Advertisement for orthosearch.org.uk
Results 161 - 180 of 417
Results per page:
The Bone & Joint Journal
Vol. 102-B, Issue 11 | Pages 1435 - 1437
1 Nov 2020
Katakura M Mitchell AWM Lee JC Calder JD


Bone & Joint Research
Vol. 9, Issue 12 | Pages 857 - 869
1 Dec 2020
Slullitel PA Coutu D Buttaro MA Beaule PE Grammatopoulos G

As our understanding of hip function and disease improves, it is evident that the acetabular fossa has received little attention, despite it comprising over half of the acetabulum’s surface area and showing the first signs of degeneration. The fossa’s function is expected to be more than augmenting static stability with the ligamentum teres and being a templating landmark in arthroplasty. Indeed, the fossa, which is almost mature at 16 weeks of intrauterine development, plays a key role in hip development, enabling its nutrition through vascularization and synovial fluid, as well as the influx of chondrogenic stem/progenitor cells that build articular cartilage. The pulvinar, a fibrofatty tissue in the fossa, has the same developmental origin as the synovium and articular cartilage and is a biologically active area. Its unique anatomy allows for homogeneous distribution of the axial loads into the joint. It is composed of intra-articular adipose tissue (IAAT), which has adipocytes, fibroblasts, leucocytes, and abundant mast cells, which participate in the inflammatory cascade after an insult to the joint. Hence, the fossa and pulvinar should be considered in decision-making and surgical outcomes in hip preservation surgery, not only for their size, shape, and extent, but also for their biological capacity as a source of cytokines, immune cells, and chondrogenic stem cells.

Cite this article: Bone Joint Res 2020;9(12):857–869.


Bone & Joint Research
Vol. 9, Issue 8 | Pages 524 - 530
1 Aug 2020
Li S Mao Y Zhou F Yang H Shi Q Meng B

Osteoporosis (OP) is a chronic metabolic bone disease characterized by the decrease of bone tissue per unit volume under the combined action of genetic and environmental factors, which leads to the decrease of bone strength, makes the bone brittle, and raises the possibility of bone fracture. However, the exact mechanism that determines the progression of OP remains to be underlined. There are hundreds of trillions of symbiotic bacteria living in the human gut, which have a mutually beneficial symbiotic relationship with the human body that helps to maintain human health. With the development of modern high-throughput sequencing (HTS) platforms, there has been growing evidence that the gut microbiome may play an important role in the programming of bone metabolism. In the present review, we discuss the potential mechanisms of the gut microbiome in the development of OP, such as alterations of bone metabolism, bone mineral absorption, and immune regulation. The potential of gut microbiome-targeted strategies in the prevention and treatment of OP was also evaluated.

Cite this article: Bone Joint Res 2020;9(8):524–530.


The Journal of Bone & Joint Surgery British Volume
Vol. 54-B, Issue 4 | Pages 735 - 743
1 Nov 1972
Plenk H Hollmann K Wilfert K

1. Into osseous defects cut in the pelvis of rats, Kiel bone grafts were implanted after impregnation with the animals' own fresh bone marrow, obtained by femoral puncture. Unimpregnated Kiel bone grafts and Kiel bone grafts impregnated with an antibiotic solution were implanted as controls. 2. Histological examination of the implant area showed that in the marrow-impregnated grafts new bone formation could be observed after twelve days, and that during an observation period of 135 days after implantation bone formation occurred in thirteen out of nineteen rats. In four of these cases a continuous bony bridge developed over the defect. 3. In the unimpregnated grafts no more than a small amount of new bone was seen in only one of seven rats. In the antibiotic-impregnated grafts no bone formation was found in six rats during the same period of observation


The Journal of Bone & Joint Surgery British Volume
Vol. 39-B, Issue 3 | Pages 534 - 537
1 Aug 1957
Lécutier MA Smith AH

