Aims. The aim of this study was to identify factors associated with five-year cancer-related mortality in patients with limb and trunk soft-tissue sarcoma (STS) and develop and validate machine learning algorithms in order to predict five-year cancer-related mortality in these patients. Methods. Demographic, clinicopathological, and treatment variables of limb and trunk STS patients in the Surveillance, Epidemiology, and End Results Program (SEER) database from 2004 to 2017 were analyzed. Multivariable logistic regression was used to determine factors significantly associated with five-year cancer-related mortality. Various machine learning models were developed and compared using area under the curve (AUC), calibration, and decision curve analysis. The model that performed best on the SEER testing data was further assessed to determine the variables most important in its predictive capacity. This model was externally validated using our institutional dataset. Results. A total of 13,646 patients with STS from the SEER database were included, of whom 35.9% experienced five-year cancer-related mortality. The random forest model performed the best overall and identified tumour size as the most important variable when predicting mortality in patients with STS, followed by M stage, histological subtype, age, and surgical excision. Each variable was significant in logistic regression. External validation yielded an AUC of 0.752. Conclusion. This study identified clinically important variables associated with five-year cancer-related mortality in patients with limb and trunk STS, and developed a predictive model that demonstrated good
Aims. The aim of this study was to evaluate the ability of a machine-learning algorithm to diagnose prosthetic loosening from preoperative radiographs and to investigate the inputs that might improve its performance. Methods. A group of 697 patients underwent a first-time revision of a total hip (THA) or total knee arthroplasty (TKA) at our institution between 2012 and 2018. Preoperative anteroposterior (AP) and lateral radiographs, and historical and comorbidity information were collected from their electronic records. Each patient was defined as having loose or fixed components based on the operation notes. We trained a series of convolutional neural network (CNN) models to predict a diagnosis of loosening at the time of surgery from the preoperative radiographs. We then added historical data about the patients to the best performing model to create a final model and tested it on an independent dataset. Results. The convolutional neural network we built performed well when detecting loosening from radiographs alone. The first model built de novo with only the radiological image as input had an
Aims. Accurate identification of the ankle joint centre is critical for estimating tibial coronal alignment in total knee arthroplasty (TKA). The purpose of the current study was to leverage artificial intelligence (AI) to determine the
Aims. This study aimed to compare the performance of survival prediction models for bone metastases of the extremities (BM-E) with pathological fractures in an Asian cohort, and investigate patient characteristics associated with survival. Methods. This retrospective cohort study included 469 patients, who underwent surgery for BM-E between January 2009 and March 2022 at a tertiary hospital in South Korea. Postoperative survival was calculated using the PATHFx3.0, SPRING13, OPTIModel, SORG, and IOR models. Model performance was assessed with area under the curve (AUC), calibration curve, Brier score, and decision curve analysis. Cox regression analyses were performed to evaluate the factors contributing to survival. Results. The SORG model demonstrated the highest discriminatory
Aims. To propose a new method for evaluating paediatric radial neck fractures and improve the
Limb alignment in total knee arthroplasty (TKA) influences periarticular soft-tissue tension, biomechanics through knee flexion, and implant survival. Despite this, there is no uniform consensus on the optimal alignment technique for TKA. Neutral mechanical alignment facilitates knee flexion and symmetrical component wear but forces the limb into an unnatural position that alters native knee kinematics through the arc of knee flexion. Kinematic alignment aims to restore native limb alignment, but the safe ranges with this technique remain uncertain and the effects of this alignment technique on component survivorship remain unknown. Anatomical alignment aims to restore predisease limb alignment and knee geometry, but existing studies using this technique are based on cadaveric specimens or clinical trials with limited follow-up times. Functional alignment aims to restore the native plane and obliquity of the joint by manipulating implant positioning while limiting soft tissue releases, but the results of high-quality studies with long-term outcomes are still awaited. The drawbacks of existing studies on alignment include the use of surgical techniques with limited
Aims. Periacetabular osteotomy (PAO) is widely recognized as a demanding surgical procedure for acetabular reorientation. Reports about the learning curve have primarily focused on complication rates during the initial learning phase. Therefore, our aim was to assess the PAO learning curve from an analytical perspective by determining the number of PAOs required for the duration of surgery to plateau and the
Aims. No predictive model has been published to forecast operating time for total knee arthroplasty (TKA). The aims of this study were to design and validate a predictive model to estimate operating time for robotic-assisted TKA based on demographic data, and evaluate the added predictive power of CT scan-based predictors and their impact on the
Objectives. The aim of this study was to assess the clinical application of, and optimize the variables used in, the BACH classification of long-bone osteomyelitis. Methods. A total of 30 clinicians from a variety of specialities classified 20 anonymized cases of long-bone osteomyelitis using BACH. Cases were derived from patients who presented to specialist centres in the United Kingdom between October 2016 and April 2017.
