Objectives. The medially spherical GMK Sphere (Medacta International AG, Castel San Pietro, Switzerland) total knee arthroplasty (TKA) was previously shown to accommodate lateral rollback while pivoting around a stable medial compartment, aiming to replicate native knee kinematics in which some coronal laxity, especially laterally, is also present. We assess coronal plane kinematics of the GMK Sphere and explore the occurrence and pattern of articular separation during static and dynamic activities. Methods. Using pulsed fluoroscopy and image matching, the coronal kinematics and articular surface separation of 16 well-functioning TKAs were studied during weight-bearing and non-weight-bearing, static, and dynamic activities. The closest distances between the modelled articular surfaces were examined with respect to knee position, and proportions of joint poses exhibiting separation were computed. Results. Overall, 1717 joint poses were analyzed. At a 1.0 mm detection threshold, 37 instances of surface separation were observed in the lateral compartment and four medially (p < 0.001). Separation was activity-dependent, both laterally and medially (p < 0.001), occurring more commonly during static deep flexion in the lateral compartment, and during static rotation in the medial compartment. Lateral separation occurred more frequently than medial during kneeling (7/14 lateral vs 1/14 medial; p = 0.031) and stepping (20/1022 lateral vs 0/1022 medial; p < 0.001). Separation varied significantly between individuals during dynamic activities. Conclusion. No consistent association between closest distances of the articular surfaces and knee position was found during any activity.
We carried out weight-bearing video radiological studies on 40 patients with a total knee arthroplasty (TKA), to determine the presence and magnitude of femoral condylar
Tibiofemoral alignment is important to determine the rate of
progression of osteoarthritis and implant survival after total knee
arthroplasty (TKA). Normally, surgeons aim for neutral tibiofemoral
alignment following TKA, but this has been questioned in recent
years. The aim of this study was to evaluate whether varus or valgus
alignment indeed leads to increased medial or lateral tibiofemoral
forces during static and dynamic weight-bearing activities. Tibiofemoral contact forces and moments were measured in nine
patients with instrumented knee implants. Medial force ratios were
analysed during nine daily activities, including activities with
single-limb support (e.g. walking) and double-limb support (e.g.
knee bend). Hip-knee-ankle angles in the frontal plane were analysed
using full-leg coronal radiographs. Aims
Patients and Methods
Aims. It is unknown whether kinematic alignment (KA) objectively improves knee balance in total knee arthroplasty (TKA), despite this being the biomechanical rationale for its use. This study aimed to determine whether restoring the constitutional alignment using a restrictive KA protocol resulted in better quantitative knee balance than mechanical alignment (MA). Methods. We conducted a randomized superiority trial comparing patients undergoing TKA assigned to KA within a restrictive safe zone or MA. Optimal knee balance was defined as an intercompartmental pressure difference (ICPD) of 15 psi or less using a pressure sensor. The primary endpoint was the mean intraoperative ICPD at 10° of flexion prior to knee balancing. Secondary outcomes included balance at 45° and 90°, requirements for balancing procedures, and presence of tibiofemoral
When performing the Scandinavian Total Ankle Replacement (STAR), the positioning of the talar component and the selection of mobile-bearing thickness are critical. A biomechanical experiment was undertaken to establish the effects of these variables on the range of movement (ROM) of the ankle. Six cadaver ankles containing a specially-modified STAR prosthesis were subjected to ROM determination, under weight-bearing conditions, while monitoring the strain in the peri-ankle ligaments. Each specimen was tested with the talar component positions in neutral, as well as 3 and 6 mm of anterior and posterior displacement. The sequence was repeated with an anatomical bearing thickness, as well as at 2 mm reduced and increased thicknesses. The movement limits were defined as 10% strain in any ligament, bearing
