the number and doses of ionizing radiation imaging events (radiographs, CT scans, or intraoperative fluoroscopy) for each patient. All the doses for plain radiographs, CT scans, and intraoperative fluoroscopy were combined into a single effective dose by a medical physicist (milliSivert (mSv)). Results. There were more ionizing radiation-based imaging events and higher radiation dose exposures in the surgical group than in the non-surgical group (p < 0.001). The difference in effective dose for children between the surgical and non-surgical groups was statistically significant, the surgical group being significantly higher (p < 0.001). This led to a higher estimated risk of cancer induction for the surgical group (1:222 surgical vs 1:1,418 non-surgical). However, the dose difference for adults was not statistically different between the surgical and non-surgical groups. In all cases the effective dose received by all cohorts was significantly higher than that from exposure to natural background radiation. Conclusion. The treatment of spinal deformity is radiation-heavy. The dose exposure is several times higher when surgical treatment is undertaken. Clinicians should be aware of this and review their practices in order to reduce the radiation dose where possible. Cite this article: Bone Joint J 2021;103-B(4):1–7


The Bone & Joint Journal
Vol. 101-B, Issue 3 | Pages 241 - 245
1 Mar 2019
Leaver T Johnson B Lampard J Aarvold A Uglow M

Aims. The aim of this study was to quantify the risk of developing cancer from the exposure to radiation associated with surgery to correct limb deformities in children. Patients and Methods. A total of 35 children were studied. There were 19 girls and 16 boys. Their mean age was 11.9 years (2 to 18) at the time of surgery. Details of the radiological examinations were recorded during gradual correction using a Taylor Spatial Frame. The dose area product for each radiograph was obtained from the Computerised Radiology Information System database. The effective dose in millisieverts (mSv) was calculated using conversion coefficients for the anatomical area. The lifetime risk of developing cancer was calculated using government-approved Health Protection Agency reports, accounting for the age and gender of the child. Results. Correction was undertaken in five femurs, 18 tibiae, and 12 feet. The median duration of treatment was 45 months (11 to 118). The mean effective dose was 0.31 mSv (0.05 to 0.64) for the femur, 0.29 mSv (0.01 to 0.97) for the tibia, and 0.027 mSv (0.001 to 0.161) for the foot. The cumulative exposure gave ‘negligible’ risk in 26 children and ‘minimal’ risk in nine children, according to Public Health England categories. These results are below the mean annual background radiation in the United Kingdom. Conclusion. The lifetime attributable risk of developing cancer from repeated exposure to radiation was negligible or minimal in all children. This is the first study to quantify the exposure to radiation from serial radiographs in children with limb deformities who are treated surgically using circular external fixation, linking this to the risk of developing cancer. Cite this article: Bone Joint J 2019;101-B:241–245


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 1 | Pages 23 - 27
1 Jan 2012
Uzoigwe CE Middleton RG

Radiological imaging is necessary in a wide variety of trauma and elective orthopaedic operations. The evolving orthopaedic workforce includes an increasing number of pregnant workers. Current legislation in the United Kingdom, Europe and United States allows them to choose their degree of participation, if any, with fluoroscopic procedures. For those who wish to engage in radiation-prone procedures, specific regulations apply to limit the radiation dose to the pregnant worker and unborn child. This paper considers those aspects of radiation protection, the potential effects of exposure to radiation in pregnancy and the dose of radiation from common orthopaedic procedures, which are important for safe clinical practice


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 8 | Pages 1060 - 1063
1 Aug 2007
Singh PJ Perera NS Dega R

We carried out a prospective study over a period of 12 months to measure the exposure to radiation of the hands of a dedicated foot and ankle surgeon. A thermoluminescent dosimeter ring (TLD) was used to measure the cumulative dose of radiation. Fluoroscopy was used in operations on the foot and ankle. The total screening time was 3028 s, with a mean time per procedure of 37.4 s (0.6 to 197). This correlated positively with the number of procedures performed (r = 0.92, p < 0.001), and with the dose of radiation in both the left (r = 0.85, p = 0.0005) and right TLDs (r = 0.59, p = 0.419). There was no significant difference in the dose of radiation between the two hands (t-test, p = 0.62). The total dose to the right TLD over the 12 months was 2.4 millisieverts. This is a simple and convenient method for evaluating the exposure of a single surgeon to radiation. The radiation detected was well below the annual dose limit set by the International Commission on Radiological Protection


The Bone & Joint Journal
Vol. 99-B, Issue 7 | Pages 944 - 950
1 Jul 2017
Fan G Fu Q Zhang J Zhang H Gu X Wang C Gu G Guan X Fan Y He S

Aims. Minimally invasive transforaminal lumbar interbody fusion (MITLIF) has been well validated in overweight and obese patients who are consequently subject to a higher radiation exposure. This prospective multicentre study aimed to investigate the efficacy of a novel lumbar localisation system for MITLIF in overweight patients. Patients and Methods. The initial study group consisted of 175 patients. After excluding 49 patients for various reasons, 126 patients were divided into two groups. Those in Group A were treated using the localisation system while those in Group B were treated by conventional means. The primary outcomes were the effective radiation dosage to the surgeon and the exposure time. Results. There were 62 patients in Group A and 64 in Group B. The mean effective dosage was 0.0217 mSv (standard deviation (. sd. ) 0.0079) in Group A and 0.0383 mSv (. sd. 0.0104) in Group B (p <  0.001). The mean fluoroscopy exposure time was 26.42 seconds (. sd. 5.91) in Group A and 40.67 seconds (. sd. 8.18) in Group B (p < 0.001). The operating time was 175.56 minutes (. sd. 32.23) and 206.08 minutes (. sd. 30.15) (p < 0.001), respectively. The mean pre-operative localisation time was 4.73 minutes (. sd. 0.84) in Group A and 7.03 minutes (. sd. 1.51) in Group B (p < 0.001). The mean screw placement time was 47.37 minutes (. sd. 10.43) in Group A and 67.86 minutes (. sd. 14.15) in Group B (p < 0.001). The pedicle screw violation rate was 0.35% (one out of 283) in Group A and 2.79% (eight out of 287) in Group B (p = 0.020). Conclusion. The study shows that the localisation system can effectively reduce radiation exposure, exposure time, operating time, pre-operative localisation time, and screw placement time in overweight patients undergoing MITLIF. Cite this article: Bone Joint J 2017;99-B:944–50


Bone & Joint Research
Vol. 5, Issue 7 | Pages 307 - 313
1 Jul 2016
Sandgren B Skorpil M Nowik P Olivecrona H Crafoord J Weidenhielm L Persson A

