Advertisement for orthosearch.org.uk
Results 1 - 100 of 121
Results per page:
Bone & Joint Research
Vol. 14, Issue 2 | Pages 77 - 92
4 Feb 2025
Spanninga BJ Hoelen TA Johnson S Cheng B Blokhuis TJ Willems PC Arts JJC

Aims. Autologous bone graft (ABG) is considered the ‘gold standard’ among graft materials for bone regeneration. However, complications including limited availability, donor site morbidity, and deterioration of regenerative capacity over time have been reported. P-15 is a synthetic peptide that mimics the cell binding domain of Type-I collagen. This peptide stimulates new bone formation by enhancing osteogenic cell attachment, proliferation, and differentiation. The objective of this study was to conduct a systematic literature review to determine the clinical efficacy and safety of P-15 peptide in bone regeneration throughout the skeletal system. Methods. PubMed, Embase, Web of Science, and Cochrane Library were searched for relevant articles on 13 May 2023. The systematic review was reported according to the PRISMA guidelines. Two reviewers independently screened and assessed the identified articles. Quality assessment was conducted using the methodological index for non-randomized studies and the risk of bias assessment tool for randomized controlled trials. Results. After screening, 28 articles were included and grouped by surgical indication, e.g. maxillofacial procedures (n = 18), spine (n = 9), and trauma (n = 1). Published results showed that P-15 peptide was effective in spinal fusion (n = 7) and maxillofacial (n = 11), with very few clinically relevant adverse events related to P-15 peptide. Conclusion. This systematic literature review concluded that moderate- (risk of bias, some concern: 50%) to high-quality (risk of bias, low: 46%) clinical evidence exists showing equivalent safety and efficacy in bone regeneration using a P-15 peptide enhanced bone graft substitute compared to ABG. P-15 peptide is safe and effective, resulting in rapid bone formation with a low probability of minor complications. Cite this article: Bone Joint Res 2025;14(2):77–92


Bone & Joint Research
Vol. 13, Issue 4 | Pages 137 - 148
1 Apr 2024
Lu Y Ho T Huang C Yeh S Chen S Tsao Y

Aims. Pigment epithelium-derived factor (PEDF) is known to induce several types of tissue regeneration by activating tissue-specific stem cells. Here, we investigated the therapeutic potential of PEDF 29-mer peptide in the damaged articular cartilage (AC) in rat osteoarthritis (OA). Methods. Mesenchymal stem/stromal cells (MSCs) were isolated from rat bone marrow (BM) and used to evaluate the impact of 29-mer on chondrogenic differentiation of BM-MSCs in culture. Knee OA was induced in rats by a single intra-articular injection of monosodium iodoacetate (MIA) in the right knees (set to day 0). The 29-mer dissolved in 5% hyaluronic acid (HA) was intra-articularly injected into right knees at day 8 and 12 after MIA injection. Subsequently, the therapeutic effect of the 29-mer/HA on OA was evaluated by the Osteoarthritis Research Society International (OARSI) histopathological scoring system and changes in hind paw weight distribution, respectively. The regeneration of chondrocytes in damaged AC was detected by dual-immunostaining of 5-bromo-2'-deoxyuridine (BrdU) and chondrogenic markers. Results. The 29-mer promoted expansion and chondrogenic differentiation of BM-MSCs cultured in different defined media. MIA injection caused chondrocyte death throughout the AC, with cartilage degeneration thereafter. The 29-mer/HA treatment induced extensive chondrocyte regeneration in the damaged AC and suppressed MIA-induced synovitis, accompanied by the recovery of cartilage matrix. Pharmacological inhibitors of PEDF receptor (PEDFR) and signal transducer and activator of transcription 3 (STAT3) signalling substantially blocked the chondrogenic promoting activity of 29-mer on the cultured BM-MSCs and injured AC. Conclusion. The 29-mer/HA formulation effectively induces chondrocyte regeneration and formation of cartilage matrix in the damaged AC. Cite this article: Bone Joint Res 2024;13(4):137–148


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 4 | Pages 571 - 576
1 Apr 2005
Savarino L Granchi D Cenni E Baldini N Greco M Giunti A

There is no diagnostic, non-invasive method for the early detection of loosening after total hip arthroplasty. In a pilot study, we have analysed two serum markers of bone remodelling, procollagen I C-terminal extension peptide (PICP) and cross-linked N-terminal telopeptide (NTx), as well as the diagnostic performance of NTx for the assessment of osteolysis. We recruited 21 patients with loosening (group I), 18 with a well-fixed prosthesis (group II) and 17 at the time of primary arthroplasty for osteoarthritis (OA) (group III). Internal normal reference ranges were obtained from 30 healthy subjects (group IV). The serum PICP level was found to be significantly lower in patients with OA and those with loosening, when compared with those with stable implants, while the NTx level was significantly increased only in the group with loosening, suggesting that collagen degradation depended on the altered bone turnover induced by the implant. This hypothesis was reinforced by the finding that the values in the pre-surgery patients and stable subjects were comparable with the reference range of younger healthy subjects. A high specificity and positive predictive value for NTx provided good diagnostic evidence of agreement between the test and the clinical and radiological evaluations. The NTx level could be used to indicate stability of the implant. However, further prospective, larger studies are necessary


Bone & Joint Research
Vol. 5, Issue 7 | Pages 314 - 319
1 Jul 2016
Xiao X Hao J Wen Y Wang W Guo X Zhang F

Objectives. The molecular mechanism of rheumatoid arthritis (RA) remains elusive. We conducted a protein-protein interaction network-based integrative analysis of genome-wide association studies (GWAS) and gene expression profiles of RA. Methods. We first performed a dense search of RA-associated gene modules by integrating a large GWAS meta-analysis dataset (containing 5539 RA patients and 20 169 healthy controls), protein interaction network and gene expression profiles of RA synovium and peripheral blood mononuclear cells (PBMCs). Gene ontology (GO) enrichment analysis was conducted by DAVID. The protein association networks of gene modules were generated by STRING. Results. For RA synovium, the top-ranked gene module is HLA-A, containing TAP2, HLA-A, HLA-C, TAPBP and LILRB1 genes. For RA PBMCs, the top-ranked gene module is GRB7, consisting of HLA-DRB5, HLA-DRA, GRB7, CD63 and KIT genes. Functional enrichment analysis identified three significant GO terms for RA synovium, including antigen processing and presentation of peptide antigen via major histocompatibility complex class I (false discovery rate (FDR) = 4.86 × 10 – 4), antigen processing and presentation of peptide antigen (FDR = 2.33 × 10 – 3) and eukaryotic translation initiation factor 4F complex (FDR = 2.52 × 10 – 2). Conclusion. This study reported several RA-associated gene modules and their functional association networks. Cite this article: X. Xiao, J. Hao, Y. Wen, W. Wang, X. Guo, F. Zhang. Genome-wide association studies and gene expression profiles of rheumatoid arthritis: an analysis. Bone Joint Res 2016;5:314–319. DOI: 10.1302/2046-3758.57.2000502


Bone & Joint Research
Vol. 9, Issue 7 | Pages 394 - 401
1 Jul 2020
Blirup-Plum SA Bjarnsholt T Jensen HE Kragh KN Aalbæk B Gottlieb H Bue M Jensen LK

Aims. CERAMENT|G is an absorbable gentamicin-loaded biocomposite used as an on-site vehicle of antimicrobials for the treatment of chronic osteomyelitis. The purpose of the present study was to investigate the sole effect of CERAMENT|G, i.e. without additional systemic antimicrobial therapy, in relation to a limited or extensive debridement of osteomyelitis lesions in a porcine model. Methods. Osteomyelitis was induced in nine pigs by inoculation of 10. 4. colony-forming units (CFUs) of Staphylococcus aureus into a drill hole in the right tibia. After one week, the pigs were allocated into three groups. Group A (n = 3) received no treatment during the study period (19 days). Groups B (n = 3) and C (n = 3) received limited or extensive debridement seven days postinoculation, respectively, followed by injection of CERAMENT|G into the bone voids. The pigs were euthanized ten (Group C) and 12 (Group B) days after the intervention. Results. All animals presented confirmatory signs of bone infection post-mortem. The estimated amount of inflammation was substantially greater in Groups A and B compared to Group C. In both Groups B and C, peptide nucleic acid fluorescence in situ hybridization (PNA FISH) of CERAMENT|G and surrounding bone tissue revealed bacteria embedded in an opaque matrix, i.e. within biofilm. In addition, in Group C, the maximal measured post-mortem gentamicin concentrations in CERAMENT|G and surrounding bone tissue samples were 16.6 μg/ml and 6.2 μg/ml, respectively. Conclusion. The present study demonstrates that CERAMENT|G cannot be used as a standalone alternative to extensive debridement or be used without the addition of systemic antimicrobials. Cite this article: Bone Joint Res 2020;9(7):394–401


Bone & Joint Research
Vol. 7, Issue 1 | Pages 58 - 68
1 Jan 2018
Portal-Núñez S Ardura JA Lozano D Martínez de Toda I De la Fuente M Herrero-Beaumont G Largo R Esbrit P

Objectives. Oxidative stress plays a major role in the onset and progression of involutional osteoporosis. However, classical antioxidants fail to restore osteoblast function. Interestingly, the bone anabolism of parathyroid hormone (PTH) has been shown to be associated with its ability to counteract oxidative stress in osteoblasts. The PTH counterpart in bone, which is the PTH-related protein (PTHrP), displays osteogenic actions through both its N-terminal PTH-like region and the C-terminal domain. Methods. We examined and compared the antioxidant capacity of PTHrP (1-37) with the C-terminal PTHrP domain comprising the 107-111 epitope (osteostatin) in both murine osteoblastic MC3T3-E1 cells and primary human osteoblastic cells. Results. We showed that both N- and C-terminal PTHrP peptides at 100 nM decreased reactive oxygen species production and forkhead box protein O activation following hydrogen peroxide (H. 2. O. 2. )-induced oxidation, which was related to decreased lipid oxidative damage and caspase-3 activation in these cells. This was associated with their ability to restore the deleterious effects of H. 2. O. 2. on cell growth and alkaline phosphatase activity, as well as on the expression of various osteoblast differentiation genes. The addition of Rp-cyclic 3′,5′-hydrogen phosphorothioate adenosine triethylammonium salt (a cyclic 3',5'-adenosine monophosphate antagonist) and calphostin C (a protein kinase C inhibitor), or a PTH type 1 receptor antagonist, abrogated the effects of N-terminal PTHrP, whereas protein phosphatase 1 (an Src kinase activity inhibitor), SU1498 (a vascular endothelial growth factor receptor 2 inhibitor), or an anti osteostatin antiserum, inhibited the effects of C-terminal PTHrP. Conclusion. These findings indicate that the antioxidant properties of PTHrP act through its N- and C-terminal domains and provide novel insights into the osteogenic action of PTHrP. Cite this article: S. Portal-Núñez, J. A. Ardura, D. Lozano, I. Martínez de Toda, M. De la Fuente, G. Herrero-Beaumont, R. Largo, P. Esbrit. Parathyroid hormone-related protein exhibits antioxidant features in osteoblastic cells through its N-terminal and osteostatin domains. Bone Joint Res 2018;7:58–68. DOI: 10.1302/2046-3758.71.BJR-2016-0242.R2


Bone & Joint Research
Vol. 9, Issue 7 | Pages 412 - 420
1 Jul 2020
Hefka Blahnova V Dankova J Rampichova M Filova E

Aims. Here we introduce a wide and complex study comparing effects of growth factors used alone and in combinations on human mesenchymal stem cell (hMSC) proliferation and osteogenic differentiation. Certain ways of cell behaviour can be triggered by specific peptides – growth factors, influencing cell fate through surface cellular receptors. Methods. In our study transforming growth factor β (TGF-β), basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), insulin-like growth factor 1 (IGF-1), and vascular endothelial growth factor (VEGF) were used in order to induce osteogenesis and proliferation of hMSCs from bone marrow. These cells are naturally able to differentiate into various mesodermal cell lines. Effect of each factor itself is pretty well known. We designed experimental groups where two and more growth factors were combined. We supposed cumulative effect would appear when more growth factors with the same effect were combined. The cellular metabolism was evaluated using MTS assay and double-stranded DNA (dsDNA) amount using PicoGreen assay. Alkaline phosphatase (ALP) activity, as early osteogenesis marker, was observed. Phase contrast microscopy was used for cell morphology evaluation. Results. TGF-β and bFGF were shown to significantly enhance cell proliferation. VEGF and IGF-1 supported ALP activity. Light microscopy showed initial extracellular matrix mineralization after VEGF/IGF-1 supply. Conclusion. A combination of more than two growth factors did not support the cellular metabolism level and ALP activity even though the growth factor itself had a positive effect. This is probably caused by interplay of various messengers shared by more growth factor signalling cascades. Cite this article: Bone Joint Res 2020;9(7):412–420


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 8 | Pages 1163 - 1169
1 Nov 2004
Ahmed M Ahmed N Khan KM Umer M Rashid H Hashmi P Umar M

We have compared the density of nerve fibres in the synovium in club foot with that of specimens obtained from the synovium of the hip at operations for developmental dysplasia. The study focused on the sensory neuropeptides substance P; calcitonin gene-related peptide; protein gene product 9.5, a general marker for mature peripheral nerve fibres; and growth associated protein 43, a neuronal marker for new or regenerating nerve fibres. In order to establish whether there might be any inherent difference we analysed the density of calcitonin gene-related peptide-positive nerve fibres in the hip and ankle joints in young rats. Semi-quantitative analysis showed a significant reduction in the number of sensory and mature nerve fibres in the synovium in club foot compared with the control hips. Calcitonin gene-related peptide (CGRP) positive fibres were reduced by 28%, substance P-positive fibres by 36% and protein gene product 9.5-positive fibres by 52% in club foot. The growth associated protein 43-positive fibres also seemed to be less in six samples of club foot. No difference in the density of CGRP-positive nerve fibres was observed in the synovium between ankle and hip joints in rats. The lack of sensory input may be responsible for the fibrosis and soft-tissue contractures associated with idiopathic club foot


Bone & Joint Research
Vol. 12, Issue 1 | Pages 72 - 79
18 Jan 2023
Welling MM Warbroek K Khurshid C van Oosterom MN Rietbergen DDD de Boer MGJ Nelissen RGHH van Leeuwen FWB Pijls BG Buckle T

Aims

Arthroplasty surgery of the knee and hip is performed in two to three million patients annually. Periprosthetic joint infections occur in 4% of these patients. Debridement, antibiotics, and implant retention (DAIR) surgery aimed at cleaning the infected prosthesis often fails, subsequently requiring invasive revision of the complete prosthetic reconstruction. Infection-specific imaging may help to guide DAIR. In this study, we evaluated a bacteria-specific hybrid tracer (99mTc-UBI29-41-Cy5) and its ability to visualize the bacterial load on femoral implants using clinical-grade image guidance methods.

Methods

99mTc-UBI29-41-Cy5 specificity for Stapylococcus aureus was assessed in vitro using fluorescence confocal imaging. Topical administration was used to highlight the location of S. aureus cultured on femoral prostheses using fluorescence imaging and freehand single photon emission CT (fhSPECT) scans. Gamma counting and fhSPECT were used to quantify the bacterial load and monitor cleaning with chlorhexidine. Microbiological culturing helped to relate the imaging findings with the number of (remaining) bacteria.


Bone & Joint Research
Vol. 13, Issue 5 | Pages 214 - 225
3 May 2024
Groven RVM Kuik C Greven J Mert Ü Bouwman FG Poeze M Blokhuis TJ Huber-Lang M Hildebrand F Cillero-Pastor B van Griensven M

Aims

The aim of this study was to determine the fracture haematoma (fxH) proteome after multiple trauma using label-free proteomics, comparing two different fracture treatment strategies.

Methods

A porcine multiple trauma model was used in which two fracture treatment strategies were compared: early total care (ETC) and damage control orthopaedics (DCO). fxH was harvested and analyzed using liquid chromatography-tandem mass spectrometry. Per group, discriminating proteins were identified and protein interaction analyses were performed to further elucidate key biomolecular pathways in the early fracture healing phase.


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 6 | Pages 807 - 811
1 Aug 2002
Alpar EK Onuoha G Killampalli VV Waters R

We investigated the response of chronic neck and shoulder pain to decompression of the carpal tunnel in 38 patients with whiplash injury. We also determined the plasma levels of substance P (SP) and calcitonin gene-related peptide (CGRP), which are inflammatory peptides that sensitise nociceptors. Compared with normal control subjects, the mean concentrations of SP (220 v 28 ng/l; p < 0.0001) and CGRP (400 v 85 ng/l; p < 0.0005) were high in patients with chronic shoulder and neck pain before surgery. After operation their levels fell to normal. There was resolution of neurological symptoms with improvement of pain in 90% of patients. Only two of the 30 with chronic neck and shoulder pain who had been treated conservatively showed improvement when followed up at two years. In spite of having neuropathic pain arising from the median nerve, all these patients had normal electromyographic and nerve-conduction studies. Chronic pain in whiplash injury may be caused by ‘atypical’ carpal tunnel syndrome and responds favourably to surgery which is indicated in patients with neck, shoulder and arm pain but not in those with mild symptoms in the hand. Previously, the presence of persistent neurological symptoms has been accepted as a sign of a poor outcome after a whiplash injury, but our study suggests that it may be possible to treat chronic pain by carpal tunnel decompression


Objectives. Previously, we reported the improved transfection efficiency of a plasmid DNA-chitosan (pDNA-CS) complex using a phosphorylatable nuclear localization signal-linked nucleic kinase substrate short peptide (pNNS) conjugated to chitosan (pNNS-CS). This study investigated the effects of pNNS-CS-mediated miR-140 and interleukin-1 receptor antagonist protein (IL-1Ra) gene transfection both in rabbit chondrocytes and a cartilage defect model. Methods. The pBudCE4.1-miR-140, pBudCE4.1-IL-1Ra, and negative control pBudCE4.1 plasmids were constructed and combined with pNNS-CS to form pDNA/pNNS-CS complexes. These complexes were transfected into chondrocytes or injected into the knee joint cavity. Results. High IL-1Ra and miR-140 expression levels were detected both in vitro and in vivo. In vitro, compared with the pBudCE4.1 group, the transgenic group presented with significantly increased chondrocyte proliferation and glycosaminoglycan (GAG) synthesis, as well as increased collagen type II alpha 1 chain (COL2A1), aggrecan (ACAN), and TIMP metallopeptidase inhibitor 1 (TIMP-1) levels. Nitric oxide (NO) synthesis was reduced, as were a disintegrin and metalloproteinase with thrombospondin type 1 motif 5 (ADAMTS-5) and matrix metalloproteinase (MMP)-13 levels. In vivo, the exogenous genes reduced the synovial fluid GAG and NO concentrations and the ADAMTS-5 and MMP-13 levels in cartilage. In contrast, COL2A1, ACAN, and TIMP-1 levels were increased, and the cartilage Mankin score was decreased in the transgenic group compared with the pBudCE4.1 group. Double gene combination produced greater efficacies than each single gene, both in vitro and in vivo. Conclusion. This study suggests that pNNS-CS is a good candidate for treating cartilage defects via gene therapy, and that IL-1Ra in combination with miR-140 produces promising biological effects on cartilage defects. Cite this article: R. Zhao, S. Wang, L. Jia, Q. Li, J. Qiao, X. Peng. Interleukin-1 receptor antagonist protein (IL-1Ra) and miR-140 overexpression via pNNS-conjugated chitosan-mediated gene transfer enhances the repair of full-thickness cartilage defects in a rabbit model. Bone Joint Res 2019;8:165–178. DOI: 10.1302/2046-3758.83.BJR-2018-0222.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 1 | Pages 62 - 67
1 Jan 2005
Peng B Wu W Hou S Li P Zhang C Yang Y

Discogenic low back pain is a common cause of disability, but its pathogenesis is poorly understood. We collected 19 specimens of lumbar intervertebral discs from 17 patients with discogenic low back pain during posterior lumbar interbody fusion, 12 from physiologically ageing discs and ten from normal control discs. We investigated the histological features and assessed the immunoreactive activity of neurofilament (NF200) and neuropeptides such as substance P (SP) and vasoactive-intestinal peptide (VIP) in the nerve fibres. The distinct histological characteristic of the painful disc was the formation of a zone of vascularised granulation tissue from the nucleus pulposus to the outer part of the annulus fibrosus along the edges of the fissures. SP-, NF- and VIP-immunoreactive nerve fibres in the painful discs were more extensive than in the control discs. Growth of nerves deep into the annulus fibrosus and nucleus pulposus was observed mainly along the zone of granulation tissue in the painful discs. This suggests that the zone of granulation tissue with extensive innervation along the tears in the posterior part of the painful disc may be responsible for causing the pain of discography and of discogenic low back pain


Bone & Joint Research
Vol. 12, Issue 7 | Pages 397 - 411
3 Jul 2023
Ruan X Gu J Chen M Zhao F Aili M Zhang D

Osteoarthritis (OA) is a chronic degenerative joint disease characterized by progressive cartilage degradation, synovial membrane inflammation, osteophyte formation, and subchondral bone sclerosis. Pathological changes in cartilage and subchondral bone are the main processes in OA. In recent decades, many studies have demonstrated that activin-like kinase 3 (ALK3), a bone morphogenetic protein receptor, is essential for cartilage formation, osteogenesis, and postnatal skeletal development. Although the role of bone morphogenetic protein (BMP) signalling in articular cartilage and bone has been extensively studied, many new discoveries have been made in recent years around ALK3 targets in articular cartilage, subchondral bone, and the interaction between the two, broadening the original knowledge of the relationship between ALK3 and OA. In this review, we focus on the roles of ALK3 in OA, including cartilage and subchondral bone and related cells. It may be helpful to seek more efficient drugs or treatments for OA based on ALK3 signalling in future.


Bone & Joint Research
Vol. 13, Issue 12 | Pages 725 - 740
5 Dec 2024
Xing J Liu S

Addressing bone defects is a complex medical challenge that involves dealing with various skeletal conditions, including fractures, osteoporosis (OP), bone tumours, and bone infection defects. Despite the availability of multiple conventional treatments for these skeletal conditions, numerous limitations and unresolved issues persist. As a solution, advancements in biomedical materials have recently resulted in novel therapeutic concepts. As an emerging biomaterial for bone defect treatment, graphene oxide (GO) in particular has gained substantial attention from researchers due to its potential applications and prospects. In other words, GO scaffolds have demonstrated remarkable potential for bone defect treatment. Furthermore, GO-loaded biomaterials can promote osteoblast adhesion, proliferation, and differentiation while stimulating bone matrix deposition and formation. Given their favourable biocompatibility and osteoinductive capabilities, these materials offer a novel therapeutic avenue for bone tissue regeneration and repair. This comprehensive review systematically outlines GO scaffolds’ diverse roles and potential applications in bone defect treatment.

Cite this article: Bone Joint Res 2024;13(12):725–740.


Bone & Joint Research
Vol. 11, Issue 7 | Pages 426 - 438
20 Jul 2022
Luo P Wang P Xu J Hou W Xu P Xu K Liu L

Rheumatoid arthritis (RA) is an autoimmune disease that involves T and B cells and their reciprocal immune interactions with proinflammatory cytokines. T cells, an essential part of the immune system, play an important role in RA. T helper 1 (Th1) cells induce interferon-γ (IFN-γ), tumour necrosis factor-α (TNF-α), and interleukin (IL)-2, which are proinflammatory cytokines, leading to cartilage destruction and bone erosion. Th2 cells primarily secrete IL-4, IL-5, and IL-13, which exert anti-inflammatory and anti-osteoclastogenic effects in inflammatory arthritis models. IL-22 secreted by Th17 cells promotes the proliferation of synovial fibroblasts through induction of the chemokine C-C chemokine ligand 2 (CCL2). T follicular helper (Tfh) cells produce IL-21, which is key for B cell stimulation by the C-X-C chemokine receptor 5 (CXCR5) and coexpression with programmed cell death-1 (PD-1) and/or inducible T cell costimulator (ICOS). PD-1 inhibits T cell proliferation and cytokine production. In addition, there are many immunomodulatory agents that promote or inhibit the immunomodulatory role of T helper cells in RA to alleviate disease progression. These findings help to elucidate the aetiology and treatment of RA and point us toward the next steps.

Cite this article: Bone Joint Res 2022;11(7):426–438.


Bone & Joint Research
Vol. 11, Issue 7 | Pages 439 - 452
13 Jul 2022
Sun Q Li G Liu D Xie W Xiao W Li Y Cai M

Osteoarthritis (OA) is a highly prevalent degenerative joint disorder characterized by joint pain and physical disability. Aberrant subchondral bone induces pathological changes and is a major source of pain in OA. In the subchondral bone, which is highly innervated, nerves have dual roles in pain sensation and bone homeostasis regulation. The interaction between peripheral nerves and target cells in the subchondral bone, and the interplay between the sensory and sympathetic nervous systems, allow peripheral nerves to regulate subchondral bone homeostasis. Alterations in peripheral innervation and local transmitters are closely related to changes in nociception and subchondral bone homeostasis, and affect the progression of OA. Recent literature has substantially expanded our understanding of the physiological and pathological distribution and function of specific subtypes of neurones in bone. This review summarizes the types and distribution of nerves detected in the tibial subchondral bone, their cellular and molecular interactions with bone cells that regulate subchondral bone homeostasis, and their role in OA pain. A comprehensive understanding and further investigation of the functions of peripheral innervation in the subchondral bone will help to develop novel therapeutic approaches to effectively prevent OA, and alleviate OA pain.

Cite this article: Bone Joint Res 2022;11(7):439–452.


Bone & Joint Research
Vol. 12, Issue 10 | Pages 654 - 656
16 Oct 2023
Makaram NS Simpson AHRW

Cite this article: Bone Joint Res 2023;12(10):654–656.



