Since redesign of the Oxford phase III mobile-bearing unicompartmental
knee arthroplasty (UKA) femoral component to a twin-peg design,
there has not been a direct comparison to total knee arthroplasty
(TKA). Thus, we explored differences between the two cohorts. A total of 168 patients (201 knees) underwent medial UKA with
the Oxford Partial Knee Twin-Peg. These patients were compared with
a randomly selected group of 177 patients (189 knees) with primary
Vanguard TKA. Patient demographics, Knee Society (KS) scores and
range of movement (ROM) were compared between the two cohorts. Additionally,
revision, re-operation and manipulation under anaesthesia rates
were analysed.Aims
Patients and Methods
This is the second of a series of reviews of registries. This review looks specifically at worldwide registry data that have been collected on knee arthroplasty, what we have learned from their reports, and what the limitations are as to what we currently know.
Our aims were to map the tibial footprint of the posterior cruciate ligament (PCL) using MRI in patients undergoing PCL-preserving total knee replacement, and to document the disruption of this footprint as a result of the tibial cut. In 26 consecutive patients plain radiography and MRI of the knee were performed pre-operatively, and plain radiography post-operatively. The lower margin of the PCL footprint was located a mean of 1 mm (−10 to 8) above the upper aspect of the fibular head. The mean surface area was 83 mm2 (49 to 142). One-third of patients (8 of 22) had tibial cuts made below the lowest aspect of the PCL footprint (complete removal) and one-third (9 of 22) had cuts extending into the footprint (partial removal). The remaining patients (5 of 22) had footprints unaffected by the cuts, keeping them intact. Our study highlights the wide variation in the location of the tibial PCL footprint when referenced against the fibula. Proximal tibial cuts using conventional jigs resulted in the removal of a significant portion, if not all of the PCL footprint in most of the patients in our study. Our findings suggest that when performing PCL-retaining total knee replacement the tibial attachment of the PCL is often removed.
The October 2014 Knee Roundup360 looks at: microfracture equivalent to OATS; examination better than MRI in predicting hamstrings re-injury; a second view on return to play with hamstrings injuries; dislocation risks in the Oxford Unicompartmental Knee; what about the tibia?; getting on top of lateral facet pain post TKR; readmission in TKR; patient-specific instrumentation; treating infrapatellar saphenous neuralgia; and arthroscopy in the middle-aged.
As the number of younger and more active patients
treated with total knee arthroplasty (TKA) continues to increase,
consideration of better fixation as a means of improving implant
longevity is required. Cemented TKA remains the reference standard
with the largest body of evidence and the longest follow-up to support
its use. However, cementless TKA, may offer the opportunity of a
more bone-sparing procedure with long lasting biological fixation
to the bone. We undertook a review of the literature examining advances
of cementless TKA and the reported results. Cite this article:
The purpose of the present study was to examine the long-term
fixation of a cemented fixed-bearing polished titanium tibial baseplate
(Genesis ll). Patients enrolled in a previous two-year prospective trial (n
= 35) were recalled at ten years. Available patients (n = 15) underwent
radiostereometric analysis (RSA) imaging in a supine position using
a conventional RSA protocol. Migration of the tibial component in
all planes was compared between initial and ten-year follow-up.
Outcome scores including the Knee Society Score, Western Ontario
and McMaster Universities Arthritis Index, 12-item Short Form Health
Survey, Forgotten Joint Score, and University of California, Los
Angeles Activity Score were recorded.Aims
Patients and Methods
We evaluated the impact of pre-coating the tibial
component with polymethylmethacrylate (PMMA) on implant survival
in a cohort of 16 548 primary NexGen total knee replacements (TKRs)
in 14 113 patients. In 13 835 TKRs a pre-coated tray was used while
in 2713 TKRs the non-pre-coated version of the same tray was used.
All the TKRs were performed between 2001 and 2009 and were cemented.
TKRs implanted with a pre-coated tibial component had a lower cumulative
survival than those with a non-pre-coated tibial component (p =
0.01). After adjusting for diagnosis, age, gender, body mass index,
American Society of Anesthesiologists grade, femoral coupling design, surgeon
volume and hospital volume, pre-coating was an independent risk
factor for all-cause aseptic revision (hazard ratio 2.75, p = 0.006).
Revision for aseptic loosening was uncommon for both pre-coated
and non-pre-coated trays (rates of 0.12% and 0%, respectively).