Objectives. Computed tomography (CT) plays an important role in evaluating wear and periacetabular osteolysis (PAO) in total hip replacements. One concern with CT is the high radiation exposure since standard pelvic CT provides approximately 3.5 millisieverts (mSv) of radiation exposure, whereas a planar radiographic examination with three projections totals approximately 0.5 mSv. The objective of this study was to evaluate the lowest acceptable radiation dose for dual-energy CT (DECT) images when measuring wear and periacetabular osteolysis in uncemented metal components. Materials and Methods. A porcine pelvis with bilateral uncemented hip prostheses and with known linear wear and acetabular bone defects was examined in a third-generation multidetector DECT scanner. The examinations were performed with four different radiation levels both with and without iterative reconstruction techniques. From the high and low peak kilo voltage acquisitions, polychrmoatic images were created together with virtual monochromatic images of energies 100 kiloelectron volts (keV) and 150 keV. Results. We could assess wear and PAO while substantially lowering the effective radiation dose to 0.7 mSv for a total pelvic view with an accuracy of around 0.5 mm for linear wear and 2 mm to 3 mm for PAO. Conclusion. CT for detection of prosthetic wear and PAO could be used with clinically acceptable accuracy at a radiation exposure level equal to plain radiographic exposures. Cite this article: B. Sandgren, M. Skorpil, P. Nowik, H. Olivecrona, J. Crafoord, L. Weidenhielm, A. Persson. Assessment of wear and periacetabular osteolysis using dual energy computed tomography on a pig cadaver to identify the lowest acceptable radiation dose. Bone Joint Res 2016;5:307–313. DOI: 10.1302/2046-3758.57.2000566


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 495 - 500
1 Apr 2020
Milligan DJ Cosgrove AP

Aims. To monitor the performance of services for developmental dysplasia of the hip (DDH) in Northern Ireland and identify potential improvements to enhance quality of service and plan for the future. Methods. This was a prospective observational study, involving all infants treated for DDH between 2011 and 2017. Children underwent clinical assessment and radiological investigation as per the regional surveillance policy. The regional radiology data was interrogated to quantify the use of ultrasound and ionizing radiation for this population. Results. Evidence-based changes were made to the Northern Ireland screening programme, including an increase in ultrasound scanning capacity and expansion of nurse-led screening clinics. The number of infant hip ultrasound scans increased from 4,788 in 2011, to approximately 7,000 in 2013 and subsequent years. The number of hip radiographs on infants of less than one year of age fell from 7,381 to 2,208 per year. There was a modest increase in the treatment rate from 10.9 to 14.3 per 1,000 live births but there was a significant reduction in the number of closed hip reductions. The incidence of infants diagnosed with DDH after one year of age was 0.30 per 1,000 live births over the entire period. Conclusion. Improving compliance with the regional infant hip screening protocols led to reduction in operative procedures and reduced the number of pelvic radiographs of infants. We conclude that performance monitoring of screening programmes for DDH is essential to provide a quality service. Cite this article: Bone Joint J 2020;102-B(4):495–500


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 6 | Pages 815 - 818
1 Aug 2001
Alonso JA Shaw DL Maxwell A McGill GP Hart GC

We measured the scattered radiation received by theatre staff, using high-sensitivity electronic personal dosimeters, during fixation of extracapsular fractures of the neck of the femur by dynamic hip screw. The dose received was correlated with that received by the patient, and the distance from the source of radiation. A scintillation detector and a water-filled model were used to define a map of the dose rate of scattered radiation in a standard operating theatre during surgery. Beyond two metres from the source of radiation, the scattered dose received was consistently low, while within the operating distance that received by staff was significant for both lateral and posteroanterior (PA) projections. The routine use of lead aprons outside the 2 m zone may be unnecessary. Within that zone it is recommended that lead aprons be worn and that thyroid shields are available for the surgeon and nursing assistants


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 7 | Pages 982 - 988
1 Jul 2012
Puri A Gulia A Jambhekar N Laskar S

We analysed the outcome of patients with primary non-metastatic diaphyseal sarcomas who had en bloc resection with preservation of the adjoining joints and reconstruction with re-implantation of sterilised tumour bone after extracorporeal radiation (50 Gy). Between March 2005 and September 2009, 32 patients (16 Ewing’s sarcoma and 16 osteogenic sarcoma) with a mean age of 15 years (2 to 35) underwent this procedure. The femur was the most common site in 17 patients, followed by the tibia in 11, humerus in three and ulna in one. The mean resected length of bone was 19 cm (10 to 26). A total of 31 patients were available at a mean follow-up of 34 months (12 to 74). The mean time to union for all osteotomy sites was 7.3 months (3 to 28): metaphyseal osteotomy sites united quicker than diaphyseal osteotomy sites (5.8 months (3 to 10) versus 9.5 months (4 to 28)). There were three local recurrences, all in soft-tissue away from irradiated graft. At the time of final follow-up, 19 patients were free of disease, one was alive with disease and 11 had died of disease. The mean Musculoskeletal Tumor Society Score for 29 patients evaluated at the last follow-up was 26 (9 to 30). Extracorporeal irradiation is an oncologically safe and inexpensive technique for limb salvage in diaphyseal sarcomas and has good functional results


The Journal of Bone & Joint Surgery British Volume
Vol. 31-B, Issue 2 | Pages 268 - 280
1 May 1949
Ellis F

The problems of diagnosis and treatment of osteoclastoma are considered. The importance of full investigation, and the advantages of drill biopsy in confirming the diagnosis, are discussed. Treatment by radiation is believed to be better than treatment by surgical measures. Curettage and excision are unnecessary. Amputation for benign osteoclastoma is unjustifiable



The Journal of Bone & Joint Surgery British Volume
Vol. 71-B, Issue 3 | Pages 483 - 485
1 May 1989
Berg M Bergman B Hoborn J

We have evaluated the effect of shortwave ultraviolet radiation on bacterial levels in an operating theatre, both in experimental conditions and during 20 hip operations. When compared with the use of sham blue light, there was a significant reduction in the number of bacteria. The reduced level was comparable with that suggested for ultraclean air ventilation systems


The Journal of Bone & Joint Surgery British Volume
Vol. 60-B, Issue 3 | Pages 370 - 374
1 Aug 1978
Grobbelaar C du Plessis T Marais F

The radiation crosslinking of high-density polyethylene prostheses was investigated over a wide range of doses in the presence and absence of gaseous crosslinking agents. It was found that in the bulk polymer the crosslinking pattern is completely different from the homogeneous crosslinking that occurs in polymer films. The presence of crosslinking agents causes highly crosslinked polymer to be formed on the surface while the bulk of the polymer is largely unaffected--which is explained in terms of diffusion phenomena. This surface crosslinking has a profound effect on the mechanical properties of the prostheses and restricts cold flow and deformation of the polymer without sacrificing the excellent abrasion-resistance properties of the polyethylene when subjected to high pressures. Based on this research a number of high-density polyethylene knee prostheses have been radiation-crosslinked and the results in vitro appear to be very promising


The Journal of Bone & Joint Surgery British Volume
Vol. 73-B, Issue 5 | Pages 811 - 815
1 Sep 1991
Berg M Bergman B Hoborn J

Clean air in the operating room is important during joint replacement surgery. We compared monochromatic ultraviolet radiation of 254 nm with the use of a Charnley-Howorth air enclosure by bacterial air-sampling during 113 total hip arthroplasties. Air samples were taken continuously at the edge of the wound and every 15 minutes at a site 130 cm from the operating table. We also tested the effect of occlusive clothing for all personnel. Ultraviolet light was more efficient than the ultra-clean air enclosure, and occlusive clothing on its own or in combination also produced improvement. The implications of these findings are discussed


The Bone & Joint Journal
Vol. 97-B, Issue 4 | Pages 550 - 557
1 Apr 2015
Mollon B Lee A Busse JW Griffin AM Ferguson PC Wunder JS Theodoropoulos J

Pigmented villonodular synovitis (PVNS) is a rare proliferative process of the synovium which most commonly affects the knee and occurs in either a localised (LPVNS) or a diffuse form (DPVNS). The effect of different methods of surgical synovectomy and adjuvant radiotherapy on the rate of recurrence is unclear. We conducted a systematic review and identified 35 observational studies in English which reported the use of surgical synovectomy to treat PVNS of the knee.