A case of fatal air embolism after Küntscher nailing of a fractured femur is described. Necropsy indicated that the only possible means of air entry was through the bone marrow. Subsequent discussion between the surgeon and the pathologist indicated that air must have been forced into the venous circulation through the marrow by repeated removal and reinsertion of nails, which allowed air to fill the punched-out marrow space when the nail was removed, the same air being forced into the marrow sinusoids when the nail was reinserted and hammered into position. This danger may be overcome 1) by allowing the site of operation to flood with blood by placing the patient in a "head up" position; 2) by flooding the operation site with saline; or 3) by assessing the calibre of nail required by radiological means rather than by trial and error


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 135 - 144
1 Jul 2021
Kuyl E Shu F Sosa BR Lopez JD Qin D Pannellini T Ivashkiv LB Greenblatt MB Bostrom MPG Yang X

Aims

Aseptic loosening is a leading cause of uncemented arthroplasty failure, often accompanied by fibrotic tissue at the bone-implant interface. A biological target, neutrophil extracellular traps (NETs), was investigated as a crucial connection between the innate immune system’s response to injury, fibrotic tissue development, and proper bone healing. Prevalence of NETs in peri-implant fibrotic tissue from aseptic loosening patients was assessed. A murine model of osseointegration failure was used to test the hypothesis that inhibition (through Pad4-/- mice that display defects in peptidyl arginine deiminase 4 (PAD4), an essential protein required for NETs) or resolution (via DNase 1 treatment, an enzyme that degrades the cytotoxic DNA matrix) of NETs can prevent osseointegration failure and formation of peri-implant fibrotic tissue.

Methods

Patient peri-implant fibrotic tissue was analyzed for NETs biomarkers. To enhance osseointegration in loose implant conditions, an innate immune system pathway (NETs) was either inhibited (Pad4-/- mice) or resolved with a pharmacological agent (DNase 1) in a murine model of osseointegration failure.


The Journal of Bone & Joint Surgery British Volume
Vol. 77-B, Issue 5 | Pages 820 - 829
1 Sep 1995
Carr A Smith R Athanasou N Woods C

The clinical features, investigation, treatment and outcome of two adults with fibrogenesis imperfecta ossium are described. In this rare acquired disorder of bone, normal lamellar collagen is replaced by structurally unsound collagen-deficient tissue, which leads to extreme bone fragility and ununited fractures. Transmission microscopy and SEM showed striking ultrastructural changes in bone structure and mineralisation. Both patients had monoclonal IgG paraproteins in the plasma and one excreted monoclonal lambda light chains in the urine. No abnormal plasma cells were found in the bone marrow and there was no evidence of amyloid deposition in the tissues. In both patients initial treatment with 1 alpha-hydroxycholecalciferol appeared to be ineffective, but in one, repeated courses of melphalan and corticosteroids over three years together with 1 alpha-hydroxycholecalciferol produced striking clinical and histological improvement. The findings in these and other patients strongly suggest that paraproteinaemia is an integral feature of fibrogenesis imperfecta ossium, and this needs further investigation


The Journal of Bone & Joint Surgery British Volume
Vol. 68-B, Issue 4 | Pages 635 - 642
1 Aug 1986
Nilsson O Urist M Dawson E Schmalzried T Finerman G

In dogs, resection of a length of the ulna equal to twice the diameter of the mid-shaft leaves a defect which consistently fails to unite. In response to an implant of 100 mg of bovine bone morphogenetic protein (BMP), the defect becomes filled by callus consisting of fibrocartilage, cartilage and woven bone within four weeks. The cartilage is resorbed and replaced by new bone in four to eight weeks. Woven bone is then resorbed, colonised by bone marrow cells and remodelled into lamellar bone. Union of the defect is produced by 12 weeks. Control defects filled with autogeneic cortical bone chips unite after the same period. In regeneration induced by bone morphogenetic protein (BMP) and in repair enhanced by bone graft, union depends upon the proliferation of cells within and around the bone ends. Our working hypothesis is that BMP induces the differentiation of perivascular connective tissue cells into chondroblasts and osteoprogenitor cells and thereby augments the process of bone regeneration from the cells already present in the endosteum and periosteum


The Journal of Bone & Joint Surgery British Volume
Vol. 41-B, Issue 4 | Pages 671 - 680
1 Nov 1959
Trueta J

1. The three age types of acute haematogenous osteomyelitis are conditioned in their respective clinical features by the differing nature of their vascular bone pattern. 2. In the infant the condition causes severe and often permanent epiphysial damage and joint infection, a large involucrum but only transient damage to the shaft and metaphysis. 3. In the child the condition is responsible for extensive cortical damage with involucrum formation, but, except for some stimulation of growth, permanent damage to the growth cartilage and to joints is exceptional. Chronicity of the disease is rare if treatment has been effective. 4. In the adult acute osteomyelitis of the long bones is rare. It causes very frequent joint infection; the cortex is absorbed instead of sequestrating. The whole of the bone is invaded and frequently leaves chronic infection in the bone marrow. 5. The vascular characteristics of the bones in each age group and their relation to the onset of infection are described. 6. Some general directives for management based on these facts are suggested


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 234 - 244
1 Feb 2021
Gibb BP Hadjiargyrou M

Antibiotic resistance represents a threat to human health. It has been suggested that by 2050, antibiotic-resistant infections could cause ten million deaths each year. In orthopaedics, many patients undergoing surgery suffer from complications resulting from implant-associated infection. In these circumstances secondary surgery is usually required and chronic and/or relapsing disease may ensue. The development of effective treatments for antibiotic-resistant infections is needed. Recent evidence shows that bacteriophage (phages; viruses that infect bacteria) therapy may represent a viable and successful solution. In this review, a brief description of bone and joint infection and the nature of bacteriophages is presented, as well as a summary of our current knowledge on the use of bacteriophages in the treatment of bacterial infections. We present contemporary published in vitro and in vivo data as well as data from clinical trials, as they relate to bone and joint infections. We discuss the potential use of bacteriophage therapy in orthopaedic infections. This area of research is beginning to reveal successful results, but mostly in nonorthopaedic fields. We believe that bacteriophage therapy has potential therapeutic value for implant-associated infections in orthopaedics.

Cite this article: Bone Joint J 2021;103-B(2):234–244.


The Bone & Joint Journal
Vol. 103-B, Issue 4 | Pages 597 - 599
1 Apr 2021
Kader DF Oussedik S Kader N Haddad FS


The Journal of Bone & Joint Surgery British Volume
Vol. 51-B, Issue 1 | Pages 165 - 174
1 Feb 1969
Rösingh GE James J

1. An investigation was made of the tolerance of the cells in the femoral head in rabbits for ischaemia brought about by transecting the ligament of the femoral head and applying a ligature around the femoral neck. The animals were killed two, six, twelve, twenty-four and seventy-two hours after operation. 2. In the cells of the bone marrow and in the osteoblasts distinct histological signs of disintegration were present six hours after operation. Pyknosis of the osteocyte nuclei was found after twenty-four hours' ischaemia; sometimes vacuolar clarifications could be observed in these pyknotic nuclei. After three days of ischaemia the staining affinity for Feulgen and haematoxylin of a number of osteocyte nuclei had visibly decreased. 3. The Feulgen-DNA content of the osteocyte nuclei-as measured in individual nuclei by means of an integrated microdensitometer-was significantly reduced as compared with similar nuclei from the control side as early as after six hours of ischaemia. This DNA loss was progressive with the period of ischaemia. From these facts, the conclusion was reached that in the femoral head of the rabbit the period of reversible damage for osteocytes must have ended within six hours


Bone & Joint Research
Vol. 9, Issue 7 | Pages 368 - 385
1 Jul 2020
Chow SK Chim Y Wang J Wong RM Choy VM Cheung W