Pre-coating with PMMA does not appear to be protective of revision
for this tibial tray design at short-term follow-up. Cite this article:
The purpose of this study was to undertake a
meta-analysis to determine whether there is lower polyethylene wear and
longer survival when using mobile-bearing implants in total knee
replacement when compared with fixed-bearing implants. Of 975 papers
identified, 34 trials were eligible for data extraction and meta-analysis
comprising 4754 patients (6861 knees). We found no statistically
significant differences between the two designs in terms of the incidence
of radiolucent lines, osteolysis, aseptic loosening or survival.
There is thus currently no evidence to suggest that the use of mobile-bearing
designs reduce polyethylene wear and prolong survival after total
knee replacement. Cite this article:
Our study aimed to examine if a mobile-bearing total knee replacement
(TKR) offered an advantage over fixed-bearing designs with respect
to rates of secondary resurfacing of the patella in knees in which
it was initially left unresurfaced. We examined the 11-year report of the New Zealand Joint Registry
and identified all primary TKR designs that had been implanted in
>
500 knees without primary resurfacing of the patella. We examined
how many of these were mobile-bearing, fixed-bearing cruciate-retaining
and fixed-bearing posterior-stabilised designs. We assessed the rates
of secondary resurfacing of the patella for each group and constructed
Kaplan-Meier survival curves.Objectives
Methods
The optimal management of the tibial slope in
achieving a high flexion angle in posterior-stabilised (PS) total
knee replacement (TKR) is not well understood, and most studies
evaluating the posterior tibial slope have been conducted on cruciate-retaining
TKRs. We analysed pre- and post-operative tibial slope differences,
pre- and post-operative coronal knee alignment and post-operative
maximum flexion angle in 167 patients undergoing 209 TKRs. The mean
pre-operative posterior tibial slope was 8.6° (1.3° to 17°) and
post-operatively it was 8.0° (0.1° to 16.7°). Multiple linear regression
analysis showed that the absolute difference between pre- and post-operative
tibial slope (p <
0.001), post-operative coronal alignment (p
= 0.02) and pre-operative range of movement (p <
0.001) predicted post-operative
flexion. The variance of change in tibial slope became larger as
the post-operative maximum flexion angle decreased. The odds ratio
of having a post-operative flexion angle <
100° was 17.6 if the
slope change was >
2°. Our data suggest that recreation of the anatomical
tibial slope appears to improve maximum flexion after posterior-stabilised
TKR, provided coronal alignment has been restored. Cite this article:
Abnormal sagittal kinematics after total knee replacement (TKR) can adversely affect functional outcome. Two important determinants of knee kinematics are component geometry and the presence or absence of a posterior-stabilising mechanism (cam-post). We investigated the influence of these variables by comparing the kinematics of a TKR with a polyradial femur with a single radius design, both with and without a cam-post mechanism. We assessed 55 patients, subdivided into four groups, who had undergone a TKR one year earlier by using an established fluoroscopy protocol in order to examine their kinematics
This prospective study describes the outcome of the first 1000 phase 3 Oxford medial unicompartmental knee replacements (UKRs) implanted using a minimally invasive surgical approach for the recommended indications by two surgeons and followed up independently. The mean follow-up was 5.6 years (1 to 11) with 547 knees having a minimum follow-up of five years. At five years their mean Oxford knee score was 41.3 ( The incidence of implant-related re-operations was 2.9%; of these 29 re-operations two were revisions requiring revision knee replacement components with stems and wedges, 17 were conversions to a primary total knee replacement, six were open reductions for dislocation of the bearing, three were secondary lateral UKRs and one was revision of a tibial component. The most common reason for further surgical intervention was progression of arthritis in the lateral compartment (0.9%), followed by dislocation of the bearing (0.6%) and revision for unexplained pain (0.6%). If all implant-related re-operations are considered failures, the ten-year survival rate was 96% (95% confidence interval, 92.5 to 99.5). If only revisions requiring revision components are considered failures the ten-year survival rate is 99.8% (confidence interval 99 to 100). This is the largest published series of UKRs implanted through a minimally invasive surgical approach and with ten-year survival data. The survival rates are similar to those obtained with a standard open approach whereas the function is better. This demonstrates the effectiveness and safety of a minimally invasive surgical approach for implanting the Oxford UKR.
The June 2015 Research Roundup360 looks at: Tranexamic acid: just give it – it’s not important how!; The anterolateral ligament re-examined; Warfarin a poor post-operative agent; Passive exoskeleton the orthosis of the future?; Musculoskeletal medicine: a dark art to UK medical students?; Alendronic acid and bone density post arthroplasty; Apples with oranges? Knee functional scores revisited
Mechanical failure because of wear or fracture of the polyethylene tibial post in posteriorly-stabilised total knee replacements has been extensively described. In this study of 12 patients with a clinically and radiologically successful NexGen LPS posteriorly-stabilised prosthesis impingement of the anterior tibial post was evaluated in vivo in three dimensions during gait using radiologically-based image-matching techniques. Impingement was observed in all images of the patients during the stance phase, although the NexGen LPS was designed to accommodate 14° of hyperextension of the component before impingement occurred. Impingement arises as a result of posterior translation of the femur during the stance phase. Further attention must therefore be given to the configuration of the anterior portion of the femoral component and the polyethylene post when designing posteriorly-stabilised total knee replacements.