We compared the performance of uncemented trabecular metal tibial components in total knee replacement with that of cemented tibial components in patients younger than 60 years over two years using radiostereophotogrammetric analysis (RSA). A total of 22 consecutive patients (mean age 53 years, 33 to 59, 26 knees) received an uncemented NexGen trabecular metal cruciate-retaining monobloc tibial component and 19 (mean 53 years, 44 to 59, 21 knees) a cemented NexGen Option cruciate-retaining modular tibial component. All the trabecular metal components migrated during the initial three months and then stabilised. The exception was external rotation, which did not stabilise until 12 months. Unlike conventional metal-backed implants which displayed a tilting migration comprising subsidence and
We compared the long-term function of subscapularis after the Latarjet procedure using two surgical approaches. We treated 102 patients (106 shoulders) with a mean age of 26.8 years (15 to 51) with involuntary unidirectional recurrent instability. The operation was carried out through an L-shaped incision with trans-section of the upper two-thirds of the muscle in 69 cases and with a subscapularis split in 37. All clinical results were assessed by the Rowe and the Duplay scores and the function of subscapularis by evaluating the distance and strength at the
Stems improve the mechanical stability of tibial
components in total knee replacement (TKR), but come at a cost of stress
shielding along their length. Their advantages include resistance
to shear, reduced tibial
The aim of mechanical alignment in total knee arthroplasty is to align all knees into a fixed neutral position, even though not all knees are the same. As a result, mechanical alignment often alters a patient’s constitutional alignment and joint line obliquity, resulting in soft-tissue imbalance. This annotation provides an overview of how the Coronal Plane Alignment of the Knee (CPAK) classification can be used to predict imbalance with mechanical alignment, and then offers practical guidance for bone balancing, minimizing the need for soft-tissue releases. Cite this article:
Favourable short-term outcomes have been reported following latissimus dorsi tendon transfer for patients with an irreparable subscapularis (SSC) tendon tear. The aim of this study was to investigate the long-term outcomes of this transfer in these patients. This was a retrospective study involving 30 patients with an irreparable SSC tear and those with a SSC tear combined with a reparable supraspinatus tear, who underwent a latissimus dorsi tendon transfer. Clinical scores and active range of motion (aROM), SSC-specific physical examination and the rate of return to work were assessed. Radiological assessment included recording the acromiohumeral distance (AHD), the Hamada grade of cuff tear arthropathy and the integrity of the transferred tendon. Statistical analysis compared preoperative, short-term (two years), and final follow-up at a mean of 8.7 years (7 to 10).Aims
Methods
The October 2024 Shoulder & Elbow Roundup360 looks at: Proximal humeral fractures with vascular compromise; Outcomes and challenges of revision arthroscopic rotator cuff repair: a systematic review; Evaluating treatment effectiveness for lateral elbow tendinopathy: a systematic review and network meta-analysis; Tendon transfer techniques for irreparable subscapularis tears: a comparative review; Impact of subscapularis repair in reverse shoulder arthroplasty; Isolated subscapularis tears strongly linked to shoulder pseudoparesis; Nexel and Coonrad-Morrey total elbow arthroplasties show comparable revision rates in New Zealand study; 3D MRI matches 3D CT in assessing bone loss and shoulder morphology in dislocation cases.