A balanced inflammatory response is important for successful fracture healing. The response of osteoporotic fracture healing is deranged and an altered inflammatory response can be one underlying cause. The objectives of this review were to compare the inflammatory responses between normal and osteoporotic fractures and to examine the potential effects on different healing outcomes. A systematic literature search was conducted with relevant keywords in PubMed, Embase, and Web of Science independently. Original preclinical studies and clinical studies involving the investigation of inflammatory response in fracture healing in ovariectomized (OVX) animals or osteoporotic/elderly patients with available full text and written in English were included. In total, 14 articles were selected. Various inflammatory factors were reported; of those tumour necrosis factor-α (TNF-α) and interleukin (IL)-6 are two commonly studied markers. Preclinical studies showed that OVX animals generally demonstrated higher systemic inflammatory response and poorer healing outcomes compared to normal controls (SHAM). However, it is inconclusive if the local inflammatory response is higher or lower in OVX animals. As for clinical studies, they mainly examine the temporal changes of the inflammatory stage or perform comparison between osteoporotic/fragility fracture patients and normal subjects without fracture. Our review of these studies emphasizes the lack of understanding that inflammation plays in the altered fracture healing response of osteoporotic/elderly patients. Taken together, it is clear that additional studies, preclinical and clinical, are required to dissect the regulatory role of inflammatory response in osteoporotic fracture healing.

Cite this article: Bone Joint Res 2020;9(7):368–385.


The Journal of Bone & Joint Surgery British Volume
Vol. 66-B, Issue 2 | Pages 269 - 275
1 Mar 1984
Uchida A Nade S McCartney E Ching W

Ceramics have many properties which might make them suitable alternatives to bone grafts. This present study was done to find a suitable biodegradable porous ceramic for human bone replacement. Three different porous ceramics (calcium aluminate, calcium hydroxyapatite and tricalcium phosphate), with interlinked pores of two size ranges (150 to 210 micron), were implanted into the skulls of rats and rabbits for up to six months; the interaction with surrounding bone, which is virtually devoid of bone marrow, was then assessed. The ceramics caused no adverse biological response. Tissue ingrowth into pores throughout the implant was seen in all three types and in both pore sizes of ceramic, but the density of the penetrating tissue was far less for calcium aluminate than for calcium hydroxyapatite or tricalcium phosphate. For each type of ceramic, the soft-tissue ingrowth was more dense with the larger pore size, and with a longer period of implantation. Bone ingrowth was not usually seen within the pores of any ceramic. There were no differences in the histological findings between the rats and the rabbits. The results demonstrate that it is possible to produce ceramic materials with a porous structure which allows ingrowth of tissue and biological fluids


The Journal of Bone & Joint Surgery British Volume
Vol. 51-B, Issue 3 | Pages 551 - 562
1 Aug 1969
Rösingh GE Steendijk R Van den Hooff A Oosterhoff J

1. In two-month-old rabbits the femoral heads were made necrotic by transecting the ligament of the femoral head and applying a ligature around the femoral neck. The animals were killed at different periods, from six hours to twenty-one weeks after the operation. The changes in the femoral heads were studied histologically, microradiographically and radiographically. 2. In the first three weeks the necrotic bone marrow was penetrated by granulation tissue in which cellular differentiation gradually developed. Subsequently large quantities of new bone were deposited on the dead trabeculae. This led to an increase in the bone volume at the expense of the marrow volume; this increase coincided with an increase in the radiographic density (sclerosis) of the femoral head. The new bone tissue was attached to the necrotic trabeculae by a specific cement line and showed the features of woven bone. At a later stage lamellar bone was deposited. From six weeks on a normal bone-marrow ratio was gradually restored with concomitant radiographic loss of sclerosis. 3. It is suggested that mechanical weakening of the femoral head is the consequence of this late post-operative restoration of the normal pre-operative bone-to-marrow ratio, the new bone trabeculae being mechanically inferior because of the presence of woven bone and cement lines. This weakness may initiate collapse and deformation of the revascularised femoral head


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 2 | Pages 336 - 341
1 Mar 1999
Sugihara S van Ginkel AD Jiya TU van Royen BJ van Diest PJ Wuisman PIJM