The Bone & Joint Journal
Vol. 105-B, Issue 4 | Pages 373 - 381
15 Mar 2023
Jandl NM Kleiss S Mussawy H Beil FT Hubert J Rolvien T

Aims

The aim of this study was to evaluate the diagnostic accuracy of the absolute synovial polymorphonuclear neutrophil cell (PMN) count for the diagnosis or exclusion of periprosthetic joint infection (PJI) after total hip (THA) or knee arthroplasty (TKA).

Methods

In this retrospective cohort study, 147 consecutive patients with acute or chronic complaints following THA and TKA were included. Diagnosis of PJI was established based on the 2018 International Consensus Meeting criteria. A total of 39 patients diagnosed with PJI (32 chronic and seven acute) and 108 patients with aseptic complications were surgically revised.


Bone & Joint Research
Vol. 12, Issue 10 | Pages 615 - 623
3 Oct 2023
Helwa-Shalom O Saba F Spitzer E Hanhan S Goren K Markowitz SI Shilo D Khaimov N Gellman YN Deutsch D Blumenfeld A Nevo H Haze A

Aims

Cartilage injuries rarely heal spontaneously and often require surgical intervention, leading to the formation of biomechanically inferior fibrous tissue. This study aimed to evaluate the possible effect of amelogenin on the healing process of a large osteochondral injury (OCI) in a rat model.

Methods

A reproducible large OCI was created in the right leg femoral trochlea of 93 rats. The OCIs were treated with 0.1, 0.5, 1.0, 2.5, or 5.0 μg/μl recombinant human amelogenin protein (rHAM+) dissolved in propylene glycol alginate (PGA) carrier, or with PGA carrier alone. The degree of healing was evaluated 12 weeks after treatment by morphometric analysis and histological evaluation. Cell recruitment to the site of injury as well as the origin of the migrating cells were assessed four days after treatment with 0.5 μg/μl rHAM+ using immunohistochemistry and immunofluorescence.


Bone & Joint Research
Vol. 12, Issue 1 | Pages 5 - 8
1 Jan 2023
Im G

Cite this article: Bone Joint Res 2023;12(1):5–8.


Aims

In this investigation, we administered oxidative stress to nucleus pulposus cells (NPCs), recognized DNA-damage-inducible transcript 4 (DDIT4) as a component in intervertebral disc degeneration (IVDD), and devised a hydrogel capable of conveying small interfering RNA (siRNA) to IVDD.

Methods

An in vitro model for oxidative stress-induced injury in NPCs was developed to elucidate the mechanisms underlying the upregulation of DDIT4 expression, activation of the reactive oxygen species (ROS)-thioredoxin-interacting protein (TXNIP)-NLRP3 signalling pathway, and nucleus pulposus pyroptosis. Furthermore, the mechanism of action of small interfering DDIT4 (siDDIT4) on NPCs in vitro was validated. A triplex hydrogel named siDDIT4@G5-P-HA was created by adsorbing siDDIT4 onto fifth-generation polyamidoamine (PAMAM) dendrimer using van der Waals interactions, and then coating it with hyaluronic acid (HA). In addition, we established a rat puncture IVDD model to decipher the hydrogel’s mechanism in IVDD.


Bone & Joint Research
Vol. 13, Issue 10 | Pages 559 - 572
8 Oct 2024
Wu W Zhao Z Wang Y Liu M Zhu G Li L

Aims

This study aimed to demonstrate the promoting effect of elastic fixation on fracture, and further explore its mechanism at the gene and protein expression levels.

Methods

A closed tibial fracture model was established using 12 male Japanese white rabbits, and divided into elastic and stiff fixation groups based on different fixation methods. Two weeks after the operation, a radiograph and pathological examination of callus tissue were used to evaluate fracture healing. Then, the differentially expressed proteins (DEPs) were examined in the callus using proteomics. Finally, in vitro cell experiments were conducted to investigate hub proteins involved in this process.


Bone & Joint Research
Vol. 13, Issue 6 | Pages 279 - 293
7 Jun 2024
Morris JL Letson HL McEwen PC Dobson GP

Aims

Adenosine, lidocaine, and Mg2+ (ALM) therapy exerts differential immuno-inflammatory responses in males and females early after anterior cruciate ligament (ACL) reconstruction (ACLR). Our aim was to investigate sex-specific effects of ALM therapy on joint tissue repair and recovery 28 days after surgery.

Methods

Male (n = 21) and female (n = 21) adult Sprague-Dawley rats were randomly divided into ALM or Saline control treatment groups. Three days after ACL rupture, animals underwent ACLR. An ALM or saline intravenous infusion was commenced prior to skin incision, and continued for one hour. An intra-articular bolus of ALM or saline was also administered prior to skin closure. Animals were monitored to 28 days, and joint function, pain, inflammatory markers, histopathology, and tissue repair markers were assessed.


Bone & Joint Research
Vol. 11, Issue 12 | Pages 843 - 853
1 Dec 2022
Cai Y Huang C Chen X Chen Y Huang Z Zhang C Zhang W Fang X

Aims

This study aimed to explore the role of small colony variants (SCVs) of Staphylococcus aureus in intraosseous invasion and colonization in patients with periprosthetic joint infection (PJI).

Methods

A PJI diagnosis was made according to the MusculoSkeletal Infection Society (MSIS) for PJI. Bone and tissue samples were collected intraoperatively and the intracellular invasion and intraosseous colonization were detected. Transcriptomics of PJI samples were analyzed and verified by polymerase chain reaction (PCR).


Bone & Joint Research
Vol. 11, Issue 11 | Pages 763 - 776
1 Nov 2022
Zhang Y Jiang B Zhang P Chiu SK Lee MH

Aims

Tissue inhibitors of metalloproteinases (TIMPs) are the endogenous inhibitors of the zinc-dependent matrix metalloproteinases (MMP) and A disintegrin and metalloproteinases (ADAM) involved in extracellular matrix modulation. The present study aims to develop the TIMPs as biologics for osteoclast-related disorders.

Methods

We examine the inhibitory effect of a high affinity, glycosyl-phosphatidylinositol-anchored TIMP variant named ‘T1PrαTACE’ on receptor activator of nuclear factor kappa-Β ligand (RANKL)-induced osteoclast differentiation.


The Bone & Joint Journal
Vol. 104-B, Issue 9 | Pages 1047 - 1051
1 Sep 2022
Balato G Dall’Anese R Balboni F Ascione T Pezzati P Bartolini G Quercioli M Baldini A

Aims

The diagnosis of periprosthetic joint infection (PJI) continues to present a significant clinical challenge. New biomarkers have been proposed to support clinical decision-making; among them, synovial fluid alpha-defensin has gained interest. Current research methodology suggests reference methods are needed to establish solid evidence for use of the test. This prospective study aims to evaluate the diagnostic accuracy of high-performance liquid chromatography coupled with the mass spectrometry (LC-MS) method to detect alpha-defensin in synovial fluid.

Methods

Between October 2017 and September 2019, we collected synovial fluid samples from patients scheduled to undergo revision surgery for painful total knee arthroplasty (TKA). The International Consensus Meeting criteria were used to classify 33 PJIs and 92 aseptic joints. LC-MS assay was performed to measure alpha-defensin in synovial fluid of all included patients. Sensitivity, specificity, positive predictive value, negative predictive value, and the area under the receiver operating characteristic curve (AUC) were calculated to define the test diagnostic accuracy.


Bone & Joint Research
Vol. 11, Issue 9 | Pages 639 - 651
7 Sep 2022
Zou Y Zhang X Liang J Peng L Qin J Zhou F Liu T Dai L

Aims

To explore the synovial expression of mucin 1 (MUC1) and its role in rheumatoid arthritis (RA), as well as the possible downstream mechanisms.

Methods

Patients with qualified synovium samples were recruited from a RA cohort. Synovium from patients diagnosed as non-inflammatory orthopaedic arthropathies was obtained as control. The expression and localization of MUC1 in synovium and fibroblast-like synoviocytes were assessed by immunohistochemistry and immunofluorescence. Small interfering RNA and MUC1 inhibitor GO-203 were adopted for inhibition of MUC1. Lysophosphatidic acid (LPA) was used as an activator of Rho-associated pathway. Expression of inflammatory cytokines, cell migration, and invasion were evaluated using quantitative real-time polymerase chain reaction (PCR) and Transwell chamber assay.


Bone & Joint Research
Vol. 11, Issue 9 | Pages 669 - 678
1 Sep 2022
Clement RGE Hall AC Wong SJ Howie SEM Simpson AHRW

Aims

Staphylococcus aureus is a major cause of septic arthritis, and in vitro studies suggest α haemolysin (Hla) is responsible for chondrocyte death. We used an in vivo murine joint model to compare inoculation with wild type S. aureus 8325-4 with a Hla-deficient strain DU1090 on chondrocyte viability, tissue histology, and joint biomechanics. The aim was to compare the actions of S. aureus Hla alone with those of the animal’s immune response to infection.

Methods

Adult male C57Bl/6 mice (n = 75) were randomized into three groups to receive 1.0 to 1.4 × 107 colony-forming units (CFUs)/ml of 8325-4, DU1090, or saline into the right stifle joint. Chondrocyte death was assessed by confocal microscopy. Histological changes to inoculated joints were graded for inflammatory responses along with gait, weight changes, and limb swelling.


Bone & Joint Research
Vol. 11, Issue 10 | Pages 700 - 714
4 Oct 2022
Li J Cheung W Chow SK Ip M Leung SYS Wong RMY

Aims

Biofilm-related infection is a major complication that occurs in orthopaedic surgery. Various treatments are available but efficacy to eradicate infections varies significantly. A systematic review was performed to evaluate therapeutic interventions combating biofilm-related infections on in vivo animal models.

Methods

Literature research was performed on PubMed and Embase databases. Keywords used for search criteria were “bone AND biofilm”. Information on the species of the animal model, bacterial strain, evaluation of biofilm and bone infection, complications, key findings on observations, prevention, and treatment of biofilm were extracted.


The Bone & Joint Journal
Vol. 104-B, Issue 5 | Pages 575 - 580
2 May 2022
Hamad C Chowdhry M Sindeldecker D Bernthal NM Stoodley P McPherson EJ

Periprosthetic joint infection (PJI) is a difficult complication requiring a comprehensive eradication protocol. Cure rates have essentially stalled in the last two decades, using methods of antimicrobial cement joint spacers and parenteral antimicrobial agents. Functional spacers with higher-dose antimicrobial-loaded cement and antimicrobial-loaded calcium sulphate beads have emphasized local antimicrobial delivery on the premise that high-dose local antimicrobial delivery will enhance eradication. However, with increasing antimicrobial pressures, microbiota have responded with adaptive mechanisms beyond traditional antimicrobial resistance genes. In this review we describe adaptive resistance mechanisms that are relevant to the treatment of PJI. Some mechanisms are well known, but others are new. The objective of this review is to inform clinicians of the known adaptive resistance mechanisms of microbes relevant to PJI. We also discuss the implications of these adaptive mechanisms in the future treatment of PJI.

Cite this article: Bone Joint J 2022;104-B(5):575–580.


Bone & Joint Research
Vol. 10, Issue 4 | Pages 285 - 297
1 Apr 2021
Ji M Ryu HJ Hong JH

Rheumatoid arthritis (RA) is an autoimmune disease characterized by symmetrical and chronic polyarthritis. Fibroblast-like synoviocytes are mainly involved in joint inflammation and cartilage and bone destruction by inflammatory cytokines and matrix-degrading enzymes in RA. Approaches that induce various cellular growth alterations of synoviocytes are considered as potential strategies for treating RA. However, since synoviocytes play a critical role in RA, the mechanism and hyperplastic modulation of synoviocytes and their motility need to be addressed. In this review, we focus on the alteration of synoviocyte signalling and cell fate provided by signalling proteins, various antioxidant molecules, enzymes, compounds, clinical candidates, to understand the pathology of the synoviocytes, and finally to achieve developed therapeutic strategies of RA.

Cite this article: Bone Joint Res 2021;10(4):285–297.


Bone & Joint Research
Vol. 11, Issue 5 | Pages 292 - 300
13 May 2022
He C Chen C Jiang X Li H Zhu L Wang P Xiao T

Osteoarthritis (OA) is a degenerative disease resulting from progressive joint destruction caused by many factors. Its pathogenesis is complex and has not been elucidated to date. Advanced glycation end products (AGEs) are a series of irreversible and stable macromolecular complexes formed by reducing sugar with protein, lipid, and nucleic acid through a non-enzymatic glycosylation reaction (Maillard reaction). They are an important indicator of the degree of ageing. Currently, it is considered that AGEs accumulation in vivo is a molecular basis of age-induced OA, and AGEs production and accumulation in vivo is one of the important reasons for the induction and acceleration of the pathological changes of OA. In recent years, it has been found that AGEs are involved in a variety of pathological processes of OA, including extracellular matrix degradation, chondrocyte apoptosis, and autophagy. Clearly, AGEs play an important role in regulating the expression of OA-related genes and maintaining the chondrocyte phenotype and the stability of the intra-articular environment. This article reviews the latest research results of AGEs in a variety of pathological processes of OA, to provide a new direction for the study of OA pathogenesis and a new target for prevention and treatment.