The aim of this study was to evaluate whether achieving medial joint opening, as measured by the change in the joint line convergence angle (∆JLCA), is a better predictor of clinical outcomes after high tibial osteotomy (HTO) compared with the mechanical axis deviation, and to find individualized targets for the redistribution of load that reflect bony alignment, joint laxity, and surgical technique. This retrospective study analyzed 121 knees in 101 patients. Patient-reported outcome measures (PROMs) were collected preoperatively and one year postoperatively, and were analyzed according to the surgical technique (opening or closing wedge), postoperative mechanical axis deviation (deviations above and below 10% from the target), and achievement of medial joint opening (∆JLCA > 1°). Radiological parameters, including JLCA, mechanical axis deviation, and the difference in JLCA between preoperative standing and supine radiographs (JLCAPD), an indicator of medial soft-tissue laxity, were measured. Cut-off points for parameters related to achieving medial joint opening were calculated from receiver operating characteristic (ROC) curves.Aims
Methods
Micromotion of the polyethylene (PE) inlay may contribute to backside PE wear in addition to articulate wear of total knee arthroplasty (TKA). Using radiostereometric analysis (RSA) with tantalum beads in the PE inlay, we evaluated PE micromotion and its relationship to PE wear. A total of 23 patients with a mean age of 83 years (77 to 91), were available from a RSA study on cemented TKA with Maxim tibial components (Zimmer Biomet). PE inlay migration, PE wear, tibial component migration, and the anatomical knee axis were evaluated on weightbearing stereoradiographs. PE inlay wear was measured as the deepest penetration of the femoral component into the PE inlay.Aims
Methods
It is unknown whether gap laxities measured in robotic arm-assisted total knee arthroplasty (TKA) correlate to load sensor measurements. The aim of this study was to determine whether symmetry of the maximum medial and lateral gaps in extension and flexion was predictive of knee balance in extension and flexion respectively using different maximum thresholds of intercompartmental load difference (ICLD) to define balance. A prospective cohort study of 165 patients undergoing functionally-aligned TKA was performed (176 TKAs). With trial components in situ, medial and lateral extension and flexion gaps were measured using robotic navigation while applying valgus and varus forces. The ICLD between medial and lateral compartments was measured in extension and flexion with the load sensor. The null hypothesis was that stressed gap symmetry would not correlate directly with sensor-defined soft tissue balance.Aims
Methods
Traumatic rupture of the tendon of the subscapularis muscle was documented as an isolated lesion in the shoulders of 16 men. The injury was caused either by forceful hyperextension or external rotation of the adducted arm. The patients complained of anterior shoulder pain and weakness of the arm when it was used above and below the shoulder level. They did not experience shoulder instability. The injured shoulders exhibited increased external rotation and decreased strength of internal rotation. A simple clinical manoeuvre called the '
The posterior cruciate ligament (PCL) was imaged by MRI throughout flexion in neutral tibial rotation in six cadaver knees, which were also dissected, and in 20 unloaded and 13 loaded living (squatting) knees. The appearance of the ligament was the same in all three groups. In extension the ligament is curved concave-forwards. It is straight, fully out-to-length and approaching vertical from 60° to 120°, and curves convex-forwards over the roof of the intercondylar notch in full flexion. Throughout flexion the length of the ligament does not change, but the separations of its attachments do. We conclude that the PCL is not loaded in the unloaded cadaver knee and therefore, since its appearance in all three groups is the same, that it is also unloaded in the living knee during flexion. The posterior fibres may be an exception in hyperextension, probably being loaded either because of posterior femoral
Total knee arthroplasty (TKA) using functional alignment aims to implant the components with minimal compromise of the soft-tissue envelope by restoring the plane and obliquity of the non-arthritic joint. The objective of this study was to determine the effect of TKA with functional alignment on mediolateral soft-tissue balance as assessed using intraoperative sensor-guided technology. This prospective study included 30 consecutive patients undergoing robotic-assisted TKA using the Stryker PS Triathlon implant with functional alignment. Intraoperative soft-tissue balance was assessed using sensor-guided technology after definitive component implantation; soft-tissue balance was defined as intercompartmental pressure difference (ICPD) of < 15 psi. Medial and lateral compartment pressures were recorded at 10°, 45°, and 90° of knee flexion. This study included 18 females (60%) and 12 males (40%) with a mean age of 65.2 years (SD 9.3). Mean preoperative hip-knee-ankle deformity was 6.3° varus (SD 2.7°).Aims
Methods
Accurate quantitative measurements of micromovement immediately after operation would be a reliable indicator of the stability of an individual component. We have therefore developed a system for measuring micromovement of the tibial component using three non-contact displacement transducers attached to the tibial cortex during total knee arthroplasty (TKA). Using this system we measured the initial stability in 31 uncemented TKAs. All the tibial components were fixed by a stem and four screws. The initial stability was defined as the amount of displacement when a load of 20 kg was applied. The mean subsidence was 60.7 μm and the mean