From November 1994 to March 1997, we harvested 137 grafts of the femoral head from 125 patients for donation during total hip arthroplasty according to the guidelines of the American Associations of Tissue Banks (AATB) and the European Association of Musculo-Skeletal transplantation (EAMST). In addition to the standards recommended by these authorities, we performed histopathological examination of a core biopsy of the retrieved bone allograft and of the synovium. Of the 137 allografts, 48 (35.0%) fulfilled all criteria and were free for donation; 31 (22.6%) were not regarded as suitable for transplantation because the serological retests at six months were not yet complete and 58 (42.3%) were discarded because of incomplete data. Of those discarded, five showed abnormal histopathological findings; three were highly suspicious of low-grade B-cell lymphoma, one of monoclonal plasmacytosis and the other of non-specific inflammation of bone marrow. However, according to the standards of the AATB or EAMST they all met the criteria and were eligible for transplantation. Our findings indicate that the incidence of abnormal histopathology in these retrieved allografts was 3.6%. Since it is essential to confirm the quality of donor bones in bone banking, we advise that histopathological screening of donor bone should be performed to exclude abnormal allografts


Bone & Joint 360
Vol. 9, Issue 6 | Pages 5 - 11
1 Dec 2020
Sharma V Turmezei T Wain J McNamara I


Bone & Joint Research
Vol. 10, Issue 4 | Pages 269 - 276
1 Apr 2021
Matsubara N Nakasa T Ishikawa M Tamura T Adachi N

Aims

Meniscal injuries are common and often induce knee pain requiring surgical intervention. To develop effective strategies for meniscus regeneration, we hypothesized that a minced meniscus embedded in an atelocollagen gel, a firm gel-like material, may enhance meniscus regeneration through cell migration and proliferation in the gel. Hence, the objective of this study was to investigate cell migration and proliferation in atelocollagen gels seeded with autologous meniscus fragments in vitro and examine the therapeutic potential of this combination in an in vivo rabbit model of massive meniscus defect.

Methods

A total of 34 Japanese white rabbits (divided into defect and atelocollagen groups) were used to produce the massive meniscus defect model through a medial patellar approach. Cell migration and proliferation were evaluated using immunohistochemistry. Furthermore, histological evaluation of the sections was performed, and a modified Pauli’s scoring system was used for the quantitative evaluation of the regenerated meniscus.


The Journal of Bone & Joint Surgery British Volume
Vol. 58-B, Issue 3 | Pages 332 - 338
1 Aug 1976
Jensen O Lauritzen J

Specimens of femoral heads were studied at necropsy in two cases of Legg-Calve-Perthes' disease. One was that of a boy aged four years ten months who died from appendicitis; the other was from a boy aged six years who died from a malignant glioma. Both had been treated for one and a half years for Legg-Calve-Perthes' disease which was in a stage of repair at the time of death. The diseased femoral heads were moderately flattened but the surface cartilage was intact. Epiphysial bone and bone marrow were partly replaced by cartilage, fibrous tissue and granulation tissue, and new bone was being formed. Inflammatory reaction was inconspicuous. Enchondral bone formation was only slightly decreased, and the structure of the growth plate was undisturbed. There was no sign of systemic bone disease. In the first case the changes indicated that more than one episode of ischaemia had occurred, and an occlusion--probably from an old thrombus--was demonstrated in the posterior inferior retinacular artery of the femoral head. The last episode of ischaemia, furthermore, had caused infarction of part of the metaphysial bone. In both cases, the central area of the metaphysial bone of the affected femur contained fat, but there were few haemopoietic cells and it therefore looked pale. The findings are discussed in relation to previous work on the pathology in Legg-Calve-Perthes' disease, recent information on the vascularisation of the femoral head in children, and experimental and comparative animal studies


Bone & Joint Research
Vol. 10, Issue 2 | Pages 134 - 136
1 Feb 2021
Im G

The high prevalence of osteoarthritis (OA), as well as the current lack of disease-modifying drugs for OA, has provided a rationale for regenerative medicine as a possible treatment modality for OA treatment. In this editorial, the current status of regenerative medicine in OA including stem cells, exosomes, and genes is summarized along with the author’s perspectives. Despite a tremendous interest, so far there is very little evidence proving the efficacy of this modality for clinical application. As symptomatic relief is not sufficient to justify the high cost associated with regenerative medicine, definitive structural improvement that would last for years or decades and obviate or delay the need for joint arthroplasty is essential for regenerative medicine to retain a place among OA treatment methods.

Cite this article: Bone Joint Res 2021;10(2):134–136.