Cite this article: Bone Joint Res 2022;11(5):292–300.


The Bone & Joint Journal
Vol. 104-B, Issue 5 | Pages 567 - 574
2 May 2022
Borton ZM Oakley BJ Clamp JA Birch NC Bateman AH

Aims

Cervical radiculopathy is a significant cause of pain and morbidity. For patients with severe and poorly controlled symptoms who may not be candidates for surgical management, treatment with transforaminal epidural steroid injections (CTFESI) has gained widespread acceptance. However, a paucity of high-quality evidence supporting their use balanced against perceived high risks of the procedure potentially undermines the confidence of clinicians who use the technique. We undertook a systematic review of the available literature regarding CTFESI to assess the clinical efficacy and complication rates of the procedure.

Methods

OVID, MEDLINE, and Embase database searches were performed independently by two authors who subsequently completed title, abstract, and full-text screening for inclusion against set criteria. Clinical outcomes and complication data were extracted, and a narrative synthesis presented.


The Journal of Bone & Joint Surgery British Volume
Vol. 70-B, Issue 4 | Pages 663 - 664
1 Aug 1988
Bitensky L Hart J Catterall A Hodges S Pilkington M Chayen J

It is now clear that vitamin K1 is part of a biochemical cycle that is essential for the conversion of specific bone peptides into a form that can bind calcium. We have used a recently described procedure for assaying vitamin K1 in plasma to test the involvement of this vitamin in fracture healing. Markedly depressed circulating levels were found in patients with fractures and the time taken for this level to return to normal appeared to be influenced by the severity of the fracture


Bone & Joint Research
Vol. 10, Issue 8 | Pages 474 - 487
2 Aug 2021
Duan M Wang Q Liu Y Xie J

Transforming growth factor-beta2 (TGF-β2) is recognized as a versatile cytokine that plays a vital role in regulation of joint development, homeostasis, and diseases, but its role as a biological mechanism is understood far less than that of its counterpart, TGF-β1. Cartilage as a load-resisting structure in vertebrates however displays a fragile performance when any tissue disturbance occurs, due to its lack of blood vessels, nerves, and lymphatics. Recent reports have indicated that TGF-β2 is involved in the physiological processes of chondrocytes such as proliferation, differentiation, migration, and apoptosis, and the pathological progress of cartilage such as osteoarthritis (OA) and rheumatoid arthritis (RA). TGF-β2 also shows its potent capacity in the repair of cartilage defects by recruiting autologous mesenchymal stem cells and promoting secretion of other growth factor clusters. In addition, some pioneering studies have already considered it as a potential target in the treatment of OA and RA. This article aims to summarize the current progress of TGF-β2 in cartilage development and diseases, which might provide new cues for remodelling of cartilage defect and intervention of cartilage diseases.


Bone & Joint Open
Vol. 2, Issue 9 | Pages 721 - 727
1 Sep 2021
Zargaran A Zargaran D Trompeter AJ

Aims

Orthopaedic infection is a potentially serious complication of elective and emergency trauma and orthopaedic procedures, with a high associated burden of morbidity and cost. Optimization of vitamin D levels has been postulated to be beneficial in the prevention of orthopaedic infection. This study explores the role of vitamin D in orthopaedic infection through a systematic review of available evidence.

Methods

A comprehensive search was conducted on databases including Medline and Embase, as well as grey literature such as Google Scholar and The World Health Organization Database. Pooled analysis with weighted means was undertaken.


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 1 | Pages 151 - 155
1 Jan 1998
Ahmed M Bergström J Lundblad H Gillespie WJ Kreicbergs A

We studied the presence of sensory nerves by immunohistochemistry in the interface membranes of hip prostheses after aseptic loosening. Substance P (SP), neurokinin A (NKA) and calcitonin gene-related peptide (CGRP) were analysed as was protein gene product (PGP) 9.5, a general marker for nerve fibres. We identified nerve fibres in all samples but differences in their density were found. SP- and NKA-positive fibres were predominantly non-vascular, forming varicose nerve terminals. CGRP-immunoreactive nerve fibres with varicose terminals were seen mostly close to blood vessels, but also as free nerve endings. Sensory neuropeptides participate not only in nociception but also stimulate immune cells to release cytokines. The presence of sensory nerves in the interface membrane may reflect a pathophysiological response contributing to the aseptic loosening of hip prostheses


Bone & Joint Research
Vol. 11, Issue 2 | Pages 121 - 133
22 Feb 2022
Hsu W Lin S Hung J Chen M Lin C Hsu W Hsu WR

Aims

The decrease in the number of satellite cells (SCs), contributing to myofibre formation and reconstitution, and their proliferative capacity, leads to muscle loss, a condition known as sarcopenia. Resistance training can prevent muscle loss; however, the underlying mechanisms of resistance training effects on SCs are not well understood. We therefore conducted a comprehensive transcriptome analysis of SCs in a mouse model.

Methods

We compared the differentially expressed genes of SCs in young mice (eight weeks old), middle-aged (48-week-old) mice with resistance training intervention (MID+ T), and mice without exercise (MID) using next-generation sequencing and bioinformatics.


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 4 | Pages 737 - 742
1 Jul 1998
Suseki K Takahashi Y Takahashi K Chiba T Yamagata M Moriya H

It has been thought that lumbar intervertebral discs were innervated segmentally. We have previously shown that the L5-L6 intervertebral disc in the rat is innervated bilaterally from the L1 and L2 dorsal root ganglia through the paravertebral sympathetic trunks, but the pathways between the disc and the paravertebral sympathetic trunks were unknown. We have now studied the spines of 17 rats to elucidate the exact pathways. We examined serial sections of the lumbar spine using immunohistochemistry for calcitonin gene-related peptide, a sensory nerve marker. We showed that these nerve fibres from the intervertebral disc ran through the sinuvertebral nerve into the rami communicantes, not into the corresponding segmental spinal nerve. In the rat, sensory information from the lumbar intervertebral discs is conducted through rami communicantes. If this innervation pattern applies to man, simple decompression of the corresponding nerve root will not relieve discogenic pain. Anterior interbody fusion, with the denervation of rami communicantes, may be effective for such low back pain


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 2 | Pages 276 - 288
1 Mar 2002
Fortier LA Mohammed HO Lust G Nixon AJ

Composites of chondrocytes and polymerised fibrin were supplemented with insulin-like growth factor-I (IGF-I) during the arthroscopic repair of full-thickness cartilage defects in a model of extensive loss of cartilage in horses. Repairs facilitated with IGF-I and chondrocyte-fibrin composites, or control defects treated with chondrocyte-fibrin composites alone, were compared before death by the clinical appearance and repeated analysis of synovial fluid, and at termination eight months after surgery by tissue morphology, collagen typing, and biochemical assays. The structure of cartilage was evaluated histologically by Toluidine Blue reaction and collagen type-I and type-II in situ hybridisation and immunohistochemistry. Repair tissue was biochemically evaluated by DNA assay, proteoglycan quantitation and characterisation, assessment of collagen by reverse-phase high-performance liquid chromatography, and collagen typing using cyanogen bromide digestion and peptide separation by polyacrylamide gel electrophoresis. The results at eight months showed that the addition of IGF-I to chondrocyte grafts enhanced chondrogenesis in cartilage defects, including incorporation into surrounding cartilage. Gross filling of defects was improved, and the tissue contained a higher proportion of cells producing type-II collagen. Measurements of collagen type II showed improved levels in IGF-I-treated defects, supporting in situ hybridisation and immunohistochemical assessments of the defects. IGF-I improves the repair capabilities of chondrocyte-fibrin grafts in large full-thickness repair models


Bone & Joint Research
Vol. 10, Issue 6 | Pages 340 - 347
1 Jun 2021
Jenkinson MRJ Meek RMD Tate R MacMillan S Grant MH Currie S

Elevated levels of circulating cobalt ions have been linked with a wide range of systemic complications including neurological, endocrine, and cardiovascular symptoms. Case reports of patients with elevated blood cobalt ions have described significant cardiovascular complications including cardiomyopathy. However, correlation between the actual level of circulating cobalt and extent of cardiovascular injury has not previously been performed. This review examines evidence from the literature for a link between elevated blood cobalt levels secondary to metal-on-metal (MoM) hip arthroplasties and cardiomyopathy. Correlation between low, moderate, and high blood cobalt with cardiovascular complications has been considered. Elevated blood cobalt at levels over 250 µg/l have been shown to be a risk factor for developing systemic complications and published case reports document cardiomyopathy, cardiac transplantation, and death in patients with severely elevated blood cobalt ions. However, it is not clear that there is a hard cut-off value and cardiac dysfunction may occur at lower levels. Clinical and laboratory research has found conflicting evidence of cobalt-induced cardiomyopathy in patients with MoM hips. Further work needs to be done to clarify the link between severely elevated blood cobalt ions and cardiomyopathy.

Cite this article: Bone Joint Res 2021;10(6):340–347.


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 1 | Pages 147 - 153
1 Jan 1997
Brown MF Hukkanen MVJ McCarthy ID Redfern DRM Batten JJ Crock HV Hughes SPF Polak JM

We obtained intervertebral discs with cartilage endplates and underlying cancellous bone at operation from patients with degenerative disc disease and then used immunohistochemical techniques to localise the nerves and nerve endings in the specimens. We used antibodies for the ubiquitous neuronal protein gene product 9.5 (PGP 9.5). Immunoreactivity to neuropeptide Y was used to identify autonomic nerves and calcitonin gene-related peptide (CGRP) and substance P to identify sensory nerves. Blood vessels were identified by immunoreactivity with platelet-endothelial cell-adhesion molecule (CD31; PECAM). In a control group with no known history of chronic back pain, nerve fibres immunoreactive to PGP 9.5 and neuropeptide Y were most closely related to blood vessels, with occasional substance P and CGRP immunoreactivity. In patients with severe back pain and markedly reduced disc height, proliferation of blood vessels and accompanying nerve fibres was observed in the endplate region and underlying vertebral bodies. Many of these nerves were immunoreactive to substance P or CGRP, and in addition, substance P- and CGRP-immunoreactive nociceptors were seen unrelated to blood vessels. Quantification by image analysis showed a marked increase in CGRP-containing sensory nerve fibres compared with normal control subjects. We speculate that a chemotactic response to products of disc breakdown is responsible for the proliferation of vascularity and CGRP-containing sensory nerves found in the endplate region and vertebral body adjacent to degenerate discs. The neuropeptides substance P and CGRP have potent vasodilatory as well as pain-transmitting effects. The increase in sensory nerve endings suggests increase in blood flow, perhaps as an attempt to augment the nutrition of the degenerate disc. The increase in the density of sensory nerves, and the presence of endplate cartilage defects, strongly suggest that the endplates and vertebral bodies are sources of pain; this may explain the severe pain on movement experienced by some patients with degenerative disc disease


Bone & Joint Research
Vol. 10, Issue 7 | Pages 437 - 444
27 Jul 2021
Yan F Feng J Yang L Shi C

Aims

The aim of our study is to investigate the effect induced by alternated mechanical loading on Notch-1 in mandibular condylar cartilage (MCC) of growing rabbits.

Methods

A total of 64 ten-day-old rabbits were randomly divided into two groups according to dietary hardness: normal diet group (pellet) and soft diet group (powder). In each group, the rabbits were further divided into four subgroups by feeding time: two weeks, four weeks, six weeks, and eight weeks. Animals would be injected 5-bromo-2′-deoxyuridine (BrdU) every day for one week before sacrificing. Histomorphometric analysis of MCC thickness was performed through haematoxylin and eosin (HE) staining. Immunochemical analysis was done to test BrdU and Notch-1. The quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were used to measure expression of Notch-1, Jagged-1, and Delta-like 1 (Dll-1).


Bone & Joint Research
Vol. 10, Issue 8 | Pages 498 - 513
3 Aug 2021
Liu Z Lu C Shen P Chou S Shih C Chen J Tien YC

Aims

Interleukin (IL)-1β is one of the major pathogenic regulators during the pathological development of intervertebral disc degeneration (IDD). However, effective treatment options for IDD are limited. Suramin is used to treat African sleeping sickness. This study aimed to investigate the pharmacological effects of suramin on mitigating IDD and to characterize the underlying mechanism.

Methods

Porcine nucleus pulposus (NP) cells were treated with vehicle, 10 ng/ml IL-1β, 10 μM suramin, or 10 μM suramin plus IL-1β. The expression levels of catabolic and anabolic proteins, proinflammatory cytokines, mitogen-activated protein kinase (MAPK), and nuclear factor (NF)-κB-related signalling molecules were assessed by Western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), and immunofluorescence analysis. Flow cytometry was applied to detect apoptotic cells. The ex vivo effects of suramin were examined using IDD organ culture and differentiation was analyzed by Safranin O-Fast green and Alcian blue staining.


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 4 | Pages 732 - 738
1 Jul 1999
Meek RMD McLellan S Crossan JF

Dupuytren’s disease is a chronic inflammatory process which produces contractures of the fingers. The nodules present in Dupuytren’s tissue contain inflammatory cells, mainly lymphocytes and macrophages. These express a common integrin known as VLA4. The corresponding binding ligands to VLA4 are vascular cell adhesion molecule-1 (VCAM-1) present on the endothelial cells and the CS1 sequence of the fibronectin present in the extracellular matrix. Transforming growth factor-beta (TGF-ß) is a peptide hormone which has a crucial role in the process of fibrosis. We studied tissue from 20 patients with Dupuytren’s disease, four samples of normal palmar fascia from patients undergoing carpal tunnel decompression and tissue from ten patients who had received perinodular injections of depomedrone into the palm five days before operation. The distribution of VLA4, VCAM-1, CS1 fibronectin and TGF-ß was shown by immunohistochemistry using an alkaline phosphorylase method for light microscopy. In untreated Dupuytren’s tissue CS1 fibronectin stained positively around the endothelial cells of blood vessels and also around the surrounding myofibroblasts, principally at the periphery of many of the active areas of the Dupuytren’s nodule. VCAM-1 stained very positively for the endothelial cells of blood vessels surrounding and penetrating the areas of high nodular activity. VCAM-1 was more rarely expressed outside the blood vessels. VLA4 was expressed by inflammatory cells principally in and around the blood vessels expressing VCAM-1 and CS1 but also on some cells spreading into the nodule. TGF-ß stained positively around the inflammatory cells principally at the perivascular periphery of nodules. These cells often showed VLA4 expression and co-localised with areas of strong production of CS1 fibronectin. Normal palmar fascia contained only scanty amounts of CS1 fibronectin, almost no VCAM-1 and only an occasional cell staining positively for VLA4 or TGF-ß. In the steroid-treated group, VCAM-1 expression was downregulated in the endothelium of perinodular blood vessels and only occasional inflammatory cell expression remained. Expression of CS1 fibronectin was also much reduced but still occurred in the blood vessels and around the myofibroblast stroma. VLA4-expressing cells were also reduced in numbers. A similar but reduced distribution of production of TGF-ß was also noted. Our findings show that adherence of inflammatory cells to the endothelial wall and the extravasation into the periphery of the nodule may be affected by steroids, which reduce expression of VCAM-1 in vivo. This indicates that therapeutic intervention to prevent the recommencement of the chronic inflammatory process and subsequent fibrosis necessitating further surgery may be possible


Bone & Joint Research
Vol. 10, Issue 4 | Pages 269 - 276
1 Apr 2021
Matsubara N Nakasa T Ishikawa M Tamura T Adachi N

Aims

Meniscal injuries are common and often induce knee pain requiring surgical intervention. To develop effective strategies for meniscus regeneration, we hypothesized that a minced meniscus embedded in an atelocollagen gel, a firm gel-like material, may enhance meniscus regeneration through cell migration and proliferation in the gel. Hence, the objective of this study was to investigate cell migration and proliferation in atelocollagen gels seeded with autologous meniscus fragments in vitro and examine the therapeutic potential of this combination in an in vivo rabbit model of massive meniscus defect.

Methods

A total of 34 Japanese white rabbits (divided into defect and atelocollagen groups) were used to produce the massive meniscus defect model through a medial patellar approach. Cell migration and proliferation were evaluated using immunohistochemistry. Furthermore, histological evaluation of the sections was performed, and a modified Pauli’s scoring system was used for the quantitative evaluation of the regenerated meniscus.


Bone & Joint Research
Vol. 9, Issue 6 | Pages 311 - 313
1 Jun 2020
Tsang SJ Morgan-Jones R Simpson AHRW


Bone & Joint Research
Vol. 9, Issue 8 | Pages 501 - 514
1 Aug 2020
Li X Yang Y Sun G Dai W Jie X Du Y Huang R Zhang J

Aims

Rheumatoid arthritis (RA) is a systematic autoimmune disorder, characterized by synovial inflammation, bone and cartilage destruction, and disease involvement in multiple organs. Although numerous drugs are employed in RA treatment, some respond little and suffer from severe side effects. This study aimed to screen the candidate therapeutic targets and promising drugs in a novel method.

Methods

We developed a module-based and cumulatively scoring approach that is a deeper-layer application of weighted gene co-expression network (WGCNA) and connectivity map (CMap) based on the high-throughput datasets.


Bone & Joint Research
Vol. 10, Issue 1 | Pages 51 - 59
1 Jan 2021
Li J Ho WTP Liu C Chow SK Ip M Yu J Wong HS Cheung W Sung JJY Wong RMY

Aims

The effect of the gut microbiota (GM) and its metabolite on bone health is termed the gut-bone axis. Multiple studies have elucidated the mechanisms but findings vary greatly. A systematic review was performed to analyze current animal models and explore the effect of GM on bone.

Methods

Literature search was performed on PubMed and Embase databases. Information on the types and strains of animals, induction of osteoporosis, intervention strategies, determination of GM, assessment on bone mineral density (BMD) and bone quality, and key findings were extracted.


Bone & Joint Research
Vol. 10, Issue 1 | Pages 10 - 21
1 Jan 2021
Zong Z Zhang X Yang Z Yuan W Huang J Lin W Chen T Yu J Chen J Cui L Li G Wei B Lin S

Aims

Ageing-related incompetence becomes a major hurdle for the clinical translation of adult stem cells in the treatment of osteoarthritis (OA). This study aims to investigate the effect of stepwise preconditioning on cellular behaviours in human mesenchymal stem cells (hMSCs) from ageing patients, and to verify their therapeutic effect in an OA animal model.

Methods

Mesenchymal stem cells (MSCs) were isolated from ageing patients and preconditioned with chondrogenic differentiation medium, followed by normal growth medium. Cellular assays including Bromodeoxyuridine / 5-bromo-2'-deoxyuridine (BrdU), quantitative polymerase chain reaction (q-PCR), β-Gal, Rosette forming, and histological staining were compared in the manipulated human mesenchymal stem cells (hM-MSCs) and their controls. The anterior cruciate ligament transection (ACLT) rabbit models were locally injected with two millions, four millions, or eight millions of hM-MSCs or phosphate-buffered saline (PBS). Osteoarthritis Research Society International (OARSI) scoring was performed to measure the pathological changes in the affected joints after staining. Micro-CT analysis was conducted to determine the microstructural changes in subchondral bone.


Bone & Joint Research
Vol. 9, Issue 11 | Pages 742 - 750
1 Nov 2020
Li L Xiang S Wang B Lin H Cao G Alexander PG Tuan RS

Aims

Dystrophic calcification (DC) is the abnormal appearance of calcified deposits in degenerating tissue, often associated with injury. Extensive DC can lead to heterotopic ossification (HO), a pathological condition of ectopic bone formation. The highest rate of HO was found in combat-related blast injuries, a polytrauma condition with severe muscle injury. It has been noted that the incidence of HO significantly increased in the residual limbs of combat-injured patients if the final amputation was performed within the zone of injury compared to that which was proximal to the zone of injury. While aggressive limb salvage strategies may maximize the function of the residual limb, they may increase the possibility of retaining non-viable muscle tissue inside the body. In this study, we hypothesized that residual dead muscle tissue at the zone of injury could promote HO formation.

Methods

We tested the hypothesis by investigating the cellular and molecular consequences of implanting devitalized muscle tissue into mouse muscle pouch in the presence of muscle injury induced by cardiotoxin.


Bone & Joint Research
Vol. 9, Issue 11 | Pages 789 - 797
2 Nov 2020
Seco-Calvo J Sánchez-Herráez S Casis L Valdivia A Perez-Urzelai I Gil J Echevarría E

Aims

To analyze the potential role of synovial fluid peptidase activity as a measure of disease burden and predictive biomarker of progression in knee osteoarthritis (KOA).

Methods

A cross-sectional study of 39 patients (women 71.8%, men 28.2%; mean age of 72.03 years (SD 1.15) with advanced KOA (Ahlbäck grade ≥ 3 and clinical indications for arthrocentesis) recruited through the (Orthopaedic Department at the Complejo Asistencial Universitario de León, Spain (CAULE)), measuring synovial fluid levels of puromycin-sensitive aminopeptidase (PSA), neutral aminopeptidase (NAP), aminopeptidase B (APB), prolyl endopeptidase (PEP), aspartate aminopeptidase (ASP), glutamyl aminopeptidase (GLU) and pyroglutamyl aminopeptidase (PGAP).


Bone & Joint Research
Vol. 9, Issue 11 | Pages 778 - 788
1 Nov 2020
Xu H Yang J Xie J Huang Z Huang Q Cao G Pei F

Aims

The efficacy and safety of intrawound vancomycin for preventing surgical site infection in primary hip and knee arthroplasty is uncertain.

Methods

A systematic review of the literature was conducted, indexed from inception to March 2020 in PubMed, Web of Science, Cochrane Library, Embase, and Google Scholar databases. All studies evaluating the efficacy and/or safety of intrawound vancomycin in patients who underwent primary hip and knee arthroplasty were included. Incidence of periprosthetic joint infection (PJI), superficial infection, aseptic wound complications, acute kidney injury, anaphylactic reaction, and ototoxicity were meta-analyzed. Results were reported as odds ratios (ORs) and 95% confidence intervals (CIs). The quality of included studies was assessed using the risk of bias in non-randomized studies of interventions (ROBINS-I) assessment tool.


Bone & Joint Research
Vol. 9, Issue 3 | Pages 130 - 138
1 Mar 2020
Qi X Yu F Wen Y Li P Cheng B Ma M Cheng S Zhang L Liang C Liu L Zhang F

Aims

Osteoarthritis (OA) is the most prevalent joint disease. However, the specific and definitive genetic mechanisms of OA are still unclear.

Methods

Tissue-related transcriptome-wide association studies (TWAS) of hip OA and knee OA were performed utilizing the genome-wide association study (GWAS) data of hip OA and knee OA (including 2,396 hospital-diagnosed hip OA patients versus 9,593 controls, and 4,462 hospital-diagnosed knee OA patients versus 17,885 controls) and gene expression reference to skeletal muscle and blood. The OA-associated genes identified by TWAS were further compared with the differentially expressed genes detected by the messenger RNA (mRNA) expression profiles of hip OA and knee OA. Functional enrichment and annotation analysis of identified genes was performed by the DAVID and FUMAGWAS tools.


Bone & Joint Research
Vol. 9, Issue 9 | Pages 578 - 586
1 Sep 2020
Ma M Liang X Wang X Zhang L Cheng S Guo X Zhang F Wen Y

Aims

Kashin-Beck disease (KBD) is a kind of chronic osteochondropathy, thought to be caused by environmental risk factors such as T-2 toxin. However, the exact aetiology of KBD remains unclear. In this study, we explored the functional relevance and biological mechanism of cartilage oligosaccharide matrix protein (COMP) in the articular cartilage damage of KBD.

Methods

The articular cartilage specimens were collected from five KBD patients and five control subjects for cell culture. The messenger RNA (mRNA) and protein expression levels were detected by quantitative reverse transcription PCR (qRT-PCR) and western blot. The survival rate of C28/I2 chondrocyte cell line was detected by MTT assay after T-2 toxin intervention. The cell viability and mRNA expression levels of apoptosis related genes between COMP-overexpression groups and control groups were examined after cell transfection.


Bone & Joint Research
Vol. 9, Issue 9 | Pages 601 - 612
1 Sep 2020
Rajagopal K Ramesh S Walter NM Arora A Katti DS Madhuri V

Aims

Extracellular matrix (ECM) and its architecture have a vital role in articular cartilage (AC) structure and function. We hypothesized that a multi-layered chitosan-gelatin (CG) scaffold that resembles ECM, as well as native collagen architecture of AC, will achieve superior chondrogenesis and AC regeneration. We also compared its in vitro and in vivo outcomes with randomly aligned CG scaffold.

Methods

Rabbit bone marrow mesenchymal stem cells (MSCs) were differentiated into the chondrogenic lineage on scaffolds. Quality of in vitro regenerated cartilage was assessed by cell viability, growth, matrix synthesis, and differentiation. Bilateral osteochondral defects were created in 15 four-month-old male New Zealand white rabbits and segregated into three treatment groups with five in each. The groups were: 1) untreated and allogeneic chondrocytes; 2) multi-layered scaffold with and without cells; and 3) randomly aligned scaffold with and without cells. After four months of follow-up, the outcome was assessed using histology and immunostaining.


The Bone & Joint Journal
Vol. 102-B, Issue 5 | Pages 593 - 599
1 May 2020
Amanatullah DF Cheng RZ Huddleston III JI Maloney WJ Finlay AK Kappagoda S Suh GA Goodman SB

Aims

To establish the utility of adding the laboratory-based synovial alpha-defensin immunoassay to the traditional diagnostic work-up of a prosthetic joint infection (PJI).

Methods

A group of four physicians evaluated 158 consecutive patients who were worked up for PJI, of which 94 underwent revision arthroplasty. Each physician reviewed the diagnostic data and decided on the presence of PJI according to the 2014 Musculoskeletal Infection Society (MSIS) criteria (yes, no, or undetermined). Their initial randomized review of the available data before or after surgery was blinded to each alpha-defensin result and a subsequent randomized review was conducted with each result. Multilevel logistic regression analysis assessed the effect of having the alpha-defensin result on the ability to diagnose PJI. Alpha-defensin was correlated to the number of synovial white blood cells (WBCs) and percentage of polymorphonuclear cells (%PMN).


Bone & Joint Research
Vol. 9, Issue 4 | Pages 192 - 199
1 Apr 2020
Pijls BG Sanders IMJG Kujiper EJ Nelissen RGHH

Aims

Induction heating is a noninvasive, nonantibiotic treatment modality that can potentially be used to cause thermal damage to the bacterial biofilm on the metal implant surface. The purpose of this study was to determine the effectiveness of induction heating on killing Staphylococcus epidermidis from biofilm and to determine the possible synergistic effect of induction heating and antibiotics.

Methods

S. epidermidis biofilms were grown on titanium alloy (Ti6Al4V) coupons for 24 hours (young biofilm) and seven days (mature biofilm). These coupons with biofilm were heated to temperatures of 50°C, 55°C, 60°C, 65°C, 70°C, 80°C, and 90°C for 3.5 minutes and subsequently exposed to vancomycin and rifampicin at clinically relevant concentrations.


Bone & Joint Research
Vol. 9, Issue 5 | Pages 202 - 210
1 May 2020
Trotter AJ Dean R Whitehouse CE Mikalsen J Hill C Brunton-Sim R Kay GL Shakokani M Durst AZE Wain J McNamara I O’Grady J

Aims

This pilot study tested the performance of a rapid assay for diagnosing prosthetic joint infection (PJI), which measures synovial fluid calprotectin from total hip and knee revision patients.

Methods

A convenience series of 69 synovial fluid samples from revision patients at the Norfolk and Norwich University Hospital were collected intraoperatively (52 hips, 17 knees) and frozen. Synovial fluid calprotectin was measured retrospectively using a new commercially available lateral flow assay for PJI diagnosis (Lyfstone AS) and compared to International Consensus Meeting (ICM) 2018 criteria and clinical case review (ICM-CR) gold standards.


Bone & Joint Research
Vol. 9, Issue 2 | Pages 71 - 76
1 Feb 2020
Gao T Lin J Zhang C Zhu H Zheng X

Aims

The purpose of this study was to determine whether intracellular Staphylococcus aureus is associated with recurrent infection in a rat model of open fracture.

Methods

After stabilizing with Kirschner wire, we created a midshaft femur fracture in Sprague-Dawley rats and infected the wound with green fluorescent protein (GFP)-tagged S. aureus. After repeated debridement and negative swab culture was achieved, the isolation of GFP-containing cells from skin, bone marrow, and muscle was then performed. The composition and viability of intracellular S. aureus in isolated GFP-positive cells was assessed. We suppressed the host immune system and observed whether recurrent infection would occur. Finally, rats were assigned to one of six treatment groups (a combination of antibiotic treatment and implant removal/retention). The proportion of successful eradication was determined.


The Bone & Joint Journal
Vol. 101-B, Issue 8 | Pages 970 - 977
1 Aug 2019
Kleiss S Jandl NM Novo de Oliveira A Rüther W Niemeier A

Aims

The aim of this study was to evaluate the diagnostic accuracy of the synovial alpha-defensin enzyme-linked immunosorbent assay (ELISA) for the diagnosis of prosthetic joint infection (PJI) in the work-up prior to revision of total hip (THA) and knee arthroplasty (TKA).

Patients and Methods

Inclusion criteria for this prospective cohort study were acute or chronic symptoms of the index joint without specific exclusion criteria. Synovial fluid aspirates of 202 patients were analyzed and semiquantitative laboratory alpha-defensin ELISA was performed. Final diagnosis of PJI was established by examination of samples obtained during revision surgery.


Bone & Joint Research
Vol. 7, Issue 5 | Pages 373 - 378
1 May 2018
Johnson-Lynn SE McCaskie AW Coll AP Robinson AHN

Charcot neuroarthropathy is a rare but serious complication of diabetes, causing progressive destruction of the bones and joints of the foot leading to deformity, altered biomechanics and an increased risk of ulceration.

Management is complicated by a lack of consensus on diagnostic criteria and an incomplete understanding of the pathogenesis. In this review, we consider recent insights into the development of Charcot neuroarthropathy.

It is likely to be dependent on several interrelated factors which may include a genetic pre-disposition in combination with diabetic neuropathy. This leads to decreased neuropeptides (nitric oxide and calcitonin gene-related peptide), which may affect the normal coupling of bone formation and resorption, and increased levels of Receptor activator of nuclear factor kappa-B ligand, potentiating osteoclastogenesis.

Repetitive unrecognized trauma due to neuropathy increases levels of pro-inflammatory cytokines (interleukin-1β, interleukin-6, tumour necrosis factor α) which could also contribute to increased bone resorption, in combination with a pre-inflammatory state, with increased autoimmune reactivity and a profile of monocytes primed to transform into osteoclasts - cluster of differentiation 14 (CD14).

Increased blood glucose and loss of circulating Receptor for Advanced Glycation End-Products (AGLEPs), leading to increased non-enzymatic glycation of collagen and accumulation of AGLEPs in the tissues of the foot, may also contribute to the pathological process.

An understanding of the relative contributions of each of these mechanisms and a final common pathway for the development of Charcot neuroarthropathy are still lacking.

Cite this article: S. E. Johnson-Lynn, A. W. McCaskie, A. P. Coll, A. H. N. Robinson. Neuroarthropathy in diabetes: pathogenesis of Charcot arthropathy. Bone Joint Res 2018;7:373–378. DOI: 10.1302/2046-3758.75.BJR-2017-0334.R1.


Bone & Joint Research
Vol. 8, Issue 5 | Pages 199 - 206
1 May 2019
Romanò CL Tsuchiya H Morelli I Battaglia AG Drago L

Implant-related infection is one of the leading reasons for failure in orthopaedics and trauma, and results in high social and economic costs. Various antibacterial coating technologies have proven to be safe and effective both in preclinical and clinical studies, with post-surgical implant-related infections reduced by 90% in some cases, depending on the type of coating and experimental setup used. Economic assessment may enable the cost-to-benefit profile of any given antibacterial coating to be defined, based on the expected infection rate with and without the coating, the cost of the infection management, and the cost of the coating. After reviewing the latest evidence on the available antibacterial coatings, we quantified the impact caused by delaying their large-scale application. Considering only joint arthroplasties, our calculations indicated that for an antibacterial coating, with a final user’s cost price of €600 and able to reduce post-surgical infection by 80%, each year of delay to its large-scale application would cause an estimated 35 200 new cases of post-surgical infection in Europe, equating to additional hospital costs of approximately €440 million per year. An adequate reimbursement policy for antibacterial coatings may benefit patients, healthcare systems, and related research, as could faster and more affordable regulatory pathways for the technologies still in the pipeline. This could significantly reduce the social and economic burden of implant-related infections in orthopaedics and trauma.

Cite this article: C. L. Romanò, H. Tsuchiya, I. Morelli, A. G. Battaglia, L. Drago. Antibacterial coating of implants: are we missing something? Bone Joint Res 2019;8:199–206. DOI: 10.1302/2046-3758.85.BJR-2018-0316.


The Bone & Joint Journal
Vol. 100-B, Issue 6 | Pages 703 - 711
1 Jun 2018
Marson BA Deshmukh SR Grindlay DJC Scammell BE

Aims

The aim of this review was to evaluate the available literature and to calculate the pooled sensitivity and specificity for the different alpha-defensin test systems that may be used to diagnose prosthetic joint infection (PJI).

Materials and Methods

Studies using alpha-defensin or Synovasure (Zimmer Biomet, Warsaw, Indiana) to diagnose PJI were identified from systematic searches of electronic databases. The quality of the studies was evaluated using the Quality Assessment of Studies of Diagnostic Accuracy (QUADAS) tool. Meta-analysis was completed using a bivariate model.


Bone & Joint Research
Vol. 8, Issue 4 | Pages 179 - 188
1 Apr 2019
Chen M Chang C Yang L Hsieh P Shih H Ueng SWN Chang Y

Objectives

Prosthetic joint infection (PJI) diagnosis is a major challenge in orthopaedics, and no reliable parameters have been established for accurate, preoperative predictions in the differential diagnosis of aseptic loosening or PJI. This study surveyed factors in synovial fluid (SF) for improving PJI diagnosis.

Methods

We enrolled 48 patients (including 39 PJI and nine aseptic loosening cases) who required knee/hip revision surgery between January 2016 and December 2017. The PJI diagnosis was established according to the Musculoskeletal Infection Society (MSIS) criteria. SF was used to survey factors by protein array and enzyme-linked immunosorbent assay to compare protein expression patterns in SF among three groups (aseptic loosening and first- and second-stage surgery). We compared routine clinical test data, such as C-reactive protein level and leucocyte number, with potential biomarker data to assess the diagnostic ability for PJI within the same patient groups.


Bone & Joint 360
Vol. 7, Issue 5 | Pages 36 - 38
1 Oct 2018


Bone & Joint Research
Vol. 7, Issue 11 | Pages 601 - 608
1 Nov 2018
Hsu W Hsu W Hung J Shen W Hsu RW

Objectives

Osteoporosis is a metabolic disease resulting in progressive loss of bone mass as measured by bone mineral density (BMD). Physical exercise has a positive effect on increasing or maintaining BMD in postmenopausal women. The contribution of exercise to the regulation of osteogenesis in osteoblasts remains unclear. We therefore investigated the effect of exercise on osteoblasts in ovariectomized mice.

Methods

We compared the activity of differentially expressed genes of osteoblasts in ovariectomized mice that undertook exercise (OVX+T) with those that did not (OVX), using microarray and bioinformatics.


Bone & Joint 360
Vol. 7, Issue 3 | Pages 14 - 16
1 Jun 2018


Bone & Joint Research
Vol. 8, Issue 1 | Pages 19 - 31
1 Jan 2019
Li M Zhang C Yang Y

Objectives

Many in vitro studies have investigated the mechanism by which mechanical signals are transduced into biological signals that regulate bone homeostasis via periodontal ligament fibroblasts during orthodontic treatment, but the results have not been systematically reviewed. This review aims to do this, considering the parameters of various in vitro mechanical loading approaches and their effects on osteogenic and osteoclastogenic properties of periodontal ligament fibroblasts.

Methods

Specific keywords were used to search electronic databases (EMBASE, PubMed, and Web of Science) for English-language literature published between 1995 and 2017.


Bone & Joint 360
Vol. 7, Issue 2 | Pages 15 - 18
1 Apr 2018


Bone & Joint Research
Vol. 7, Issue 2 | Pages 173 - 178
1 Feb 2018
Peng X Wu X Zhang J Zhang G Li G Pan X

Osteoporosis is a systemic skeletal disorder characterized by reduced bone mass and deterioration of bone microarchitecture, which results in increased bone fragility and fracture risk. Casein kinase 2-interacting protein-1 (CKIP-1) is a protein that plays an important role in regulation of bone formation. The effect of CKIP-1 on bone formation is mainly mediated through negative regulation of the bone morphogenetic protein pathway. In addition, CKIP-1 has an important role in the progression of osteoporosis. This review provides a summary of the recent studies on the role of CKIP-1 in osteoporosis development and treatment.

Cite this article: X. Peng, X. Wu, J. Zhang, G. Zhang, G. Li, X. Pan. The role of CKIP-1 in osteoporosis development and treatment. Bone Joint Res 2018;7:173–178. DOI: 10.1302/2046-3758.72.BJR-2017-0172.R1.


Bone & Joint Research
Vol. 7, Issue 4 | Pages 263 - 273
1 Apr 2018
Ferreira E Porter RM

Large bone defects remain a tremendous clinical challenge. There is growing evidence in support of treatment strategies that direct defect repair through an endochondral route, involving a cartilage intermediate. While culture-expanded stem/progenitor cells are being evaluated for this purpose, these cells would compete with endogenous repair cells for limited oxygen and nutrients within ischaemic defects. Alternatively, it may be possible to employ extracellular vesicles (EVs) secreted by culture-expanded cells for overcoming key bottlenecks to endochondral repair, such as defect vascularization, chondrogenesis, and osseous remodelling. While mesenchymal stromal/stem cells are a promising source of therapeutic EVs, other donor cells should also be considered. The efficacy of an EV-based therapeutic will likely depend on the design of companion scaffolds for controlled delivery to specific target cells. Ultimately, the knowledge gained from studies of EVs could one day inform the long-term development of synthetic, engineered nanovesicles. In the meantime, EVs harnessed from in vitro cell culture have near-term promise for use in bone regenerative medicine. This narrative review presents a rationale for using EVs to improve the repair of large bone defects, highlights promising cell sources and likely therapeutic targets for directing repair through an endochondral pathway, and discusses current barriers to clinical translation.

Cite this article: E. Ferreira, R. M. Porter. Harnessing extracellular vesicles to direct endochondral repair of large bone defects. Bone Joint Res 2018;7:263–273. DOI: 10.1302/2046-3758.74.BJR-2018-0006.


The Bone & Joint Journal
Vol. 100-B, Issue 1 | Pages 66 - 72
1 Jan 2018
Suen K Keeka M Ailabouni R Tran P

Aims

α-defensin is a biomarker which has been described as having a high degree of accuracy in the diagnosis of periprosthetic joint infection (PJI). Current meta-analyses are based on the α-defensin laboratory-based immunoassay rather than the quick on-table lateral flow test kit. This study is the first meta-analysis to compare the accuracy of the α-defensin laboratory-based immunoassay and the lateral flow test kit for the diagnosis of PJI.

Materials and Methods

A systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Inclusion criteria were all clinical studies where the diagnosis of PJI was uncertain. All studies selected used the Musculoskeletal Infection Society (MSIS) or modified MSIS criteria. Two independent reviewers reviewed the studies and extracted data. A meta-analysis of results was carried out: pooled sensitivity, specificity, positive and negative likelihood ratio, heterogeneity and areas under curves are reported.


Bone & Joint Research
Vol. 6, Issue 10 | Pages 572 - 576
1 Oct 2017
Wang W Huang S Hou W Liu Y Fan Q He A Wen Y Hao J Guo X Zhang F

Objectives

Several genome-wide association studies (GWAS) of bone mineral density (BMD) have successfully identified multiple susceptibility genes, yet isolated susceptibility genes are often difficult to interpret biologically. The aim of this study was to unravel the genetic background of BMD at pathway level, by integrating BMD GWAS data with genome-wide expression quantitative trait loci (eQTLs) and methylation quantitative trait loci (meQTLs) data

Method

We employed the GWAS datasets of BMD from the Genetic Factors for Osteoporosis Consortium (GEFOS), analysing patients’ BMD. The areas studied included 32 735 femoral necks, 28 498 lumbar spines, and 8143 forearms. Genome-wide eQTLs (containing 923 021 eQTLs) and meQTLs (containing 683 152 unique methylation sites with local meQTLs) data sets were collected from recently published studies. Gene scores were first calculated by summary data-based Mendelian randomisation (SMR) software and meQTL-aligned GWAS results. Gene set enrichment analysis (GSEA) was then applied to identify BMD-associated gene sets with a predefined significance level of 0.05.


The Bone & Joint Journal
Vol. 99-B, Issue 11 | Pages 1482 - 1489
1 Nov 2017
Jacobs AME Bénard M Meis JF van Hellemondt G Goosen JHM

Aims

Positive cultures are not uncommon in cases of revision total knee and hip arthroplasty (TKA and THA) for presumed aseptic causes. The purpose of this study was to assess the incidence of positive intra-operative cultures in presumed aseptic revision of TKA and THA, and to determine whether the presence of intra-operative positive cultures results in inferior survival in such cases.

Patients and Methods

A retrospective cohort study was assembled with 679 patients undergoing revision knee (340 cases) or hip arthroplasty (339 cases) for presumed aseptic causes. For all patients three or more separate intra-operative cultures were obtained. Patients were diagnosed with a previously unsuspected prosthetic joint infection (PJI) if two or more cultures were positive with the same organism. Records were reviewed for demographic details, pre-operative laboratory results and culture results. The primary outcome measure was infection-free implant survival at two years.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 2 | Pages 304 - 310
1 Feb 2010
Jia W Zhang C Wang J Feng Y Ai Z

Platelet-leucocyte gel (PLG), a new biotechnological blood product, has hitherto been used primarily to treat chronic ulcers and to promote soft-tissue and bone regeneration in a wide range of medical fields. In this study, the antimicrobial efficacy of PLG against Staphylococcus aureus (ATCC 25923) was investigated in a rabbit model of osteomyelitis. Autologous PLG was injected into the tibial canal after inoculation with Staph. aureus. The prophylactic efficacy of PLG was evaluated by microbiological, radiological and histological examination. Animal groups included a treatment group that received systemic cefazolin and a control group that received no treatment.

Treatment with PLG or cefazolin significantly reduced radiological and histological severity scores compared to the control group. This result was confirmed by a significant reduction in the infection rate and the number of viable bacteria. Although not comparable to cefazolin, PLG exhibited antimicrobial efficacy in vivo and therefore represents a novel strategy to prevent bone infection in humans.


The Bone & Joint Journal
Vol. 99-B, Issue 1 | Pages 5 - 11
1 Jan 2017
Vulcano E Myerson MS

The last decade has seen a considerable increase in the use of in total ankle arthroplasty (TAA) to treat patients with end-stage arthritis of the ankle. However, the longevity of the implants is still far from that of total knee and hip arthroplasties.

The aim of this review is to outline a diagnostic and treatment algorithm for the painful TAA to be used when considering revision surgery.

Cite this article: Bone Joint J 2017;99-B:5–11.


Objectives

The lack of effective treatment for cartilage defects has prompted investigations using tissue engineering techniques for their regeneration and repair. The success of tissue-engineered repair of cartilage may depend on the rapid and efficient adhesion of transplanted cells to a scaffold. Our aim in this study was to repair full-thickness defects in articular cartilage in the weight-bearing area of a porcine model, and to investigate whether the CD44 monoclonal antibody biotin-avidin (CBA) binding technique could provide satisfactory tissue-engineered cartilage.

Methods

Cartilage defects were created in the load-bearing region of the lateral femoral condyle of mini-type pigs. The defects were repaired with traditional tissue-engineered cartilage, tissue-engineered cartilage constructed with the biotin-avidin (BA) technique, tissue-engineered cartilage constructed with the CBA technique and with autologous cartilage. The biomechanical properties, Western blot assay, histological findings and immunohistochemical staining were explored.


The Bone & Joint Journal
Vol. 99-B, Issue 1 | Pages 66 - 72
1 Jan 2017
Sigmund IK Holinka J Gamper J Staats K Böhler C Kubista B Windhager R

Aims

The diagnosis of periprosthetic joint infection (PJI) remains demanding due to limitations of all the available diagnostic tests. The synovial fluid marker, α-defensin, is a promising adjunct for the assessment of potential PJI. The purpose of this study was to investigate the qualitative assessment of α-defensin, using Synovasure to detect or exclude periprosthetic infection in total joint arthroplasty.

Patients and Methods

We studied 50 patients (28 women, 22 men, mean age 65 years; 20 to 89) with a clinical indication for revision arthroplasty who met the inclusion criteria of this prospective diagnostic study. The presence of α-defensin was determined using the qualitative Synovasure test and compared with standard diagnostic methods for PJI. Based on modified Musculoskeletal Infection Society (MSIS) criteria, 13 cases were categorised as septic and 36 as aseptic revisions. One test was inconclusive.


Bone & Joint 360
Vol. 3, Issue 6 | Pages 12 - 16
1 Dec 2014

The December 2014 Knee Roundup360 looks at: national guidance on arthroplasty thromboprophylaxis is effective; unicompartmental knee replacement has the edge in terms of short-term complications; stiff knees, timing and manipulation; neuropathic pain and total knee replacement; synovial fluid α-defensin and CRP: a new gold standard in joint infection diagnosis?; how to assess anterior knee pain?; where is the evidence? Five new implants under the spotlight; and a fresh look at ACL reconstruction


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 9 | Pages 1201 - 1209
1 Sep 2011
Peng K Hsu W Shih H Hsieh C Huang T Hsu RW Chang P

In this study of 41 patients, we used proteomic, Western blot and immunohistochemical analyses to show that several reactive oxygen species scavenging enzymes are expressed differentially in patients with primary osteoarthritis and those with non-loosening and aseptic loosening after total hip replacement (THR). The patients were grouped as A (n = 16, primary THR), B (n = 10, fixed THR but requiring revision for polyethylene wear) and C (n = 15, requiring revision due to aseptic loosening) to verify the involvement of the identified targets in aseptic loosening. When compared with Groups A and B, Group C patients exhibited significant up-regulation of transthyretin and superoxide dismutase 3, but down-regulation of glutathione peroxidase 2 in their hip synovial fluids. Also, higher levels of superoxide dismutase 2 and peroxiredoxin 2, but not superoxide dismutase 1, catalase and glutathione perioxidase 1, were consistently detected in the hip capsules of Group C patients.

We propose that dysregulated reactive oxygen species-related enzymes may play an important role in the pathogenesis and progression of aseptic loosening after THR.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 3 | Pages 329 - 334
1 Mar 2010
Cox G Einhorn TA Tzioupis C Giannoudis PV

Biochemical markers of bone-turnover have long been used to complement the radiological assessment of patients with metabolic bone disease. Their implementation in daily clinical practice has been helpful in the understanding of the pathogenesis of osteoporosis, the selection of the optimal dose and the understanding of the progression of the onset and resolution of treatment. Since they are derived from both cortical and trabecular bone, they reflect the metabolic activity of the entire skeleton rather than that of individual cells or the process of mineralisation.

Quantitative changes in skeletal-turnover can be assessed easily and non-invasively by the measurement of bone-turnover markers. They are commonly subdivided into three categories; 1) bone-resorption markers, 2) osteoclast regulatory proteins and 3) bone-formation markers. Because of the rapidly accumulating new knowledge of bone matrix biochemistry, attempts have been made to use them in the interpretation and characterisation of various stages of the healing of fractures. Early knowledge of the individual progress of a fracture could help to avoid delayed or nonunion by enabling modification of the host’s biological response.

The levels of bone-turnover markers vary throughout the course of fracture repair with their rates of change being dependent on the size of the fracture and the time that it will take to heal. However, their short-term biological variability, the relatively low bone specificity exerted, given that the production and destruction of collagen is not limited to bone, as well as the influence of the host’s metabolism on their concentration, produce considerable intra- and inter-individual variability in their interpretation. Despite this, the possible role of bone-turnover markers in the assessment of progression to union, the risks of delayed or nonunion and the impact of innovations to accelerate fracture healing must not be ignored.


The Bone & Joint Journal
Vol. 98-B, Issue 2 | Pages 266 - 270
1 Feb 2016
Stevenson JD McNair M Cribb GL Cool WP

Aims

Surgical intervention in patients with bone metastases from breast cancer is dependent on the estimated survival of the patient. The purpose of this paper was to identify factors that would predict survival so that specific decisions could be made in terms of surgical (or non-surgical) management.

Methods

The records of 113 consecutive patients (112 women) with metastatic breast cancer were analysed for clinical, radiological, serological and surgical outcomes. Their median age was 61 years (interquartile range 29 to 90) and the median duration of follow-up was 1.6 years (standard deviation (sd) 1.9, 95% confidence interval (CI) 0 to 5.9). The cumulative one- and five-year rates of survival were 68% and 16% (95% Cl 60 to 77 and 95% CI 10 to 26, respectively).


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 6 | Pages 894 - 899
1 Jun 2010
Khattak MJ Ahmad T Rehman R Umer M Hasan SH Ahmed M

The nervous system is known to be involved in inflammation and repair. We aimed to determine the effect of physical activity on the healing of a muscle injury and to examine the pattern of innervation. Using a drop-ball technique, a contusion was produced in the gastrocnemius in 20 rats. In ten the limb was immobilised in a plaster cast and the remaining ten had mobilisation on a running wheel. The muscle and the corresponding dorsal-root ganglia were studied by histological and immunohistochemical methods.

In the mobilisation group, there was a significant reduction in lymphocytes (p = 0.016), macrophages (p = 0.008) and myotubules (p = 0.008) between three and 21 days. The formation of myotubules and the density of nerve fibres was significantly higher (both p = 0.016) compared with those in the immobilisation group at three days, while the density of CGRP-positive fibres was significantly lower (p = 0.016) after 21 days.

Mobilisation after contusional injury to the muscle resulted in early and increased formation of myotubules, early nerve regeneration and progressive reduction in inflammation, suggesting that it promoted a better healing response.


The Bone & Joint Journal
Vol. 95-B, Issue 6 | Pages 770 - 776
1 Jun 2013
Haversath M Hanke J Landgraeber S Herten M Zilkens C Krauspe R Jäger M

Our understanding of the origin of hip pain in degenerative disorders of the hip, including primary osteoarthritis, avascular necrosis and femoroacetabular impingement (FAI), is limited. We undertook a histological investigation of the nociceptive innervation of the acetabular labrum, ligamentum teres and capsule of the hip, in order to prove pain- and proprioceptive-associated marker expression. These structures were isolated from 57 patients who had undergone elective hip surgery (44 labral samples, 33 ligamentum teres specimens, 34 capsular samples; in 19 patients all three structures were harvested). A total of 15 000 histological sections were prepared that were investigated immunohistochemically for the presence of protein S-100, 68 kDa neurofilament, neuropeptide Y, nociceptin and substance P. The tissues were evaluated in six representative areas.

Within the labrum, pain-associated free nerve ending expression was located predominantly at its base, decreasing in the periphery. In contrast, the distribution within the ligamentum teres showed a high local concentration in the centre. The hip capsule had an almost homogeneous marker expression in all investigated areas.

This study showed characteristic distribution profiles of nociceptive and pain-related nerve fibres, which may help in understanding the origin of hip pain.

Cite this article: Bone Joint J 2013;95-B:770–6.