The aim of this study was to compare robotic arm-assisted bi-unicompartmental knee arthroplasty (bi-UKA) with conventional mechanically aligned total knee arthroplasty (TKA) in order to determine the changes in the anatomy of the knee and alignment of the lower limb following surgery. An analysis of 38 patients who underwent TKA and 32 who underwent bi-UKA was performed as a secondary study from a prospective, single-centre, randomized controlled trial. CT imaging was used to measure coronal, sagittal, and axial alignment of the knee preoperatively and at three months postoperatively to determine changes in anatomy that had occurred as a result of the surgery. The hip-knee-ankle angle (HKAA) was also measured to identify any differences between the two groups.Aims
Methods
Although bone cement is the primary mode of fixation in total knee arthroplasty (TKA), cementless fixation is gaining interest as it has the potential of achieving lasting biological fixation. By 3D printing an implant, highly porous structures can be manufactured, promoting osseointegration into the implant to prevent aseptic loosening. This study compares the migration of cementless, 3D-printed TKA to cemented TKA of a similar design up to two years of follow-up using radiostereometric analysis (RSA) known for its ability to predict aseptic loosening. A total of 72 patients were randomized to either cementless 3D-printed or a cemented cruciate retaining TKA. RSA and clinical scores were evaluated at baseline and postoperatively at three, 12, and 24 months. A mixed model was used to analyze the repeated measurements.Aims
Methods
Metaphyseal tritanium cones can be used to manage the tibial bone loss commonly encountered at revision total knee arthroplasty (rTKA). Tibial stems provide additional fixation and are generally used in combination with cones. The aim of this study was to examine the role of the stems in the overall stability of tibial implants when metaphyseal cones are used for rTKA. This computational study investigates whether stems are required to augment metaphyseal cones at rTKA. Three cemented stem scenarios (no stem, 50 mm stem, and 100 mm stem) were investigated with 10 mm-deep uncontained posterior and medial tibial defects using four loading scenarios designed to mimic activities of daily living.Aims
Methods
Custom flange acetabular components (CFACs) are a patient-specific option for addressing large acetabular defects at revision total hip arthroplasty (THA), but patient and implant characteristics that affect survivorship remain unknown. This study aimed to identify patient and design factors related to survivorship. A retrospective review of 91 patients who underwent revision THA using 96 CFACs was undertaken, comparing features between radiologically failed and successful cases. Patient characteristics (demographic, clinical, and radiological) and implant features (design characteristics and intraoperative features) were collected. There were 74 women and 22 men; their mean age was 62 years (31 to 85). The mean follow-up was 24.9 months (Aims
Patients and Methods
Unicompartmental knee arthroplasty (UKA) is one surgical option for treating symptomatic medial osteoarthritis. Clinical studies have shown the functional benefits of UKA; however, the optimal alignment of the tibial component is still debated. The purpose of this study was to evaluate the effects of tibial coronal and sagittal plane alignment in UKA on knee kinematics and cruciate ligament tension, using a musculoskeletal computer simulation. The tibial component was first aligned perpendicular to the mechanical axis of the tibia, with a 7° posterior slope (basic model). Subsequently, coronal and sagittal plane alignments were changed in a simulation programme. Kinematics and cruciate ligament tensions were simulated during weight-bearing deep knee bend and gait motions. Translation was defined as the distance between the most medial and the most lateral femoral positions throughout the cycle.Objectives
Methods
The aim of this study was to evaluate near-infrared spectroscopy
(NIRS) as a continuous, non-invasive monitor for acute compartment
syndrome (ACS). NIRS sensors were placed on 86 patients with, and 23 without
(controls), severe leg injury. NIRS values were recorded for up
to 48 hours. Longitudinal data were analyzed using summary and graphical
methods, bivariate comparisons, and multivariable multilevel modelling.Aims
Patients and Methods
We investigated whether an asymmetric extension
gap seen on routine post-operative radiographs after primary total
knee replacement (TKR) is associated with pain at three, six, 12
and 24 months’ follow-up. On radiographs of 277 patients after primary
TKR we measured the distance between the tibial tray and the femoral
condyle on both the medial and lateral sides. A difference was defined
as an asymmetric extension gap. We considered three groups (no asymmetric
gap, medial-opening and lateral-opening gap) and calculated the
associations with the Western Ontario and McMaster Universities
osteoarthritis index pain scores over time. Those with an asymmetric extension gap of ≥ 1.5 mm had a significant
association with pain scores at three months’ follow-up; patients
with a medial-opening extension gap reported more pain and patients
with a lateral-opening extension gap reported less pain (p = 0.036).