The February 2015 Knee Roundup360 looks at: Intra-operative sensors for knee balance; Mobile bearing no advantage; Death and knee replacement: a falling phenomenon; The swings and roundabouts of unicompartmental arthroplasty; Regulation, implants and innovation; The weight of arthroplasty responsibility!; BMI in arthroplasty
Bone mineral density (BMD) around the femoral component has been reported to decrease after total knee replacement (TKR) because of stress shielding. Our aim was to determine whether a cemented mobile-bearing component reduced the post-operative loss of BMD. In our study 28 knees receiving a cemented fixed-bearing TKR were matched with 28 receiving a cemented mobile-bearing TKR. They underwent dual-energy x-ray absorptiometry, pre-operatively and at three weeks and at three, six, 12, 18 and 24 months post-operatively. The patients were not taking medication to improve the BMD. The pre-operative differences in the BMD of the femoral neck, wrist, lumbar spine and knee in the two groups were not significant. The BMD of the femur decreased postoperatively in the fixed-bearing group, but not the mobile-bearing group. The difference in the post-operative change in the BMD in the two groups was statistically significant (p <
0.05) at 18 and 24 months. Our findings show that a cemented mobile-bearing TKR has a favourable effect on the BMD of the distal femur after TKR in the short term. Further study is required to determine the long-term effects.
Radiological assessment of total and unicompartmental
knee replacement remains an essential part of routine care and follow-up.
Appreciation of the various measurements that can be identified
radiologically is important. It is likely that routine plain radiographs
will continue to be used, although there has been a trend towards
using newer technologies such as CT, especially in a failing knee,
where it provides more detailed information, albeit with a higher
radiation exposure. The purpose of this paper is to outline the radiological parameters
used to evaluate knee replacements, describe how these are measured
or classified, and review the current literature to determine their
efficacy where possible.
The aim of this prospective multicentre study
was to report the patient satisfaction after total knee replacement (TKR),
undertaken with the aid of intra-operative sensors, and to compare
these results with previous studies. A total of 135 patients undergoing
TKR were included in the study. The soft-tissue balance of each
TKR was quantified intra-operatively by the sensor, and 18 (13%)
were found to be unbalanced. A total of 113 patients (96.7%) in
the balanced group and 15 (82.1%) in the unbalanced group were satisfied
or very satisfied one year post-operatively (p = 0.043). A review of the literature identified no previous study with
a mean level of satisfaction that was greater than the reported
level of satisfaction of the balanced TKR group in this study. Ensuring
soft-tissue balance by using intra-operative sensors during TKR
may improve satisfaction. Cite this article:
A national, multi-centre study was designed in
which a questionnaire quantifying the degree of patient satisfaction
and residual symptoms in patients following total knee replacement
(TKR) was administered by an independent, blinded third party survey
centre. A total of 90% of patients reported satisfaction with the
overall functioning of their knee, but 66% felt their knee to be
‘normal’, with the reported incidence of residual symptoms and functional
problems ranging from 33% to 54%. Female patients and patients from
low-income households had increased odds of reporting dissatisfaction.
Neither the use of contemporary implant designs (gender-specific,
high-flex, rotating platform) or custom cutting guides (CCG) with
a neutral mechanical axis target improved patient-perceived outcomes.
However, use of a CCG to perform a so-called kinematically aligned
TKR showed a trend towards more patients reporting their knee to
feel ‘normal’ when compared with a so called mechanically aligned
TKR This data shows a degree of dissatisfaction and residual symptoms
following TKR, and that several recent modifications in implant
design and surgical technique have not improved the current situation. Cite this article:
Substantial healthcare resources have been devoted
to computer navigation and patient-specific instrumentation systems
that improve the reproducibility with which neutral mechanical alignment
can be achieved following total knee replacement (TKR). This choice of
alignment is based on the long-held tenet that the alignment of
the limb post-operatively should be within 3° of a neutral mechanical
axis. Several recent studies have demonstrated no significant difference
in survivorship when comparing well aligned Review of the literature suggests that a neutral mechanical axis
remains the optimal guide to alignment. Cite this article: