Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Bone & Joint Open
Vol. 2, Issue 8 | Pages 611 - 617
10 Aug 2021
Kubik JF Bornes TD Klinger CE Dyke JP Helfet DL

Aims

Surgical treatment of young femoral neck fractures often requires an open approach to achieve an anatomical reduction. The application of a calcar plate has recently been described to aid in femoral neck fracture reduction and to augment fixation. However, application of a plate may potentially compromise the regional vascularity of the femoral head and neck. The purpose of this study was to investigate the effect of calcar femoral neck plating on the vascularity of the femoral head and neck.

Methods

A Hueter approach and capsulotomy were performed bilaterally in six cadaveric hips. In the experimental group, a one-third tubular plate was secured to the inferomedial femoral neck at 6:00 on the clockface. The contralateral hip served as a control with surgical approach and capsulotomy without fixation. Pre- and post-contrast MRI was then performed to quantify signal intensity in the femoral head and neck. Qualitative assessment of the terminal arterial branches to the femoral head, specifically the inferior retinacular artery (IRA), was also performed.


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 530 - 538
1 Apr 2020
Rollick NC Gadinsky NE Klinger CE Kubik JF Dyke JP Helfet DL Wellman DS

Aims

Dual plating of distal femoral fractures with medial and lateral implants has been performed to improve construct mechanics and alignment, in cases where isolated lateral plating would be insufficient. This may potentially compromise vascularity, paradoxically impairing healing. This study investigates effects of single versus dual plating on distal femoral vascularity.

Methods

A total of eight cadaveric lower limb pairs were arbitrarily assigned to either 1) isolated lateral plating, or 2) lateral and medial plating of the distal femur, with four specimens per group. Contralateral limbs served as matched controls. Pre- and post-contrast MRI was performed to quantify signal intensity enhancement in the distal femur. Further evaluation of intraosseous vascularity was done with barium sulphate infusion with CT scan imaging. Specimens were then injected with latex medium and dissection was completed to assess extraosseous vasculature.


The Bone & Joint Journal
Vol. 98-B, Issue 12 | Pages 1582 - 1588
1 Dec 2016
Dewar DC Lazaro LE Klinger CE Sculco PK Dyke JP Ni AY Helfet DL Lorich DG

Aims

We aimed to quantify the relative contributions of the medial femoral circumflex artery (MFCA) and lateral femoral circumflex artery (LFCA) to the arterial supply of the head and neck of the femur.

Materials and Methods

We acquired ten cadaveric pelvises. In each of these, one hip was randomly assigned as experimental and the other as a matched control. The MFCA and LFCA were cannulated bilaterally. The hips were designated LFCA-experimental or MFCA-experimental and underwent quantitative MRI using a 2 mm slice thickness before and after injection of MRI-contrast diluted 3:1 with saline (15 ml Gd-DTPA) into either the LFCA or MFCA. The contralateral control hips had 15 ml of contrast solution injected into the root of each artery. Next, the MFCA and LFCA were injected with a mixture of polyurethane and barium sulfate (33%) and their extra-and intra-arterial course identified by CT imaging and dissection.


The Bone & Joint Journal
Vol. 97-B, Issue 9 | Pages 1204 - 1213
1 Sep 2015
Lazaro LE Klinger CE Sculco PK Helfet DL Lorich DG

This study investigates and defines the topographic anatomy of the medial femoral circumflex artery (MFCA) terminal branches supplying the femoral head (FH). Gross dissection of 14 fresh–frozen cadaveric hips was undertaken to determine the extra and intracapsular course of the MFCA’s terminal branches. A constant branch arising from the transverse MFCA (inferior retinacular artery; IRA) penetrates the capsule at the level of the anteroinferior neck, then courses obliquely within the fibrous prolongation of the capsule wall (inferior retinacula of Weitbrecht), elevated from the neck, to the posteroinferior femoral head–neck junction. This vessel has a mean of five (three to nine) terminal branches, of which the majority penetrate posteriorly. Branches from the ascending MFCA entered the femoral capsular attachment posteriorly, running deep to the synovium, through the neck, and terminating in two branches. The deep MFCA penetrates the posterosuperior femoral capsular. Once intracapsular, it divides into a mean of six (four to nine) terminal branches running deep to the synovium, within the superior retinacula of Weitbrecht of which 80% are posterior. Our study defines the exact anatomical location of the vessels, arising from the MFCA and supplying the FH. The IRA is in an elevated position from the femoral neck and may be protected from injury during fracture of the femoral neck. We present vascular ‘danger zones’ that may help avoid iatrogenic vascular injury during surgical interventions about the hip.

Cite this article: Bone Joint J 2015;97-B:1204–13.