This effect was still significant at six months (p = 0.044), but had
lost significance by 12 months (p = 0.924). When adjusting for multiple
cofounders the improvement in pain was more pronounced in patients
with a lateral-opening extension gap than in those with a medial-opening extension
gap at three (p = 0.037) and six months’ (p = 0.027) follow-up. Cite this article:
Transfer of pectoralis major has evolved as the most favoured option for the management of the difficult problem of irreparable tears of subscapularis. We describe our experience with this technique in 30 patients divided into three groups. Group I comprised 11 patients with a failed procedure for instability of the shoulder, group II included eight with a failed shoulder replacement and group III, 11 with a massive tear of the rotator cuff. All underwent transfer of the sternal head of pectoralis major to restore the function of subscapularis. At the latest follow-up pain had improved in seven of the 11 patients in groups I and III, but in only one of eight in group II. The subjective shoulder score improved in seven patients in group I, in one in group II and in six in group III. The mean Constant score improved from 40.9 points (28 to 50) in group I, 32.9 (17 to 47) in group II and 28.7 (20 to 42) in group III pre-operatively to 60.8 (28 to 89), 41.9 (24 to 73) and 52.3 (24 to 78), respectively. Failure of the tendon transfer was highest in group II and was associated with pre-operative anterior subluxation of the humeral head. We conclude that in patients with irreparable rupture of subscapularis after shoulder replacement there is a high risk of failure of transfer of p?ctoralis major, particularly if there is pre-operative anterior subluxation of the humeral head.
The aim of this study was to compare the post-operative radiographic
and clinical outcomes between kinematically and mechanically aligned
total knee arthroplasties (TKAs). A total of 60 TKAs (30 kinematically and 30 mechanically aligned)
were performed in 60 patients with varus osteoarthritis of the knee
using a navigation system. The angles of orientation of the joint
line in relation to the floor, the conventional and true mechanical
axis (tMA) (the line from the centre of the hip to the lowest point
of the calcaneus) were compared, one year post-operatively, on single-leg
and double-leg standing long leg radiographs between the groups.
The range of movement and 2011 Knee Society Scores were also compared
between the groups at that time.Aims
Patients and Methods
We treated surgically 16 shoulders with an isolated traumatic rupture of the subscapularis tendon over a six-year period. Nine patients had a total and seven a partial tear of the subscapularis tendon. Repair was undertaken through a small deltopectoral groove approach. The mean Constant score improved in total tears from 38.7 to 89.3 points (p = 0.003) and in partial tears from 50.7 to 87.9 points (p = 0.008). The total tears were significantly more improved by surgery than the partial tears (p = 0.001). The delay between trauma and surgery was inversely proportional to the improvement in the Constant score suggesting that early diagnosis and surgical repair improves outcome.
Smart trials are total knee tibial trial liners
with load bearing and alignment sensors that will graphically show quantitative
compartment load-bearing forces and component track patterns. These
values will demonstrate asymmetrical ligament balancing and misalignments
with the medial retinaculum temporarily closed. Currently surgeons
use feel and visual estimation of imbalance to assess soft-tissue
balancing and tracking with the medial retinaculum open, which results
in lower medial compartment loads and a wider anteroposterior tibial
tracking pattern. The sensor trial will aid the total knee replacement
surgeon in performing soft-tissue balancing by providing quantitative
visual feedback of changes in forces while performing the releases
incrementally. Initial experience using a smart tibial trial is
presented.
The aim of this study was to determine whether there is any significant
difference in temporal measurements of pain, function and rates
of re-tear for arthroscopic rotator cuff repair (RCR) patients compared
with those patients undergoing open RCR. This study compared questionnaire- and clinical examination-based
outcomes over two years or longer for two series of patients who
met the inclusion criteria: 200 open RCR and 200 arthroscopic RCR
patients. All surgery was performed by a single surgeon. Objectives
Methods
The advent of computer-assisted knee replacement surgery has focused interest on the alignment of the components. However, there is confusion at times between the alignment of the limb as a whole and that of the components. The interaction between them is discussed in this article. Alignment is expressed relative to some reference axis or plane and measurements will vary depending on what is selected as the reference. The validity of different reference axes is discussed. Varying prosthetic alignment has direct implications for surrounding soft-tissue tension. In this context the interaction between alignment and soft-tissue balance is explored and the current knowledge of the relationship between alignment and outcome is summarised.
We investigated the characteristics of patients
who achieved Japanese-style deep flexion (seiza-sitting) after total knee
replacement (TKR) and measured three-dimensional positioning and
the contact positions of the femoral and tibial components. Seiza-sitting
was achieved after surgery by 23 patients (29 knees) of a series
of 463 TKRs in 341 patients. Pre-operatively most of these patients
were capable of seiza-sitting, had a lower body mass index and a favourable
attitude towards the Japanese lifestyle (27 of 29 knees). According
to two-/three-dimensional image registration analysis in the seiza-sitting
position, flexion, varus and internal rotation angles of the tibial
component relative to the femoral component had means of 148° ( Cite this article:
The optimum cementing technique for the tibial
component in cemented primary total knee replacement (TKR) remains
controversial. The technique of cementing, the volume of cement
and the penetration are largely dependent on the operator, and hence
large variations can occur. Clinical, experimental and computational
studies have been performed, with conflicting results. Early implant
migration is an indication of loosening. Aseptic loosening is the
most common cause of failure in primary TKR and is the product of
several factors. Sufficient penetration of cement has been shown
to increase implant stability. This review discusses the relevant literature regarding all aspects
of the cementing of the tibial component at primary TKR. Cite this article:
The purpose of this study was to examine the effect of posterior
cruciate ligament (PCL) retention, PCL recession, and PCL excision
during cruciate-retaining total knee replacement. A total of 3018 anatomic graduated component total knee replacements
were examined; 1846 of these retained the PCL, 455 PCLs were partially
recessed, and in 717 the PCL was completely excised from the back
of the tibia.Objectives
Methods
This retrospective study evaluated the midterm clinical and radiographic outcomes of a second-generation total knee replacement system. In a multicentre consecutive series of 1512 patients, 1970 knees were treated with the PFC Sigma knee system (Depuy, Warsaw, Indiana). The patients were reviewed for functional outcome, and underwent independent radiographic evaluation at a mean follow-up of 7.3 years (5 to 10). A total of 40 knees (2%) required revision, 17 (0.9%) for infection. The incidence of osteolysis was 2.2%. The ten-year survival with revision for any cause other than infection as the endpoint was 97.2% (95% CI 95.4 to 99.1). The PFC Sigma knee system appears to provide excellent results in the medium term.
We have investigated the errors in the identification of the transepicondylar axis and the anteroposterior axis between a minimally-invasive and a conventional approach in four fresh-frozen cadaver knees. The errors in aligning the femoral prosthesis were compared with the reference transepicondylar axis as established by CT. The error in the identification of the transepicondylar axis was significantly higher in the minimal approach (4.5° of internal rotation,
We have examined the results obtained with 72 NexGen legacy posterior stabilised-flex fixed total knee replacements in 47 patients implanted by a single surgeon between March 2003 and September 2004. Aseptic loosening of the femoral component was found in 27 (38%) of the replacements at a mean follow-up of 32 months (30 to 48) and 15 knees (21%) required revision at a mean of 23 months (11 to 45). We compared the radiologically-loose and revised knees with those which had remained well-fixed to identify the factors which had contributed to this high rate of aseptic loosening. Post-operatively, the mean maximum flexion was 136° (110° to 140°) in the loosened group and 125° (95° to 140°) in the well-fixed group (independent These implants allowed a high degree of flexion, but showed a marked rate of early loosening of the femoral component, which was associated with weight-bearing in maximum flexion.
We prospectively reviewed 1000 consecutive patients who underwent a cementless, hydroxyapatite-coated, stemless, total knee replacement over a period of nine years. Regular post-operative clinical follow-up was performed using the Knee Society score. The mean pre-operative score was 96, improving to 182 and 180 at five and ten years, respectively. To date, there have been seven (0.5%) cases which required revision, primarily for septic loosening (four cases), with low rates of other post-operative complications. The cumulative survival at ten years with revision as the end-point, was 99.14% (95% confidence interval 92.5 to 99.8). These results support the use of hydroxyapatite in a cementless total knee replacement since it can give reliable fixation with an excellent clinical and functional outcome.
Mobile-bearing posterior-stabilised knee replacements have been developed as an alternative to the standard fixed- and mobile-bearing designs. However, little is known about the We conclude that mobile-bearing posterior-stabilised knee replacements reproduce internal rotation of the tibia more closely during flexion than fixed-bearing posterior-stabilised designs. Furthermore, mobile-bearing posterior-stabilised knee replacements demonstrate a unidirectional movement which occurs at the upper and lower sides of the mobile insert. The femur moves in an anteroposterior direction on the upper surface of the insert, whereas the movement at the lower surface is pure rotation. Such unidirectional movement may lead to less wear when compared with the multidirectional movement seen in fixed-bearing posterior-stabilised knee replacements, and should be associated with more evenly applied cam-post stresses.
Clinical experience of impaction bone grafting for revision knee arthroplasty is limited, with initial stability of the tibial tray emerging as a major concern. The length of the stem and its diameter have been altered to improve stability. Our aim was to investigate the effect of the type of stem, support of the rim and graft impaction on early stability of the tray. We developed a system for impaction grafting of trays which we used with morsellised bone in artificial tibiae. Trays with short, long thick or long thin stems were implanted, with or without support of the rim. They were cyclically loaded while measuring relative movement. Long-stemmed trays migrated 4.5 times less than short-stemmed trays, regardless of diameter. Those with support migrated 2.8 times less than those without. The migration of short-stemmed trays correlated inversely with the density of the impacted groups. That of impaction-grafted tibial trays was in the range reported for uncemented primary trays. Movements of short-stemmed trays without cortical support were largest and sensitive to the degree of compaction of the graft. If support of the rim was sufficient or a long stem was used, impacted morsellised bone graft achieved adequate initial stability.
We performed a prospective, randomised trial of 44 patients to compare the functional outcomes of a posterior-cruciate-ligament-retaining and posterior-cruciate-ligament-substituting total knee arthroplasty, and to gain a better understanding of the At follow-up at five years, no statistically significant differences were found in the clinical outcome measurements for either design. The prevalence of radiolucent lines and the survivorship were the same. In a subgroup of 15 knees, additional image-intensifier analysis in the horizontal and sagittal planes was performed during step-up and lunge activity. Our analysis revealed striking differences. Lunge activity showed a mean posterior displacement of both medial and lateral tibiofemoral contact areas (roll-back) which was greater and more consistent in the cruciate-substituting than in the cruciate-retaining group (medial p <
0.0001, lateral p = 0.011). The amount of posterior displacement could predict the maximum flexion which could be achieved (p = 0.018). Forward displacement of the tibiofemoral contact area in flexion during stair activity was seen more in the cruciate-retaining than in the cruciate-substituting group. This was attributed mainly to insufficiency of the posterior cruciate ligament and partially to that of the anterior cruciate ligament. We concluded that, despite similar clinical outcomes, there are significant kinematic differences between cruciate-retaining and cruciate-substituting arthroplasties.