A meta-analysis included 630 patients, 137 (21.8%) of whom had a recurrence after synovectomy. For patients with DPVNS, low-quality evidence found that the rate of recurrence was reduced by both open synovectomy (odds ration (OR) = 0.47; 95% CI 0.25 to 0.90; p = 0.024) and combined open and arthroscopic synovectomy (OR = 0.19, 95% CI = 0.06 to 0.58; p = 0.003) compared with arthroscopic surgery. Very low-quality evidence found that the rate of recurrence of DPVNS was reduced by peri-operative radiotherapy (OR = 0.31, 95% CI 0.14 to 0.70; p = 0.01). Very low-quality evidence suggested that the rate of recurrence of LPVNS was not related to the surgical approach.

This meta-analysis suggests that open synovectomy or synovectomy combined with peri-operative radiotherapy for DPVNS is associated with a reduced rate of recurrence. Large long-term prospective multicentre observational studies, with a focus on both rate of recurrence and function, are required to confirm these findings.

Cite this article: Bone Joint J 2015;97-B:550–7.


The Journal of Bone & Joint Surgery British Volume
Vol. 74-B, Issue 6 | Pages 934 - 934
1 Nov 1992
Stoker D


The Journal of Bone & Joint Surgery British Volume
Vol. 74-B, Issue 3 | Pages 332 - 334
1 May 1992
Hynes D Conere T Mee M Cashman W


The Journal of Bone & Joint Surgery British Volume
Vol. 68-B, Issue 4 | Pages 517 - 519
1 Aug 1986
Pemberton J


The Journal of Bone & Joint Surgery British Volume
Vol. 75-B, Issue 1 | Pages 4 - 5
1 Jan 1993
Stoker D


The Journal of Bone & Joint Surgery British Volume
Vol. 72-B, Issue 2 | Pages 309 - 311
1 Mar 1990
De Santis G Williams J Dvir E O'Brien B Hurley J Goldberg I

A dose of 48 Gy of X-irradiation given over two to five weeks after grafting caused no significant delay in the rate of healing and only a small and statistically non-significant decrease in the torsional strength of the graft-bone junction of either vascularised or non-vascularised bone grafts of the tibiae of rabbits. Healing was faster and the union between the graft and adjacent bone developed torsional strength significantly more rapidly with vascularised than with non-vascularised grafts. These findings suggest that postoperative radiotherapy is unlikely to have a significantly deleterious effect on the healing of bone grafts used to repair defects produced by excision of malignant bone tumours.


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 3 | Pages 333 - 336
1 Apr 2004
Sinha S Evans SJ Arundell MK Burke FD


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 7 | Pages 1084 - 1085
1 Sep 2003
BURY RF TAYLOR C


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 6 | Pages 781 - 782
1 Aug 2002
Butt WP Walkowiak J


Bone & Joint Research
Vol. 11, Issue 10 | Pages 715 - 722
10 Oct 2022
Matsuyama Y Nakamura T Yoshida K Hagi T Iino T Asanuma K Sudo A

Aims. Acridine orange (AO) demonstrates several biological activities. When exposed to low doses of X-ray radiation, AO increases the production of reactive radicals (radiodynamic therapy (AO-RDT)). We elucidated the efficacy of AO-RDT in breast and prostate cancer cell lines, which are likely to develop bone metastases. Methods. We used the mouse osteosarcoma cell line LM8, the human breast cancer cell line MDA-MB-231, and the human prostate cancer cell line PC-3. Cultured cells were exposed to AO and radiation at various concentrations followed by various doses of irradiation. The cell viability was then measured. In vivo, each cell was inoculated subcutaneously into the backs of mice. In the AO-RDT group, AO (1.0 μg) was locally administered subcutaneously around the tumour followed by 5 Gy of irradiation. In the radiation group, 5 Gy of irradiation alone was administered after macroscopic tumour formation. The mice were killed on the 14th day after treatment. The change in tumour volume by AO-RDT was primarily evaluated. Results. The viability of LM8, MDA-MB-231, and PC-3 cells strongly decreased at AO concentration of 1.0 μg/ml and a radiation dose of 5 Gy. In xenograft mouse model, the AO-RDT also showed a strong cytocidal effect on tumour at the backside in osteosarcoma, breast cancer, and prostate cancer. AO-RDT treatment was more effective for tumour control than radiotherapy in breast cancer. Conclusion. AO-RDT was effective in preventing the proliferation of osteosarcoma, breast cancer, and prostate cancer cell lines in vitro. The reduction in tumour volume by AO-RDT was also confirmed in vivo. Cite this article: Bone Joint Res 2022;11(10):715–722


Bone & Joint Research
Vol. 13, Issue 11 | Pages 682 - 693
26 Nov 2024
Wahl P Heuberger R Pascucci A Imwinkelried T Fürstner M Icken N Schläppi M Pourzal R Gautier E

Aims. Highly cross-linked polyethylene (HXLPE) greatly reduces wear in total hip arthroplasty, compared to conventional polyethylene (CPE). Cross-linking is commonly achieved by irradiation. This study aimed to compare the degree of cross-linking and in vitro wear rates across a cohort of retrieved and unused polyethylene cups/liners from various brands. Methods. Polyethylene acetabular cups/liners were collected at one centre from 1 April 2021 to 30 April 2022. The trans-vinylene index (TVI) and oxidation index (OI) were determined by Fourier-transform infrared spectrometry. Wear was measured using a pin-on-disk test. Results. A total of 47 specimens from ten brands were included. The TVI was independent of time in vivo. A linear correlation (R. 2. = 0.995) was observed between the old and current TVI standards, except for vitamin E-containing polyethylene. The absorbed irradiation dose calculated from the TVI corresponded to product specifications for all but two products. For one electron beam-irradiated HXLPE, a mean dose of 241% (SD 18%) of specifications was determined. For another, gamma-irradiated HXLPE, a mean 41% (SD 13%) of specifications was determined. Lower wear was observed for higher TVI. Conclusion. The TVI is a reliable measure of the absorbed irradiation dose and does not alter over time in vivo. The products of various brands differ by manufacturing details and consequently cross-linking characteristics. Absorption and penetration of electron radiation and gamma radiation differ, potentially leading to higher degrees of cross-linking for electron radiation. There is a non-linear, inverse correlation between TVI and in vitro wear. The wear resistance of the HXLPE with low TVI was reduced and more comparable to CPE. Cite this article: Bone Joint Res 2024;13(11):682–693