Bone & Joint Research
Vol. 5, Issue 4 | Pages 106 - 115
1 Apr 2016
Gruber HE Ode G Hoelscher G Ingram J Bethea S Bosse MJ

Objectives

The biomembrane (induced membrane) formed around polymethylmethacrylate (PMMA) spacers has value in clinical applications for bone defect reconstruction. Few studies have evaluated its cellular, molecular or stem cell features. Our objective was to characterise induced membrane morphology, molecular features and osteogenic stem cell characteristics.

Methods

Following Institutional Review Board approval, biomembrane specimens were obtained from 12 patient surgeries for management of segmental bony defects (mean patient age 40.7 years, standard deviation 14.4). Biomembranes from nine tibias and three femurs were processed for morphologic, molecular or stem cell analyses. Gene expression was determined using the Affymetrix GeneChip Operating Software (GCOS). Molecular analyses compared biomembrane gene expression patterns with a mineralising osteoblast culture, and gene expression in specimens with longer spacer duration (> 12 weeks) with specimens with shorter durations. Statistical analyses used the unpaired student t-test (two tailed; p < 0.05 was considered significant).


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 3 | Pages 417 - 420
1 Mar 2007
Bielecki TM Gazdzik TS Arendt J Szczepanski T Kròl W Wielkoszynski T

Platelet-rich plasma is a new inductive therapy which is being increasingly used for the treatment of the complications of bone healing, such as infection and nonunion. The activator for platelet-rich plasma is a mixture of thrombin and calcium chloride which produces a platelet-rich gel.

We analysed the antibacterial effect of platelet-rich gel in vitro by using the platelet-rich plasma samples of 20 volunteers. In vitro laboratory susceptibility to platelet-rich gel was determined by the Kirby-Bauer disc-diffusion method. Baseline antimicrobial activity was assessed by measuring the zones of inhibition on agar plates coated with selected bacterial strains.

Zones of inhibition produced by platelet-rich gel ranged between 6 mm and 24 mm (mean 9.83 mm) in diameter. Platelet-rich gel inhibited the growth of Staphylococcus aureus and was also active against Escherichia coli. There was no activity against Klebsiella pneumoniae, Enterococcus faecalis, and Pseudomonas aeruginosa. Moreover, platelet-rich gel seemed to induce the in vitro growth of Ps. aeruginosa, suggesting that it may cause an exacerbation of infections with this organism. We believe that a combination of the inductive and antimicrobial properties of platelet-rich gel can improve the treatment of infected delayed healing and nonunion.


The Bone & Joint Journal
Vol. 97-B, Issue 6 | Pages 824 - 829
1 Jun 2015
Cho CH Lho YM Ha E Hwang I Song KS Min BW Bae KC Kim DH

The purpose of this study was to evaluate the expression of acid-sensing ion channels (ASICs) in the capsule and synovial fluid of patients with frozen shoulder. Capsular tissue and synovial fluid were obtained from 18 patients with idiopathic frozen shoulder (FS group) and 18 patients with instability of the shoulder (control group). The expressions of ASIC1, ASIC2, and ASIC3 in the capsule were determined using the reverse transcriptase-polymerase chain reaction, immunoblot analysis, and immunohistochemistry (IHC). The concentrations in synovial fluid were evaluated using an enzyme-linked immunosorbent assay.

The mRNA expression of ASIC1, ASIC2 and ASIC3 in the capsule were significantly increased in the FS group compared with the control group. The protein levels of these three ASICs were also increased. The increased expressions were confirmed by IHC. Of the ASICs, ASIC3 showed the greatest increase in both mRNA and levels of expression compared with the control group. The levels of ASIC1 and ASIC3 in synovial fluid were significantly increased in the FS group.

This study suggests that ASICs may play a role as mediators of inflammatory pain and be involved in the pathogenesis of frozen shoulder.

Cite this article: Bone Joint J 2015;97-B:824–9.


The Bone & Joint Journal
Vol. 97-B, Issue 4 | Pages 572 - 576
1 Apr 2015
Polfer EM Hope DN Elster EA Qureshi AT Davis TA Golden D Potter BK Forsberg JA

Currently, there is no animal model in which to evaluate the underlying physiological processes leading to the heterotopic ossification (HO) which forms in most combat-related and blast wounds. We sought to reproduce the ossification that forms under these circumstances in a rat by emulating patterns of injury seen in patients with severe injuries resulting from blasts. We investigated whether exposure to blast overpressure increased the prevalence of HO after transfemoral amputation performed within the zone of injury. We exposed rats to a blast overpressure alone (BOP-CTL), crush injury and femoral fracture followed by amputation through the zone of injury (AMP-CTL) or a combination of these (BOP-AMP). The presence of HO was evaluated using radiographs, micro-CT and histology. HO developed in none of nine BOP-CTL, six of nine AMP-CTL, and in all 20 BOP-AMP rats. Exposure to blast overpressure increased the prevalence of HO.

This model may thus be used to elucidate cellular and molecular pathways of HO, the effect of varying intensities of blast overpressure, and to evaluate new means of prophylaxis and treatment of heterotopic ossification.

Cite this article: Bone Joint J 2015;97-B:572–6


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 6 | Pages 701 - 705
1 Jun 2006
Simpson AHRW Mills L Noble B


Bone & Joint 360
Vol. 4, Issue 1 | Pages 20 - 22
1 Feb 2015

The February 2015 Wrist & Hand Roundup360 looks at: Toes, feet, hands and transfers… FCR Tendonitis after Trapeziectomy and suspension, Motion sparing surgery for SLAC/SNAC wrists under the spotlight, Instability following distal radius fractures, Bilateral wrist arthrodesis a good idea?, Sodium Hyaluronate improves hand recovery following flexor tendon repair, Ultrasound treatments for de Quervain’s, Strategies for treating metacarpal neck fractures.


The Bone & Joint Journal
Vol. 96-B, Issue 11_Supple_A | Pages 60 - 65
1 Nov 2014
Parry MC Duncan CP

Advances in the treatment of periprosthetic joint infections of the hip have once more pushed prosthesis preserving techniques into the limelight. At the same time, the common infecting organisms are evolving to become more resistant to conventional antimicrobial agents. Whilst the epidemiology of resistant staphylococci is changing, a number of recent reports have advocated the use of irrigation and debridement and one-stage revision for the treatment of periprosthetic joint infections due to resistant organisms. This review presents the available evidence for the treatment of periprosthetic joint infections of the hip, concentrating in particular on methicillin resistant staphylococci.

Cite this article: Bone Joint J 2014;96-B(11 Suppl A):60–5.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 9 | Pages 1135 - 1139
1 Sep 2007
Edgar MA

The anatomical studies, basic to our understanding of lumbar spine innervation through the sinu-vertebral nerves, are reviewed. Research in the 1980s suggested that pain sensation was conducted in part via the sympathetic system. These sensory pathways have now been clarified using sophisticated experimental and histochemical techniques confirming a dual pattern. One route enters the adjacent dorsal root segmentally, whereas the other supply is non-segmental ascending through the paravertebral sympathetic chain with re-entry through the thoracolumbar white rami communicantes.

Sensory nerve endings in the degenerative lumbar disc penetrate deep into the disrupted nucleus pulposus, insensitive in the normal lumbar spine. Complex as well as free nerve endings would appear to contribute to pain transmission.

The nature and mechanism of discogenic pain is still speculative but there is growing evidence to support a ‘visceral pain’ hypothesis, unique in the muscloskeletal system. This mechanism is open to ‘peripheral sensitisation’ and possibly ‘central sensitisation’ as a potential cause of chronic back pain.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 5 | Pages 672 - 685
1 May 2007
Goodrich LR Hidaka C Robbins PD Evans CH Nixon AJ

Gene therapy with insulin-like growth factor-1 (IGF-1) increases matrix production and enhances chondrocyte proliferation and survival in vitro. The purpose of this study was to determine whether arthroscopically-grafted chondrocytes genetically modified by an adenovirus vector encoding equine IGF-1 (AdIGF-1) would have a beneficial effect on cartilage healing in an equine femoropatellar joint model.

A total of 16 horses underwent arthroscopic repair of a single 15 mm cartilage defect in each femoropatellar joint. One joint received 2 × 107 AdIGF-1 modified chondrocytes and the contralateral joint received 2 × 107 naive (unmodified) chondrocytes. Repairs were analysed at four weeks, nine weeks and eight months after surgery. Morphological and histological appearance, IGF-1 and collagen type II gene expression (polymerase chain reaction, in situ hybridisation and immunohistochemistry), collagen type II content (cyanogen bromide and sodium dodecyl sulphate-polyacrylamide gel electrophoresis), proteoglycan content (dimethylmethylene blue assay), and gene expression for collagen type I, matrix metalloproteinase (MMP)-1, MMP-3, MMP-13, aggrecanase-1, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) and TIMP-3 were evaluated.

Genetic modification of chondrocytes significantly increased IGF-1 mRNA and ligand production in repair tissue for up to nine weeks following transplantation. The gross and histological appearance of IGF-1 modified repair tissue was improved over control defects. Gross filling of defects was significantly improved at four weeks, and a more hyaline-like tissue covered the lesions at eight months. Histological outcome at four and nine weeks post-transplantation revealed greater tissue filling of defects transplanted with genetically modified chondrocytes, whereas repair tissue in control defects was thin and irregular and more fibrous. Collagen type II expression in IGF-1 gene-transduced defects was increased 100-fold at four weeks and correlated with increased collagen type II immunoreaction up to eight months.

Genetic modification of chondrocytes with AdIGF-1 prior to transplantation improved early (four to nine weeks), and to a lesser degree long-term, cartilage healing in the equine model.

The equine model of cartilage healing closely resembles human clinical cartilage repair. The results of this study suggest that cartilage healing can be enhanced through genetic modification of chondrocytes prior to transplantation.


Bone & Joint 360
Vol. 3, Issue 4 | Pages 35 - 38
1 Aug 2014
Hammerberg EM


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 3 | Pages 370 - 377
1 Mar 2011
Chaudhury S Dicko C Burgess M Vollrath F Carr AJ

We have used Fourier transform infrared spectroscopy (FTIR) to characterise the chemical and structural composition of the tendons of the rotator cuff and to identify structural differences among anatomically distinct tears. Such information may help to identify biomarkers of tears and to provide insight into the rates of healing of different sizes of tear. The infrared spectra of 81 partial, small, medium, large and massive tears were measured using FTIR and compared with 11 uninjured control tendons. All the spectra were classified using standard techniques of multivariate analysis.

FTIR readily differentiates between normal and torn tendons, and different sizes of tear. We identified the key discriminating molecules and spectra altered in torn tendons to be carbohydrates/phospholipids (1030 cm−1 to 1200 cm−1), collagen (1300 cm−1 to 1700 cm−1 and 3000 cm−1 to 3350 cm−1) and lipids (2800 cm−1 to 3000 cm−1).

Our study has shown that FTIR spectroscopy can identify tears of the rotator cuff of varying size based upon distinguishable chemical and structural features. The onset of a tear is mainly associated with altered structural arrangements of collagen, with changes in lipids and carbohydrates. The approach described is rapid and has the potential to be used peri-operatively to determine the quality of the tendon and the extent of the disease, thus guiding surgical repair.


Bone & Joint Research
Vol. 3, Issue 6 | Pages 193 - 202
1 Jun 2014
Hast MW Zuskov A Soslowsky LJ

Tendinopathy is a debilitating musculoskeletal condition which can cause significant pain and lead to complete rupture of the tendon, which often requires surgical repair. Due in part to the large spectrum of tendon pathologies, these disorders continue to be a clinical challenge. Animal models are often used in this field of research as they offer an attractive framework to examine the cascade of processes that occur throughout both tendon pathology and repair. This review discusses the structural, mechanical, and biological changes that occur throughout tendon pathology in animal models, as well as strategies for the improvement of tendon healing.

Cite this article: Bone Joint Res 2014;3:193–202.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 2 | Pages 254 - 257
1 Feb 2008
Nakajima T Ohtori S Inoue G Koshi T Yamamoto S Nakamura J Takahashi K Harada Y

Using a rat model the characteristics of the sensory neurones of the dorsal-root ganglia (DRG) innervating the hip were investigated by retrograde neurotransport and immunohistochemistry.

Fluoro-Gold solution (FG) was injected into the left hip of ten rats. Seven days later the DRG from both sides between T12 and L6 were harvested. The number of FG-labelled calcitonin gene-related peptide-immunoreactive or isolectin B4-binding neurones were counted.

The FG-labelled neurones were distributed throughout the left DRGs between T13 and L5, primarily at L2, L3, and L4. Few FG-labelled isolectin B4-binding neurones were present in the DRGs of either side between T13 and L5, but calcitonin gene-related peptide-immunoreactive neurones made up 30% of all FG-labelled neurones.

Our findings may explain the referral of pain from the hip to the thigh or lower leg corresponding to the L2, L3 and L4 levels. Since most neurones are calcitonin gene-related peptide-immunoreactive peptide-containing neurones, they may have a more significant role in the perception of pain in the hip as peptidergic DRG neurones.