Aims. The purpose of this study was to compare the radiological outcomes of manual versus robotic-assisted medial unicompartmental knee arthroplasty (UKA). Methods. Postoperative radiological outcomes from 86 consecutive robotic-assisted UKAs (RAUKA group) from a single academic centre were retrospectively reviewed and compared to 253 manual UKAs (MUKA group) drawn from a prior study at our institution. Femoral coronal and sagittal angles (FCA, FSA), tibial coronal and sagittal angles (TCA, TSA), and implant overhang were radiologically measured to identify outliers. Results. When assessing the
Aims. Natural Language Processing (NLP) offers an automated method to extract data from unstructured free text fields for arthroplasty registry participation. Our objective was to investigate how accurately NLP can be used to extract structured clinical data from unstructured clinical notes when compared with manual data extraction. Methods. A group of 1,000 randomly selected clinical and hospital notes from eight different surgeons were collected for patients undergoing primary arthroplasty between 2012 and 2018. In all, 19 preoperative, 17 operative, and two postoperative variables of interest were manually extracted from these notes. A NLP algorithm was created to automatically extract these variables from a training sample of these notes, and the algorithm was tested on a random test sample of notes. Performance of the NLP algorithm was measured in Statistical Analysis System (SAS) by calculating the
Aims. The preoperative diagnosis of periprosthetic joint infection (PJI) remains a challenge due to a lack of biomarkers that are both sensitive and specific. We investigated the performance characteristics of polymerase chain reaction (PCR), interleukin-6 (IL6), and calprotectin of synovial fluid in the diagnosis of PJI. Methods. We performed systematic search of PubMed, Embase, The Cochrane Library, Web of Science, and Science Direct from the date of inception of each database through to 31 May 2021. Studies which described the diagnostic
Aims. Accurate diagnosis of chronic periprosthetic joint infection (PJI) presents a significant challenge for hip surgeons. Preoperative diagnosis is not always easy to establish, making the intraoperative decision-making process crucial in deciding between one- and two-stage revision total hip arthroplasty (THA). Calprotectin is a promising point-of-care novel biomarker that has displayed high
Aims. Synovial fluid white blood cell (WBC) count and percentage of polymorphonuclear cells (%PMN) are elevated at periprosthetic joint infection (PJI). Leucocytes produce different interleukins (IL), including IL-6, so we hypothesized that synovial fluid IL-6 could be a more accurate predictor of PJI than synovial fluid WBC count and %PMN. The main aim of our study was to compare the predictive performance of all three diagnostic tests in the detection of PJI. Methods. Patients undergoing total hip or knee revision surgery were included. In the perioperative assessment phase, synovial fluid WBC count, %PMN, and IL-6 concentration were measured. Patients were labeled as positive or negative according to the predefined cut-off values for IL-6 and WBC count with %PMN. Intraoperative samples for microbiological and histopathological analysis were obtained. PJI was defined as the presence of sinus tract, inflammation in histopathological samples, and growth of the same microorganism in a minimum of two or more samples out of at least four taken. Results. In total, 49 joints in 48 patients (mean age 68 years (SD 10; 26 females (54%), 25 knees (51%)) were included. Of these 11 joints (22%) were infected. The synovial fluid WBC count and %PMN predicted PJI with sensitivity, specificity,
Aims. This study aimed to evaluate the
Aims. Intraoperative 3D navigation (ION) allows high
Aims. The aim of this study was to establish a reliable method for producing 3D reconstruction of sonographic callus. Methods. A cohort of ten closed tibial shaft fractures managed with intramedullary nailing underwent ultrasound scanning at two, six, and 12 weeks post-surgery. Ultrasound capture was performed using infrared tracking technology to map each image to a 3D lattice. Using echo intensity, semi-automated mapping was performed to produce an anatomical 3D representation of the fracture site. Two reviewers independently performed 3D reconstructions and kappa coefficient was used to determine agreement. A further validation study was undertaken with ten reviewers to estimate the clinical application of this imaging technique using the intraclass correlation coefficient (ICC). Results. Nine of the ten patients achieved union at six months. At six weeks, seven patients had bridging callus of ≥ one cortex on the 3D reconstruction and when present all achieved union. Compared to six-week radiographs, no bridging callus was present in any patient. Of the three patients lacking sonographic bridging callus, one went onto a nonunion (77.8% sensitive and 100% specific to predict union). At 12 weeks, nine patients had bridging callus at ≥ one cortex on 3D reconstruction (100%-sensitive and 100%-specific to predict union). Presence of sonographic bridging callus on 3D reconstruction demonstrated excellent reviewer agreement on ICC at 0.87 (95% confidence interval 0.74 to 0.96). Conclusion. 3D fracture reconstruction can be created using multiple ultrasound images in order to evaluate the presence of bridging callus. This imaging modality has the potential to enhance the usability and
Aims. This study aimed to explore whether serum combined with synovial interleukin-6 (IL-6) measurement can improve the
Aims. The aim of this study was to further evaluate the
In recent years, machine learning (ML) and artificial neural networks (ANNs), a particular subset of ML, have been adopted by various areas of healthcare. A number of diagnostic and prognostic algorithms have been designed and implemented across a range of orthopaedic sub-specialties to date, with many positive results. However, the methodology of many of these studies is flawed, and few compare the use of ML with the current approach in clinical practice. Spinal surgery has advanced rapidly over the past three decades, particularly in the areas of implant technology, advanced surgical techniques, biologics, and enhanced recovery protocols. It is therefore regarded an innovative field. Inevitably, spinal surgeons will wish to incorporate ML into their practice should models prove effective in diagnostic or prognostic terms. The purpose of this article is to review published studies that describe the application of neural networks to spinal surgery and which actively compare ANN models to contemporary clinical standards allowing evaluation of their efficacy,