Advertisement for orthosearch.org.uk
Results 161 - 180 of 603
Results per page:
Bone & Joint Open
Vol. 3, Issue 5 | Pages 390 - 397
1 May 2022
Hiranaka T Suda Y Saitoh A Tanaka A Arimoto A Koide M Fujishiro T Okamoto K

The kinematic alignment (KA) approach to total knee arthroplasty (TKA) has recently increased in popularity. Accordingly, a number of derivatives have arisen and have caused confusion. Clarification is therefore needed for a better understanding of KA-TKA. Calipered (or true, pure) KA is performed by cutting the bone parallel to the articular surface, compensating for cartilage wear. In soft-tissue respecting KA, the tibial cutting surface is decided parallel to the femoral cutting surface (or trial component) with in-line traction. These approaches are categorized as unrestricted KA because there is no consideration of leg alignment or component orientation. Restricted KA is an approach where the periarthritic joint surface is replicated within a safe range, due to concerns about extreme alignments that have been considered ‘alignment outliers’ in the neutral mechanical alignment approach. More recently, functional alignment and inverse kinematic alignment have been advocated, where bone cuts are made following intraoperative planning, using intraoperative measurements acquired with computer assistance to fulfill good coordination of soft-tissue balance and alignment. The KA-TKA approach aims to restore the patients’ own harmony of three knee elements (morphology, soft-tissue balance, and alignment) and eventually the patients’ own kinematics. The respective approaches start from different points corresponding to one of the elements, yet each aim for the same goal, although the existing implants and techniques have not yet perfectly fulfilled that goal.


The Journal of Bone & Joint Surgery British Volume
Vol. 71-B, Issue 5 | Pages 798 - 803
1 Nov 1989
Scuderi G Insall J Windsor R Moran M

The survivorship method of analysis has been used to compare the failure rate and overall success of 1,430 cemented primary total knee arthroplasties performed at The Hospital for Special Surgery over a 15-year period. There were 224 total condylar prostheses with a polyethylene tibia, 289 of the posterior stabilised type with an all polyethylene tibia, and 917 posterior stabilised with a metal-backed tibial component. There were 12 failures in the total condylar series, giving an average annual failure rate of 0.65% and a 15-year success rate of 90.56%. The posterior stabilised prosthesis with a polyethylene tibia showed an average annual failure rate of 0.27% and a 10-year success rate of 97.34%, and this prosthesis with a metal-backed tibial component gave an annual failure rate of 0.19% and a seven-year success rate of 98.75%. The overall survival rate was not influenced by sex or age, diagnosis or the percentage of ideal body weight. No metal-backed tibial components have yet needed revision for loosening. It seems that infection will be the major cause of failure


The Bone & Joint Journal
Vol. 96-B, Issue 11 | Pages 1485 - 1490
1 Nov 2014
Kim CW Seo SS Kim JH Roh SM Lee CR

The aim of this study was to find anatomical landmarks for rotational alignment of the tibial component in total knee replacement (TKR) in a CT-based study. Pre-operative CT scanning was performed on 94 South Korean patients (nine men, 85 women, 188 knees) with osteoarthritis of the knee joint prior to TKR. The tibial anteroposterior (AP) axis was defined as a line perpendicular to the femoral surgical transepicondylar axis and passing through the centre of the posterior cruciate ligament (PCL). The angles between the defined tibial AP axis and anatomical landmarks at various levels of the tibia were measured. The mean values of the angles between the defined tibial AP axis and the line connecting the anterior border of the proximal third of the tibia to the centre of the PCL was -0.2° (-17 to 14.1, . sd. 4.1). This was very close to the defined tibial axis, and remained so regardless of lower limb alignment and the degree of tibial bowing. Therefore, AP axis defined as described, is a reliable anatomical landmark for rotational alignment of tibial components. Cite this article: Bone Joint J 2014; 96-B:1485–90


The Bone & Joint Journal
Vol. 95-B, Issue 3 | Pages 295 - 300
1 Mar 2013
Cawley DT Kelly N McGarry JP Shannon FJ

The optimum cementing technique for the tibial component in cemented primary total knee replacement (TKR) remains controversial. The technique of cementing, the volume of cement and the penetration are largely dependent on the operator, and hence large variations can occur. Clinical, experimental and computational studies have been performed, with conflicting results. Early implant migration is an indication of loosening. Aseptic loosening is the most common cause of failure in primary TKR and is the product of several factors. Sufficient penetration of cement has been shown to increase implant stability. This review discusses the relevant literature regarding all aspects of the cementing of the tibial component at primary TKR. Cite this article: Bone Joint J 2013;95-B:295–300


Bone & Joint Research
Vol. 11, Issue 8 | Pages 575 - 584
17 Aug 2022
Stoddart JC Garner A Tuncer M Cobb JP van Arkel RJ

Aims

The aim of this study was to determine the risk of tibial eminence avulsion intraoperatively for bi-unicondylar knee arthroplasty (Bi-UKA), with consideration of the effect of implant positioning, overstuffing, and sex, compared to the risk for isolated medial unicondylar knee arthroplasty (UKA-M) and bicruciate-retaining total knee arthroplasty (BCR-TKA).

Methods

Two experimentally validated finite element models of tibia were implanted with UKA-M, Bi-UKA, and BCR-TKA. Intraoperative loads were applied through the condyles, anterior cruciate ligament (ACL), medial collateral ligament (MCL), and lateral collateral ligament (LCL), and the risk of fracture (ROF) was evaluated in the spine as the ratio of the 95th percentile maximum principal elastic strains over the tensile yield strain of proximal tibial bone.


The Bone & Joint Journal
Vol. 97-B, Issue 11 | Pages 1525 - 1532
1 Nov 2015
Cho J Yi Y Ahn TK Choi HJ Park CH Chun DI Lee JS Lee WC

The purpose of this study was to evaluate the change in sagittal tibiotalar alignment after total ankle arthroplasty (TAA) for osteoarthritis and to investigate factors affecting the restoration of alignment. . This retrospective study included 119 patients (120 ankles) who underwent three component TAA using the Hintegra prosthesis. A total of 63 ankles had anterior displacement of the talus before surgery (group A), 49 had alignment in the normal range (group B), and eight had posterior displacement of the talus (group C). Ankles in group A were further sub-divided into those in whom normal alignment was restored following TAA (41 ankles) and those with persistent displacement (22 ankles). Radiographic and clinical results were assessed. Pre-operatively, the alignment in group A was significantly more varus than that in group B, and the posterior slope of the tibial plafond was greater (p < 0.01 in both cases). The posterior slope of the tibial component was strongly associated with restoration of alignment: ankles in which the alignment was restored had significantly less posterior slope (p < 0.001). . An anteriorly translated talus was restored to a normal position after TAA in most patients. We suggest that surgeons performing TAA using the Hintegra prosthesis should aim to insert the tibial component at close to 90° relative to the axis of the tibia, hence reducing posterior soft-tissue tension and allowing restoration of normal tibiotalar alignment following surgery. Cite this article: Bone Joint J 2015;97-B:1525–32


The Bone & Joint Journal
Vol. 95-B, Issue 9 | Pages 1201 - 1203
1 Sep 2013
Tsukeoka T Tsuneizumi Y Lee TH

We performed a CT-based computer simulation study to determine how the relationship between any inbuilt posterior slope in the proximal tibial osteotomy and cutting jig rotational orientation errors affect tibial component alignment in total knee replacement. Four different posterior slopes (3°, 5°, 7° and 10°), each with a rotational error of 5°, 10°, 15°, 20°, 25° or 30°, were simulated. Tibial cutting block malalignment of 20° of external rotation can produce varus malalignment of 2.4° and 3.5° with a 7° and a 10° sloped cutting jig, respectively. Care must be taken in orientating the cutting jig in the sagittal plane when making a posterior sloped proximal tibial osteotomy in total knee replacement. Cite this article: Bone Joint J 2013;95-B:1201–3


The Bone & Joint Journal
Vol. 104-B, Issue 5 | Pages 541 - 548
1 May 2022
Zhang J Ng N Scott CEH Blyth MJG Haddad FS Macpherson GJ Patton JT Clement ND

Aims

This systematic review aims to compare the precision of component positioning, patient-reported outcome measures (PROMs), complications, survivorship, cost-effectiveness, and learning curves of MAKO robotic arm-assisted unicompartmental knee arthroplasty (RAUKA) with manual medial unicompartmental knee arthroplasty (mUKA).

Methods

Searches of PubMed, MEDLINE, and Google Scholar were performed in November 2021 according to the Preferred Reporting Items for Systematic Review and Meta-­Analysis statement. Search terms included “robotic”, “unicompartmental”, “knee”, and “arthroplasty”. Published clinical research articles reporting the learning curves and cost-effectiveness of MAKO RAUKA, and those comparing the component precision, functional outcomes, survivorship, or complications with mUKA, were included for analysis.


Bone & Joint Research
Vol. 11, Issue 7 | Pages 494 - 502
20 Jul 2022
Kwon HM Lee J Koh Y Park KK Kang K

Aims

A functional anterior cruciate ligament (ACL) or posterior cruciate ligament (PCL) has been assumed to be required for patients undergoing unicompartmental knee arthroplasty (UKA). However, this assumption has not been thoroughly tested. Therefore, this study aimed to assess the biomechanical effects exerted by cruciate ligament-deficient knees with medial UKAs regarding different posterior tibial slopes.

Methods

ACL- or PCL-deficient models with posterior tibial slopes of 1°, 3°, 5°, 7°, and 9° were developed and compared to intact models. The kinematics and contact stresses on the tibiofemoral joint were evaluated under gait cycle loading conditions.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 11_Supple_A | Pages 85 - 89
1 Nov 2012
Drexler M Dwyer T Marmor M Abolghasemian M Sternheim A Cameron HU

In this study we present our experience with four generations of uncemented total knee arthroplasty (TKA) from Smith & Nephew: Tricon M, Tricon LS, Tricon II and Profix, focusing on the failure rates correlating with each design change. Beginning in 1984, 380 Tricon M, 435 Tricon LS, 305 Tricon 2 and 588 Profix were implanted by the senior author. The rate of revision for loosening was 1.1% for the Tricon M, 1.1% for the Tricon LS, 0.5% for the Tricon 2 with a HA coated tibial component, and 1.3% for the Profix TKA. No loosening of the femoral component was seen with the Tricon M, Tricon LS or Tricon 2, with no loosening seen of the tibial component with the Profix TKA. Regarding revision for wear, the incidence was 13.1% for the Tricon M, 6.6% for the Tricon LS, 2.3% for the Tricon 2, and 0% for the Profix. These results demonstrate that improvements in the design of uncemented components, including increased polyethylene thickness, improved polyethylene quality, and the introduction of hydroxyapatite coating, has improved the outcomes of uncemented TKA over time


Aims

The aim of this study was to compare any differences in the primary outcome (biphasic flexion knee moment during gait) of robotic arm-assisted bi-unicompartmental knee arthroplasty (bi-UKA) with conventional mechanically aligned total knee arthroplasty (TKA) at one year post-surgery.

Methods

A total of 76 patients (34 bi-UKA and 42 TKA patients) were analyzed in a prospective, single-centre, randomized controlled trial. Flat ground shod gait analysis was performed preoperatively and one year postoperatively. Knee flexion moment was calculated from motion capture markers and force plates. The same setup determined proprioception outcomes during a joint position sense test and one-leg standing. Surgery allocation, surgeon, and secondary outcomes were analyzed for prediction of the primary outcome from a binary regression model.


The Bone & Joint Journal
Vol. 104-B, Issue 5 | Pages 613 - 619
2 May 2022
Ackerman IN Busija L Lorimer M de Steiger R Graves SE

Aims

This study aimed to describe the use of revision knee arthroplasty in Australia and examine changes in lifetime risk over a decade.

Methods

De-identified individual-level data on all revision knee arthroplasties performed in Australia from 2007 to 2017 were obtained from the Australian Orthopaedic Association National Joint Replacement Registry. Population data and life tables were obtained from the Australian Bureau of Statistics. The lifetime risk of revision surgery was calculated for each year using a standardized formula. Separate calculations were undertaken for males and females.


Bone & Joint Research
Vol. 11, Issue 4 | Pages 210 - 213
1 Apr 2022
Fontalis A Haddad FS


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 34 - 44
1 Jan 2022
Beckers L Dandois F Ooms D Berger P Van Laere K Scheys L Vandenneucker H

Aims

Higher osteoblastic bone activity is expected in aseptic loosening and painful unicompartmental knee arthroplasty (UKA). However, insights into normal bone activity patterns after medial UKAs are lacking. The aim of this study was to identify the evolution in bone activity pattern in well-functioning medial mobile-bearing UKAs.

Methods

In total, 34 patients (13 female, 21 male; mean age 62 years (41 to 79); BMI 29.7 kg/m2 (23.6 to 42.1)) with 38 medial Oxford partial UKAs (20 left, 18 right; 19 cementless, 14 cemented, and five hybrid) were prospectively followed with sequential 99mTc-hydroxymethane diphosphonate single photon emission CT (SPECT)/CT preoperatively, and at one and two years postoperatively. Changes in mean osteoblastic activity were investigated using a tracer localization scheme with volumes of interest (VOIs), reported by normalized mean tracer values. A SPECT/CT registration platform additionally explored cortical tracer evolution in zones of interest identified by previous experimental research.


Bone & Joint Research
Vol. 11, Issue 2 | Pages 91 - 101
1 Feb 2022
Munford MJ Stoddart JC Liddle AD Cobb JP Jeffers JRT

Aims

Unicompartmental and total knee arthroplasty (UKA and TKA) are successful treatments for osteoarthritis, but the solid metal implants disrupt the natural distribution of stress and strain which can lead to bone loss over time. This generates problems if the implant needs to be revised. This study investigates whether titanium lattice UKA and TKA implants can maintain natural load transfer in the proximal tibia.

Methods

In a cadaveric model, UKA and TKA procedures were performed on eight fresh-frozen knee specimens, using conventional (solid) and titanium lattice tibial implants. Stress at the bone-implant interfaces were measured and compared to the native knee.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 5 | Pages 638 - 641
1 May 2012
Ha C Na S

We aimed to obtain anthropometric data on Korean knees and to compare these with data on commonly available total knee arthroplasties (TKAs). The dimensions of the femora and tibiae of 1168 knees were measured intra-operatively. The femoral components were found to show a tendency toward mediolateral (ML) under-coverage in small femurs and ML overhang in the large femurs. The ML under-coverage was most prominent for the small prostheses. The ML/anteroposterior (ML/AP) ratio of Korean tibiae was greater than that of tibial components. This study shows that, for different reasons, current TKAs do not provide a reasonable fit for small or large Korean knees, and that the ‘gender-specific’ and ‘stature-specific’ components help for large Korean femurs but offer less satisfactory fits for small femurs. Specific modifications of prostheses are needed for Asian knees


The Bone & Joint Journal
Vol. 95-B, Issue 6 | Pages 782 - 787
1 Jun 2013
Niki Y Takeda Y Udagawa K Enomoto H Toyama Y Suda Y

We investigated the characteristics of patients who achieved Japanese-style deep flexion (seiza-sitting) after total knee replacement (TKR) and measured three-dimensional positioning and the contact positions of the femoral and tibial components. Seiza-sitting was achieved after surgery by 23 patients (29 knees) of a series of 463 TKRs in 341 patients. Pre-operatively most of these patients were capable of seiza-sitting, had a lower body mass index and a favourable attitude towards the Japanese lifestyle (27 of 29 knees). According to two-/three-dimensional image registration analysis in the seiza-sitting position, flexion, varus and internal rotation angles of the tibial component relative to the femoral component had means of 148° (. sd. 8.0), 1.9° (. sd. 3.2) and 13.4° (. sd. 5.9), respectively. Femoral surface contact positions tended to be close to the posterior edge of the tibial polyethylene insert, particularly in the lateral compartment, but only 8.3% (two of 24) of knees showed femoral subluxation over the posterior edge. The mean contact positions of the femoral cam on the tibial post were located 7.8 mm (. sd. 1.5) proximal to the lowest point of the polyethylene surface and 5.5 mm (. sd. 0.9) medial to the centre of the post, indicating that the post-cam contact position translated medially during seiza-sitting, but not proximally. Collectively, the seiza-sitting position seems safe against component dislocation, but the risks of posterior edge loading and breakage of the tibial polyethylene post remain. Cite this article: Bone Joint J 2013;95-B:782–7


Bone & Joint Open
Vol. 3, Issue 1 | Pages 29 - 34
3 Jan 2022
Sheridan GA Moshkovitz R Masri BA

Aims

Simultaneous bilateral total knee arthroplasty (TKA) has been used due to its financial advantages, overall resource usage, and convenience for the patient. The training model where a trainee performs the first TKA, followed by the trainer surgeon performing the second TKA, is a unique model to our institution. This study aims to analyze the functional and clinical outcomes of bilateral simultaneous TKA when performed by a trainee or a supervising surgeon, and also to assess these outcomes based on which side was done by the trainee or by the surgeon.

Methods

This was a retrospective cohort study of all simultaneous bilateral TKAs performed by a single surgeon in an academic institution between May 2003 and November 2017. Exclusion criteria were the use of partial knee arthroplasty procedures, staged bilateral procedures, and procedures not performed by the senior author on one side and the trainee on another. Primary clinical outcomes of interest included revision and re-revision. Primary functional outcomes included the Oxford Knee Score (OKS) and patient satisfaction scores.


The Bone & Joint Journal
Vol. 103-B, Issue 12 | Pages 1791 - 1801
1 Dec 2021
Bhalekar RM Nargol ME Shyam N Nargol AVF Wells SR Collier R Pabbruwe M Joyce TJ Langton DJ

Aims

The aim of this study was to investigate whether wear and backside deformation of polyethylene (PE) tibial inserts may influence the cement cover of tibial trays of explanted total knee arthroplasties (TKAs).

Methods

At our retrieval centre, we measured changes in the wear and deformation of PE inserts using coordinate measuring machines and light microscopy. The amount of cement cover on the backside of tibial trays was quantified as a percentage of the total surface. The study involved data from the explanted fixed-bearing components of four widely used contemporary designs of TKA (Attune, NexGen, Press Fit Condylar (PFC), and Triathlon), revised for any indication, and we compared them with components that used previous generations of PE. Regression modelling was used to identify variables related to the amount of cement cover on the retrieved trays.


The Bone & Joint Journal
Vol. 96-B, Issue 5 | Pages 609 - 618
1 May 2014
Gøthesen Ø Espehaug B Havelin LI Petursson G Hallan G Strøm E Dyrhovden G Furnes O

We performed a randomised controlled trial comparing computer-assisted surgery (CAS) with conventional surgery (CONV) in total knee replacement (TKR). Between 2009 and 2011 a total of 192 patients with a mean age of 68 years (55 to 85) with osteoarthritis or arthritic disease of the knee were recruited from four Norwegian hospitals. At three months follow-up, functional results were marginally better for the CAS group. Mean differences (MD) in favour of CAS were found for the Knee Society function score (MD: 5.9, 95% confidence interval (CI) 0.3 to 11.4, p = 0.039), the Knee Injury and Osteoarthritis Outcome Score (KOOS) subscales for ‘pain’ (MD: 7.7, 95% CI 1.7 to 13.6, p = 0.012), ‘sports’ (MD: 13.5, 95% CI 5.6 to 21.4, p = 0.001) and ‘quality of life’ (MD: 7.2, 95% CI 0.1 to 14.3, p = 0.046). At one-year follow-up, differences favouring CAS were found for KOOS ‘sports’ (MD: 11.0, 95% CI 3.0 to 19.0, p = 0.007) and KOOS ‘symptoms’ (MD: 6.7, 95% CI 0.5 to 13.0, p = 0.035). The use of CAS resulted in fewer outliers in frontal alignment (> 3° malalignment), both for the entire TKR (37.9% vs 17.9%, p = 0.042) and for the tibial component separately (28.4% vs 6.3%, p = 0.002). Tibial slope was better achieved with CAS (58.9% vs 26.3%, p < 0.001). Operation time was 20 minutes longer with CAS. In conclusion, functional results were, statistically, marginally in favour of CAS. Also, CAS was more predictable than CONV for mechanical alignment and positioning of the prosthesis. However, the long-term outcomes must be further investigated. Cite this article: Bone Joint J 2014; 96-B:609–18