The Bone & Joint Journal
Vol. 104-B, Issue 11 | Pages 1196 - 1201
1 Nov 2022
Anderson CG Brilliant ZR Jang SJ Sokrab R Mayman DJ Vigdorchik JM Sculco PK Jerabek SA

Aims. Although CT is considered the benchmark to measure femoral version, 3D biplanar radiography (hipEOS) has recently emerged as a possible alternative with reduced exposure to ionizing radiation and shorter examination time. The aim of our study was to evaluate femoral stem version in postoperative total hip arthroplasty (THA) patients and compare the accuracy of hipEOS to CT. We hypothesize that there will be no significant difference in calculated femoral stem version measurements between the two imaging methods. Methods. In this study, 45 patients who underwent THA between February 2016 and February 2020 and had both a postoperative CT and EOS scan were included for evaluation. A fellowship-trained musculoskeletal radiologist and radiological technician measured femoral version for CT and 3D EOS, respectively. Comparison of values for each imaging modality were assessed for statistical significance. Results. Comparison of the mean postoperative femoral stem version measurements between CT and 3D hipEOS showed no significant difference (p = 0.862). In addition, the two version measurements were strongly correlated (r = 0.95; p < 0.001), and the mean paired difference in postoperative femoral version for CT scan and 3D biplanar radiography was -0.09° (95% confidence interval -1.09 to 0.91). Only three stem measurements (6.7%) were considered outliers with a > 5° difference. Conclusion. Our study supports the use of low-dose biplanar radiography for the postoperative assessment of femoral stem version after THA, demonstrating high correlation with CT. We found no significant difference for postoperative femoral version when comparing CT to 3D EOS. We believe 3D EOS is a reliable option to measure postoperative femoral version given its advantages of lower radiation dosage and shorter examination time. Cite this article: Bone Joint J 2022;104-B(11):1196–1201


The Bone & Joint Journal
Vol. 102-B, Issue 1 | Pages 90 - 101
1 Jan 2020
Davis ET Pagkalos J Kopjar B

Aims. The aim of this study was to identify the effect of the manufacturing characteristics of polyethylene acetabular liners on the survival of cementless and hybrid total hip arthroplasty (THA). Methods. Prospective cohort study using linked National Joint Registry (NJR) and manufacturer data. The primary endpoint was revision for aseptic loosening. Cox proportional hazard regression was the primary analytical approach. Manufacturing variables included resin type, crosslinking radiation dose, terminal sterilization method, terminal sterilization radiation dose, stabilization treatment, total radiation dose, packaging, and face asymmetry. Total radiation dose was further divided into G1 (no radiation), G2 (> 0 Mrad to < 5 Mrad), G3 (≥ 5 Mrad to < 10 Mrad), and G4 (≥ 10 Mrad). Results. A total of 5,329 THAs were revised, 1,290 of which were due to aseptic loosening. Total radiation dose, face asymmetry, and stabilization treatments were found to significantly affect implant survival. G1 had the highest revision risk for any reason and for aseptic loosening and G3 and G4 the lowest. Compared with G1, the adjusted hazard ratio for G2 was 0.74 (95% confidence interval (CI) 0.64 to 0.86), G3 was 0.36 (95% CI 0.30 to 0.43), and G4 was 0.38 (95% CI 0.31 to 0.47). The cumulative incidence of revision for aseptic loosening at 12 years was 0.52 and 0.54 per 100 THAs for G3 and G4, respectively, compared with 1.95 per 100 THAs in G1. Asymmetrical liners had a lower revision risk due to aseptic loosening and reasons other than aseptic loosening compared with symmetric (flat) liners. In G3 and G4, stabilization with vitamin E and heating above melting point performed best. Conclusion. Polyethylene liners with a total radiation dose of ≥ 5 Mrad, an asymmetrical liner face, and stabilization with heating above the melting point demonstrate best survival. Cite this article: Bone Joint J 2020;102-B(1):90–101


Bone & Joint 360
Vol. 13, Issue 1 | Pages 29 - 31
1 Feb 2024

The February 2024 Spine Roundup. 360. looks at: Surgeon assessment of bone – any good?; Robotics reduces radiation exposure in some spinal surgery; Interbody fusion cage versus anterior lumbar interbody fusion with posterior instrumentation; Is robotic-assisted pedicle screw placement an answer to the learning curve?; Acute non-traumatic spinal subarachnoid haematomas: a report of five cases and a systematic review of the literature; Is L4-L5 lateral interbody fusion safe and effective?


Bone & Joint 360
Vol. 12, Issue 1 | Pages 39 - 42
1 Feb 2023

The February 2023 Oncology Roundup. 360. looks at: Is the number of national database research studies in musculoskeletal sarcoma increasing, and are these studies reliable?; Re-excision after unplanned excision of soft-tissue sarcoma is associated with high morbidity; Adjuvant radiation in atypical lipomatous tumours; The oncological outcomes of isolated limb perfusion and neoadjuvant radiotherapy in soft-tissue sarcoma patients - a nationwide multicentre study; Can low-grade chondrosarcoma be treated with intralesional curettage and cryotherapy?; Efficacy and safety of carbon ion radiotherapy for bone sarcomas: a systematic review and meta-analysis; Doxorubicin-polymeric meshes prevent local recurrence after sarcoma resection while avoiding cardiotoxicity; How important are skip lesions in Ewing’s sarcoma?; Improving outcomes for amputees: the health-related quality of life and cost utility analysis of osseointegration prosthetics in transfemoral amputees


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 892 - 897
1 Sep 2024
Mancino F Fontalis A Kayani B Magan A Plastow R Haddad FS

Advanced 3D imaging and CT-based navigation have emerged as valuable tools to use in total knee arthroplasty (TKA), for both preoperative planning and the intraoperative execution of different philosophies of alignment. Preoperative planning using CT-based 3D imaging enables more accurate prediction of the size of components, enhancing surgical workflow and optimizing the precision of the positioning of components. Surgeons can assess alignment, osteophytes, and arthritic changes better. These scans provide improved insights into the patellofemoral joint and facilitate tibial sizing and the evaluation of implant-bone contact area in cementless TKA. Preoperative CT imaging is also required for the development of patient-specific instrumentation cutting guides, aiming to reduce intraoperative blood loss and improve the surgical technique in complex cases. Intraoperative CT-based navigation and haptic guidance facilitates precise execution of the preoperative plan, aiming for optimal positioning of the components and accurate alignment, as determined by the surgeon’s philosophy. It also helps reduce iatrogenic injury to the periarticular soft-tissue structures with subsequent reduction in the local and systemic inflammatory response, enhancing early outcomes. Despite the increased costs and radiation exposure associated with CT-based navigation, these many benefits have facilitated the adoption of imaged based robotic surgery into routine practice. Further research on ultra-low-dose CT scans and exploration of the possible translation of the use of 3D imaging into improved clinical outcomes are required to justify its broader implementation. Cite this article: Bone Joint J 2024;106-B(9):892–897


Aims. Ankle fracture fixation is commonly performed by junior trainees. Simulation training using cadavers may shorten the learning curve and result in a technically superior surgical performance. Methods. We undertook a preliminary, pragmatic, single-blinded, multicentre, randomized controlled trial of cadaveric simulation versus standard training. Primary outcome was fracture reduction on postoperative radiographs. Results. Overall, 139 ankle fractures were fixed by 28 postgraduate year three to five trainee surgeons (mean age 29.4 years; 71% males) during ten months' follow-up. Under the intention-to-treat principle, a technically superior fixation was performed by the cadaveric-trained group compared to the standard-trained group, as measured on the first postoperative radiograph against predefined acceptability thresholds. The cadaveric-trained group used a lower intraoperative dose of radiation than the standard-trained group (mean difference 0.011 Gym. 2. , 95% confidence interval 0.003 to 0.019; p = 0.009). There was no difference in procedure time. Conclusion. Trainees randomized to cadaveric training performed better ankle fracture fixations and irradiated patients less during surgery compared to standard-trained trainees. This effect, which was previously unknown, is likely to be a consequence of the intervention. Further study is required. Cite this article: Bone Jt Open 2023;4(8):594–601


The Bone & Joint Journal
Vol. 105-B, Issue 5 | Pages 543 - 550
1 May 2023
Abel F Avrumova F Goldman SN Abjornson C Lebl DR

Aims. The aim of this study was to assess the accuracy of pedicle screw placement, as well as intraoperative factors, radiation exposure, and complication rates in adult patients with degenerative disorders of the thoracic and lumbar spines who have undergone robotic-navigated spinal surgery using a contemporary system. Methods. The authors reviewed the prospectively collected data on 196 adult patients who had pedicle screws implanted with robot-navigated assistance (RNA) using the Mazor X Stealth system between June 2019 and March 2022. Pedicle screws were implanted by one experienced spinal surgeon after completion of a learning period. The accuracy of pedicle screw placement was determined using intraoperative 3D fluoroscopy. Results. A total of 1,123 pedicle screws were implanted: 1,001 screws (89%) were placed robotically, 63 (6%) were converted from robotic placement to a freehand technique, and 59 (5%) were planned to be implanted freehand. Of the robotically placed screws, 942 screws (94%) were determined to be Gertzbein and Robbins grade A with median deviation of 0.8 mm (interquartile range 0.4 to 1.6). Skive events were noted with 20 pedicle screws (1.8%). No adverse clinical sequelae were noted in the 90-day follow-up. The mean fluoroscopic exposure per screw was 4.9 seconds (SD 3.8). Conclusion. RNA is highly accurate and reliable, with a low rate of abandonment once mastered. No adverse clinical sequelae occurred after implanting a large series of pedicle screws using the latest generation of RNA. Understanding of patient-specific anatomical features and the real-time intraoperative identification of risk factors for suboptimal screw placement have the potential to improve accuracy further. Cite this article: Bone Joint J 2023;105-B(5):543–550


The Bone & Joint Journal
Vol. 106-B, Issue 7 | Pages 751 - 758
1 Jul 2024
Yaxier N Zhang Y Song J Ning B

Aims. Given the possible radiation damage and inaccuracy of radiological investigations, particularly in children, ultrasound and superb microvascular imaging (SMI) may offer alternative methods of evaluating new bone formation when limb lengthening is undertaken in paediatric patients. The aim of this study was to assess the use of ultrasound combined with SMI in monitoring new bone formation during limb lengthening in children. Methods. In this retrospective cohort study, ultrasound and radiograph examinations were performed every two weeks in 30 paediatric patients undergoing limb lengthening. Ultrasound was used to monitor new bone formation. The number of vertical vessels and the blood flow resistance index were compared with those from plain radiographs. Results. We categorized the new bone formation into three stages: stage I (early lengthening), in which there was no obvious callus formation on radiographs and ultrasound; stage II (lengthening), in which radiographs showed low-density callus formation with uneven distribution and three sub-stages could be identified on ultrasound: in Ia punctate callus was visible; in IIb there was linear callus formation which was not yet connected and in IIc there was continuous linear callus. In stage III (healing), the bone ends had united, the periosteum was intact, and the callus had disappeared, as confirmed on radiographs, indicating healed bone. A progressive increase in the number of vertical vessels was noted in the early stages, peaking during stages IIb and IIc, followed by a gradual decline (p < 0.001). Delayed healing involved patients with a prolonged stage IIa or those who regressed to stage IIa from stages IIb or IIc during lengthening. Conclusion. We found that the formation of new bone in paediatric patients undergoing limb lengthening could be reliably evaluated using ultrasound when combined with the radiological findings. This combination enabled an improved assessment of the prognosis, and adjustments to the lengthening protocol. While SMI offered additional insights into angiogenesis within the new bone, its role primarily contributed to the understanding of the microvascular environment rather than directly informing adjustments of treatment. Cite this article: Bone Joint J 2024;106-B(7):751–758


Bone & Joint Open
Vol. 4, Issue 8 | Pages 602 - 611
21 Aug 2023
James HK Pattison GTR Griffin J Fisher JD Griffin DR

Aims. To evaluate if, for orthopaedic trainees, additional cadaveric simulation training or standard training alone yields superior radiological and clinical outcomes in patients undergoing dynamic hip screw (DHS) fixation or hemiarthroplasty for hip fracture. Methods. This was a preliminary, pragmatic, multicentre, parallel group randomized controlled trial in nine secondary and tertiary NHS hospitals in England. Researchers were blinded to group allocation. Overall, 40 trainees in the West Midlands were eligible: 33 agreed to take part and were randomized, five withdrew after randomization, 13 were allocated cadaveric training, and 15 were allocated standard training. The intervention was an additional two-day cadaveric simulation course. The control group received standard on-the-job training. Primary outcome was implant position on the postoperative radiograph: tip-apex distance (mm) (DHS) and leg length discrepancy (mm) (hemiarthroplasty). Secondary clinical outcomes were procedure time, length of hospital stay, acute postoperative complication rate, and 12-month mortality. Procedure-specific secondary outcomes were intraoperative radiation dose (for DHS) and postoperative blood transfusion requirement (hemiarthroplasty). Results. Eight female (29%) and 20 male trainees (71%), mean age 29.4 years, performed 317 DHS operations and 243 hemiarthroplasties during ten months of follow-up. Primary analysis was a random effect model with surgeon-level fixed effects of patient condition, patient age, and surgeon experience, with a random intercept for surgeon. Under the intention-to-treat principle, for hemiarthroplasty there was better implant position in favour of cadaveric training, measured by leg length discrepancy ≤ 10 mm (odds ratio (OR) 4.08 (95% confidence interval (CI) 1.17 to 14.22); p = 0.027). There were significantly fewer postoperative blood transfusions required in patients undergoing hemiarthroplasty by cadaveric-trained compared to standard-trained surgeons (OR 6.00 (95% CI 1.83 to 19.69); p = 0.003). For DHS, there was no significant between-group difference in implant position as measured by tip-apex distance ≤ 25 mm (OR 6.47 (95% CI 0.97 to 43.05); p = 0.053). No between-group differences were observed for any secondary clinical outcomes. Conclusion. Trainees randomized to additional cadaveric training performed hip fracture fixation with better implant positioning and fewer postoperative blood transfusions in hemiarthroplasty. This effect, which was previously unknown, may be a consequence of the intervention. Further study is required. Cite this article: Bone Jt Open 2023;4(8):602–611


Aims. To investigate the effect of polyethylene manufacturing characteristics and irradiation dose on the survival of cemented and reverse hybrid total hip arthroplasties (THAs). Methods. In this registry study, data from the National Joint Registry of England, Wales, Northern Ireland and the Isle of Man (NJR) were linked with manufacturing data supplied by manufacturers. The primary endpoint was revision of any component. Cox proportional hazard regression was a primary analytic approach adjusting for competing risk of death, patient characteristics, head composition, and stem fixation. Results. A total of 290,770 primary THAs were successfully linked with manufacturing characteristics. Overall 4,708 revisions were analyzed, 1,260 of which were due to aseptic loosening. Total radiation dose was identified as a risk factor and included in the Cox model. For statistical modelling of aseptic loosening, THAs were grouped into three categories: G1 (no radiation); G2 ( > 0 to < 5 Mrad); and G3 ( ≥ 5 Mrad). G1 had the worst survivorship. The Cox regression hazard ratio for revision due to aseptic loosening for G2 was 0.7 (95% confidence interval (CI) 0.58 to 0.83), and for G3 0.4 (95% CI 0.30 to 0.53). Male sex and uncemented stem fixation were associated with higher risk of revision and ceramic heads with lower risk. Conclusion. Polyethylene irradiation was associated with reduced risk of revision for aseptic loosening. Radiation doses of ≥ 5 Mrad were associated with a further reduction in risk. Cite this article: Bone Joint Res 2020;9(9):563–571


The Bone & Joint Journal
Vol. 102-B, Issue 1 | Pages 5 - 10
1 Jan 2020
Cawley DT Rajamani V Cawley M Selvadurai S Gibson A Molloy S

Aims. Intraoperative 3D navigation (ION) allows high accuracy to be achieved in spinal surgery, but poor workflow has prevented its widespread uptake. The technical demands on ION when used in patients with adolescent idiopathic scoliosis (AIS) are higher than for other more established indications. Lean principles have been applied to industry and to health care with good effects. While ensuring optimal accuracy of instrumentation and safety, the implementation of ION and its associated productivity was evaluated in this study for AIS surgery in order to enhance the workflow of this technique. The aim was to optimize the use of ION by the application of lean principles in AIS surgery. Methods. A total of 20 consecutive patients with AIS were treated with ION corrective spinal surgery. Both qualitative and quantitative analysis was performed with real-time modifications. Operating time, scan time, dose length product (measure of CT radiation exposure), use of fluoroscopy, the influence of the reference frame, blood loss, and neuromonitoring were assessed. Results. The greatest gains in productivity were in avoiding repeat intraoperative scans (a mean of 248 minutes for patients who had two scans, and a mean 180 minutes for those who had a single scan). Optimizing accuracy was the biggest factor influencing this, which was reliant on incremental changes to the operating setup and technique. Conclusion. The application of lean principles to the introduction of ION for AIS surgery helps assimilate this method into the environment of the operating theatre. Data and stakeholder analysis identified a reproducible technique for using ION for AIS surgery, reducing operating time, and radiation exposure. Cite this article: Bone Joint J. 2020;102-B(1):5–10


Bone & Joint Open
Vol. 5, Issue 2 | Pages 117 - 122
9 Feb 2024
Chaturvedi A Russell H Farrugia M Roger M Putti A Jenkins PJ Feltbower S

Aims. Occult (clinical) injuries represent 15% of all scaphoid fractures, posing significant challenges to the clinician. MRI has been suggested as the gold standard for diagnosis, but remains expensive, time-consuming, and is in high demand. Conventional management with immobilization and serial radiography typically results in multiple follow-up attendances to clinic, radiation exposure, and delays return to work. Suboptimal management can result in significant disability and, frequently, litigation. Methods. We present a service evaluation report following the introduction of a quality-improvement themed, streamlined, clinical scaphoid pathway. Patients are offered a removable wrist splint with verbal and written instructions to remove it two weeks following injury, for self-assessment. The persistence of pain is the patient’s guide to ‘opt-in’ and to self-refer for a follow-up appointment with a senior emergency physician. On confirmation of ongoing signs of clinical scaphoid injury, an urgent outpatient ‘fast’-wrist protocol MRI scan is ordered, with instructions to maintain wrist immobilization. Patients with positive scan results are referred for specialist orthopaedic assessment via a virtual fracture clinic. Results. From February 2018 to January 2019, there were 442 patients diagnosed as clinical scaphoid fractures. 122 patients (28%) self-referred back to the emergency department at two weeks. Following clinical review, 53 patients were discharged; MRI was booked for 69 patients (16%). Overall, six patients (< 2% of total; 10% of those scanned) had positive scans for a scaphoid fracture. There were no known missed fractures, long-term non-unions or malunions resulting from this pathway. Costs were saved by avoiding face-to-face clinical review and MRI scanning. Conclusion. A patient-focused opt-in approach is safe and effective to managing the suspected occult (clinical) scaphoid fracture. Cite this article: Bone Jt Open 2024;5(2):117–122


Bone & Joint Open
Vol. 2, Issue 4 | Pages 236 - 242
1 Apr 2021
Fitzgerald MJ Goodman HJ Kenan S Kenan S

Aims. The aim of this study was to assess orthopaedic oncologic patient morbidity resulting from COVID-19 related institutional delays and surgical shutdowns during the first wave of the pandemic in New York, USA. Methods. A single-centre retrospective observational study was conducted of all orthopaedic oncologic patients undergoing surgical evaluation from March to June 2020. Patients were prioritized as level 0-IV, 0 being elective and IV being emergent. Only priority levels 0 to III were included. Delay duration was measured in days and resulting morbidities were categorized into seven groups: prolonged pain/disability; unplanned preoperative radiation and/or chemotherapy; local tumour progression; increased systemic disease; missed opportunity for surgery due to progression of disease/lost to follow up; delay in diagnosis; and no morbidity. Results. Overall, 25 patients met inclusion criteria. There were eight benign tumours, seven metastatic, seven primary sarcomas, one multiple myeloma, and two patients without a biopsy proven diagnosis. There was no priority level 0, two priority level I, six priority level II, and 17 priority level III cases. The mean duration of delay for priority level I was 114 days (84 to 143), priority level II was 88 days (63 to 133), and priority level III was 77 days (35 to 269). Prolonged pain/disability and delay in diagnosis, affecting 52% and 40%,respectively, represented the two most frequent morbidities. Local tumour progression and increased systemic disease affected 32% and 24% respectively. No patients tested positive for COVID-19. Conclusion. COVID-19 related delays in surgical management led to major morbidity in this studied orthopaedic oncologic patient population. By understanding these morbidities through clearer hindsight, a thoughtful approach can be developed to balance the risk of COVID-19 exposure versus delay in treatment, ensuring optimal care for orthopedic oncologic patients as the pandemic continues with intermittent calls for halting surgery. Cite this article: Bone Jt Open 2021;2(4):236–242


The Bone & Joint Journal
Vol. 98-B, Issue 5 | Pages 696 - 702
1 May 2016
Theologis AA Burch S Pekmezci M

Aims. We compared the accuracy, operating time and radiation exposure of the introduction of iliosacral screws using O-arm/Stealth Navigation and standard fluoroscopy. Materials and Methods. Iliosacral screws were introduced percutaneously into the first sacral body (S1) of ten human cadavers, four men and six women. The mean age was 77 years (58 to 85). Screws were introduced using a standard technique into the left side of S1 using C-Arm fluoroscopy and then into the right side using O-Arm/Stealth Navigation. The radiation was measured on the surgeon by dosimeters placed under a lead thyroid shield and apron, on a finger, a hat and on the cadavers. Results. There were no neuroforaminal breaches in either group. The set-up time for the O-Arm was significantly longer than for the C-Arm, while total time for placement of the screws was significantly shorter for the O-Arm than for the C-Arm (p = 0.001). The mean absorbed radiation dose during fluoroscopy was 1063 mRad (432.5 mRad to 4150 mRad). No radiation was detected on the surgeon during fluoroscopy, or when he left the room during the use of the O-Arm. The mean radiation detected on the cadavers was significantly higher in the O-Arm group (2710 mRem standard deviation (. sd. ) 1922) than during fluoroscopy (11.9 mRem . sd 14.8). (p < 0.01). Conclusion. O-Arm/Stealth Navigation allows for faster percutaneous placement of iliosacral screws in a radiation-free environment for surgeons, albeit with the same accuracy and significantly more radiation exposure to cadavers, when compared with standard fluoroscopy. Take home message: Placement of iliosacral screws with O-Arm/Stealth Navigation can be performed safely and effectively. Cite this article: Bone Joint J 2016;98-B:696–702


Bone & Joint Research
Vol. 9, Issue 10 | Pages 653 - 666
7 Oct 2020
Li W Li G Chen W Cong L

Aims. The aim of this study was to systematically compare the safety and accuracy of robot-assisted (RA) technique with conventional freehand with/without fluoroscopy-assisted (CT) pedicle screw insertion for spine disease. Methods. A systematic search was performed on PubMed, EMBASE, the Cochrane Library, MEDLINE, China National Knowledge Infrastructure (CNKI), and WANFANG for randomized controlled trials (RCTs) that investigated the safety and accuracy of RA compared with conventional freehand with/without fluoroscopy-assisted pedicle screw insertion for spine disease from 2012 to 2019. This meta-analysis used Mantel-Haenszel or inverse variance method with mixed-effects model for heterogeneity, calculating the odds ratio (OR), mean difference (MD), standardized mean difference (SMD), and 95% confidence intervals (CIs). The results of heterogeneity, subgroup analysis, and risk of bias were analyzed. Results. Ten RCTs with 713 patients and 3,331 pedicle screws were included. Compared with CT, the accuracy rate of RA was superior in Grade A with statistical significance and Grade A + B without statistical significance. Compared with CT, the operating time of RA was longer. The difference between RA and CT was statistically significant in radiation dose. Proximal facet joint violation occurred less in RA than in CT. The postoperative Oswestry Disability Index (ODI) of RA was smaller than that of CT, and there were some interesting outcomes in our subgroup analysis. Conclusion. RA technique could be viewed as an accurate and safe pedicle screw implantation method compared to CT. A robotic system equipped with optical intraoperative navigation is superior to CT in accuracy. RA pedicle screw insertion can improve accuracy and maintain stability for some challenging areas. Cite this article: Bone Joint Res 2020;9(10):653–666


The Bone & Joint Journal
Vol. 102-B, Issue 3 | Pages 371 - 375
1 Mar 2020
Cawley D Dhokia R Sales J Darwish N Molloy S

With the identification of literature shortfalls on the techniques employed in intraoperative navigated (ION) spinal surgery, we outline a number of measures which have been synthesised into a coherent operative technique. These include positioning, dissection, management of the reference frame, the grip, the angle of attack, the drill, the template, the pedicle screw, the wire, and navigated intrathecal analgesia. Optimizing techniques to improve accuracy allow an overall reduction of the repetition of the surgical steps with its associated productivity benefits including time, cost, radiation, and safety. Cite this article: Bone Joint J 2020;102-B(3):371–375


The Bone & Joint Journal
Vol. 98-B, Issue 12 | Pages 1668 - 1673
1 Dec 2016
Konda SR Goch AM Leucht P Christiano A Gyftopoulos S Yoeli G Egol KA

Aims. To evaluate whether an ultra-low-dose CT protocol can diagnose selected limb fractures as well as conventional CT (C-CT). Patients and Methods. We prospectively studied 40 consecutive patients with a limb fracture in whom a CT scan was indicated. These were scanned using an ultra-low-dose CT Reduced Effective Dose Using Computed Tomography In Orthopaedic Injury (REDUCTION) protocol. Studies from 16 selected cases were compared with 16 C-CT scans matched for age, gender and type of fracture. Studies were assessed for diagnosis and image quality. Descriptive and reliability statistics were calculated. The total effective radiation dose for each scanned site was compared. Results. The mean estimated effective dose (ED) for the REDUCTION protocol was 0.03 milliSieverts (mSv) and 0.43 mSv (p < 0.005) for C-CT. The sensitivity (Sn), specificity (Sp), positive predictive value (PPV) and negative predictive value (NPV) of the REDUCTION protocol to detect fractures were 0.98, 0.89, 0.98 and 0.89 respectively when two occult fractures were excluded. Inter- and intra-observer reliability for diagnosis using the REDUCTION protocol (κ = 0.75, κ = 0.71) were similar to those of C-CT (κ = 0.85, κ = 0.82). Using the REDUCTION protocol, 3D CT reconstructions were equivalent in quality and diagnostic information to those generated by C-CT (κ = 0.87, κ = 0.94). Conclusion. With a near 14-fold reduction in estimated ED compared with C-CT, the REDUCTION protocol reduces the amount of CT radiation substantially without significant diagnostic decay. It produces images that appear to be comparable with those of C-CT for evaluating fractures of the limbs. Cite this article: Bone Joint J 2016;98-B:1668-73


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 11 | Pages 1513 - 1518
1 Nov 2006
Henckel J Richards R Lozhkin K Harris S Baena FMRY Barrett ARW Cobb JP

Surgeons need to be able to measure angles and distances in three dimensions in the planning and assessment of knee replacement. Computed tomography (CT) offers the accuracy needed but involves greater radiation exposure to patients than traditional long-leg standing radiographs, which give very little information outside the plane of the image. There is considerable variation in CT radiation doses between research centres, scanning protocols and individual scanners, and ethics committees are rightly demanding more consistency in this area. By refining the CT scanning protocol we have reduced the effective radiation dose received by the patient down to the equivalent of one long-leg standing radiograph. Because of this, it will be more acceptable to obtain the three-dimensional data set produced by CT scanning. Surgeons will be able to document the impact of implant position on outcome with greater precision


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 7 | Pages 984 - 988
1 Jul 2010
Guo JJ Tang N Yang HL Tang TS

We compared the outcome of closed intramedullary nailing with minimally invasive plate osteosynthesis using a percutaneous locked compression plate in patients with a distal metaphyseal fracture in a prospective study. A total of 85 patients were randomised to operative stabilisation either by a closed intramedullary nail (44) or by minimally invasive osteosynthesis with a compression plate (41). Pre-operative variables included the patients’ age and the side and pattern of the fracture. Peri-operative variables were the operating time and the radiation time. Postoperative variables were wound problems, the time to union of the fracture, the functional American Orthopaedic Foot and Ankle surgery score and removal of hardware. We found no significant difference in the pre-operative variables or in the time to union in the two groups. However, the mean radiation time and operating time were significantly longer in the locked compression plate group (3.0 vs 2.12 minutes, p < 0.001, and 97.9 vs 81.2 minutes, p < 0.001, respectively). After one year, all the fractures had united. Patients who had intramedullary nailing had a higher mean pain score, but better function, alignment and total American Orthopaedic Foot and Ankle surgery scores, although the differences were not statistically significant (p = 0.234, p = 0.157, p = 0.897, p = 0.177 respectively). Three (6.8%) patients in the intramedullary nailing group and six (14.6%) in the locked compression plate group showed delayed wound healing, and 37 (84.1%) in the former group and 38 (92.7%) in the latter group expressed a wish to have the implant removed. We conclude that both closed intramedullary nailing and a percutaneous locked compression plate can be used safely to treat Orthopaedic Trauma Association type-43A distal metaphyseal fractures of the tibia. However, closed intramedullary nailing has the advantage of a shorter operating and radiation time and easier removal of the implant. We therefore prefer closed intramedullary nailing for patients with these fractures


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 11_Supple_A | Pages 22 - 25
1 Nov 2012
Haidukewych GJ

Many tumors metastasise to bone, therefore, pathologic fracture and impending pathologic fractures are common reasons for orthopedic consultation. Having effective treatment strategies is important to avoid complications, and relieve pain and preserve function. Thorough pre-operative evaluation is recommended for medical optimization and to ensure that the lesion is in fact a metastasis and not a primary bone malignancy. For impending fractures, various scoring systems have been proposed to determine the risk of fracture, and therefore the need for prophylactic stabilisation. Lower score lesions can often be treated with radiation, while more problematic lesions may require internal fixation. Intramedullary fixation is generally preferred due to favorable biomechanics. Arthroplasty may be required for lesions with massive bony destruction where internal fixation attempts are likely to fail. Radiation may also be useful postoperatively to minimise construct failure due to tumor progression


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 8 | Pages 1073 - 1078
1 Aug 2008
Little NJ Verma V Fernando C Elliott DS Khaleel A

We compared the outcome of patients treated for an intertrochanteric fracture of the femoral neck with a locked, long intramedullary nail with those treated with a dynamic hip screw (DHS) in a prospective randomised study. Each patient who presented with an extra-capsular hip fracture was randomised to operative stabilisation with either a long intramedullary Holland nail or a DHS. We treated 92 patients with a Holland nail and 98 with a DHS. Pre-operative variables included the Mini Mental test score, patient mobility, fracture pattern and American Society of Anesthesiologists grading. Peri-operative variables were anaesthetic time, operating time, radiation time and blood loss. Post-operative variables were time to mobilising with a frame, wound infection, time to discharge, time to fracture union, and mortality. We found no significant difference in the pre-operative variables. The mean anaesthetic and operation times were shorter in the DHS group than in the Holland nail group (29.7 vs 40.4 minutes, p < 0.001; and 40.3 vs 54 minutes, p < 0.001, respectively). There was an increased mean blood loss within the DHS group versus the Holland nail group (160 ml vs 78 ml, respectively, p < 0.001). The mean time to mobilisation with a frame was shorter in the Holland nail group (DHS 4.3 days, Holland nail 3.6 days, p = 0.012). More patients needed a post-operative blood transfusion in the DHS group (23 vs seven, p = 0.003) and the mean radiation time was shorter in this group (DHS 0.9 minutes vs Holland nail 1.56 minutes, p < 0.001). The screw of the DHS cut out in two patients, one of whom underwent revision to a Holland nail. There were no revisions in the Holland nail group. All fractures in both groups were united when followed up after one year. We conclude that the DHS can be implanted more quickly and with less exposure to radiation than the Holland nail. However, the resultant blood loss and need for transfusion is greater. The Holland nail allows patients to mobilise faster and to a greater extent. We have therefore adopted the Holland nail as our preferred method of treating intertrochanteric fractures of the hip


Bone & Joint 360
Vol. 11, Issue 6 | Pages 40 - 41
1 Dec 2022

The December 2022 Oncology Roundup360 looks at: Is high-dose radiation therapy associated with early revision with a cemented endoprosthesis?; Neoadjuvant chemotherapy and endoprosthetic reconstruction for lower extremity sarcomas: does timing impact complication rates?; Late amputation after treatment for lower extremity sarcoma; Osteosarcoma prediagnosed as another tumour: a report from the Cooperative Osteosarcoma Study Group; The influence of site on the incidence and diagnosis of solitary central cartilage tumours of the femur: a 21st century perspective.


The Bone & Joint Journal
Vol. 106-B, Issue 8 | Pages 865 - 870
1 Aug 2024
Broida SE Sullivan MH Rose PS Wenger DE Houdek MT

Aims

Venous tumour thrombus (VTT) is a rare finding in osteosarcoma. Despite the high rate of VTT in osteosarcoma of the pelvis, there are very few descriptions of VTT associated with extrapelvic primary osteosarcoma. We therefore sought to describe the prevalence and presenting features of VTT in osteosarcoma of both the pelvis and the limbs.

Methods

Records from a single institution were retrospectively reviewed for 308 patients with osteosarcoma of the pelvis or limb treated between January 2000 and December 2022. Primary lesions were located in an upper limb (n = 40), lower limb (n = 198), or pelvis (n = 70). Preoperative imaging and operative reports were reviewed to identify patients with thrombi in proximity to their primary lesion. Imaging and histopathology were used to determine presence of tumour within the thrombus.


Bone & Joint 360
Vol. 13, Issue 3 | Pages 35 - 36
3 Jun 2024

The June 2024 Spine Roundup360 looks at: Intraoperative navigation increases the projected lifetime cancer risk in patients undergoing surgery for adolescent idiopathic scoliosis; Intrawound vancomycin powder reduces delayed deep surgical site infections following posterior spinal fusion for adolescent idiopathic scoliosis; Characterizing negative online reviews of spine surgeons; Proximal junctional failure after surgical instrumentation in adult spinal deformity: biomechanical assessment of proximal instrumentation stiffness; Nutritional supplementation and wound healing: a randomized controlled trial.