Radiostereometric analysis (RSA) is the most accurate radiological method to measure in vivo wear of highly cross-linked polyethylene (XLPE) acetabular components. We have previously reported very low wear rates for a sequentially irradiated and annealed X3 XLPE liner (Stryker Orthopaedics, USA) when used in conjunction with a 32 mm femoral heads at ten-year follow-up. Only two studies have reported the long-term wear rate of X3 liners used in conjunction with larger heads using plain radiographs which have poor sensitivity. The aim of this study was to measure the ten-year wear of thin X3 XLPE liners against larger 36 or 40 mm articulations with RSA. We prospectively reviewed 19 patients who underwent primary cementless THA with the XLPE acetabular liner (X3) and a 36 or 40 mm femoral head with a resultant liner thickness of at least 5.8 mm. RSA radiographs at one week, six months, and one, two, five, and ten years postoperatively and femoral head penetration within the acetabular component were measured with UmRSA software. Of the initial 19 patients, 12 were available at the ten-year time point.Aims
Methods
Iliopsoas impingement occurs in 4% to 30% of patients after undergoing total hip arthroplasty (THA). Despite a relatively high incidence, there are few attempts at modelling impingement between the iliopsoas and acetabular component, and no attempts at modelling this in a representative cohort of subjects. The purpose of this study was to develop a novel computational model for quantifying the impingement between the iliopsoas and acetabular component and validate its utility in a case-controlled investigation. This was a retrospective cohort study of patients who underwent THA surgery that included 23 symptomatic patients diagnosed with iliopsoas tendonitis, and 23 patients not diagnosed with iliopsoas tendonitis. All patients received postoperative CT imaging, postoperative standing radiography, and had minimum six months’ follow-up. 3D models of each patient’s prosthetic and bony anatomy were generated, landmarked, and simulated in a novel iliopsoas impingement detection model in supine and standing pelvic positions. Logistic regression models were implemented to determine if the probability of pain could be significantly predicted. Receiver operating characteristic curves were generated to determine the model’s sensitivity, specificity, and area under the curve (AUC).Aims
Methods
Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype, is paramount for stability in total hip arthroplasty (THA). Despite a few studies on instability prediction, there is a notable gap in research utilizing artificial intelligence (AI). The objective of our pilot study was to evaluate the feasibility of developing an AI algorithm tailored to individual spinopelvic mechanics and patient phenotype for predicting impingement. This international, multicentre prospective cohort study across two centres encompassed 157 adults undergoing primary robotic arm-assisted THA. Impingement during specific flexion and extension stances was identified using the virtual range of motion (ROM) tool of the robotic software. The primary AI model, the Light Gradient-Boosting Machine (LGBM), used tabular data to predict impingement presence, direction (flexion or extension), and type. A secondary model integrating tabular data with plain anteroposterior pelvis radiographs was evaluated to assess for any potential enhancement in prediction accuracy.Aims
Methods
Spinopelvic pathology increases the risk for instability following total hip arthroplasty (THA), yet few studies have evaluated how pathology varies with age or sex. The aims of this study were: 1) to report differences in spinopelvic parameters with advancing age and between the sexes; and 2) to determine variation in the prevalence of THA instability risk factors with advancing age. A multicentre database with preoperative imaging for 15,830 THA patients was reviewed. Spinopelvic parameter measurements were made by experienced engineers, including anterior pelvic plane tilt (APPT), spinopelvic tilt (SPT), sacral slope (SS), lumbar lordosis (LL), and pelvic incidence (PI). Lumbar flexion (LF), sagittal spinal deformity, and hip user index (HUI) were calculated using parameter measurements.Aims
Methods
Modular dual-mobility (DM) articulations are increasingly used during total hip arthroplasty (THA). However, concerns remain regarding the metal liner modularity. This study aims to correlate metal artifact reduction sequence (MARS)-MRI abnormalities with serum metal ion levels in patients with DM articulations. A total of 45 patients (50 hips) with a modular DM articulation were included with mean follow-up of 3.7 years (SD 1.2). Enrolled patients with an asymptomatic, primary THA and DM articulation with over two years’ follow-up underwent MARS-MRI. Each patient had serum cobalt, chromium, and titanium levels drawn. Patient satisfaction, Oxford Hip Score, and Forgotten Joint Score-12 (FJS-12) were collected. Each MARS-MRI was independently reviewed by fellowship-trained musculoskeletal radiologists blinded to serum ion levels.Aims
Methods
There is little information in the literature about the use of dual-mobility (DM) bearings in preventing re-dislocation in revision total hip arthroplasty (THA). The aim of this study was to compare the use of DM bearings, standard bearings, and constrained liners in revision THA for recurrent dislocation, and to identify risk factors for re-dislocation. We reviewed 86 consecutive revision THAs performed for dislocation between August 2012 and July 2019. A total of 38 revisions (44.2%) involved a DM bearing, while 39 (45.3%) and nine (10.5%) involved a standard bearing and a constrained liner, respectively. Rates of re-dislocation, re-revision for dislocation, and overall re-revision were compared. Radiographs were assessed for the positioning of the acetabular component, the restoration of the centre of rotation, leg length, and offset. Risk factors for re-dislocation were determined by Cox regression analysis. The modified Harris Hip Scores (mHHSs) were recorded. The mean age of the patients at the time of revision was 70 years (43 to 88); 54 were female (62.8%). The mean follow-up was 5.0 years (2.0 to 8.75).Aims
Methods
There is little evidence examining the relationship between anatomical landmarks, radiological placement of the tunnels and long-term clinical outcomes following anterior cruciate ligament (ACL) reconstruction. The aim of this study was to investigate the reproducibility of intra-operative landmarks for placement of the tunnels in single-bundle reconstruction of the ACL using four-strand hamstring tendon autografts. Isolated reconstruction of the ACL was performed in 200 patients, who were followed prospectively for seven years with use of the International Knee Documentation Committee forms and radiographs. Taking 0% as the anterior and 100% as the posterior extent, the femoral tunnel was a mean of 86% (. sd. 5) along Blumensaat’s line and the tibial tunnel was 48% (. sd. 5) along the tibial plateau. Taking 0% as the medial and 100% as the lateral extent, the tibial tunnel was 46% (. sd. 3) across the tibial plateau and the mean
Literature surrounding artificial intelligence (AI)-related applications for hip and knee arthroplasty has proliferated. However, meaningful advances that fundamentally transform the practice and delivery of joint arthroplasty are yet to be realized, despite the broad range of applications as we continue to search for meaningful and appropriate use of AI. AI literature in hip and knee arthroplasty between 2018 and 2021 regarding image-based analyses, value-based care, remote patient monitoring, and augmented reality was reviewed. Concerns surrounding meaningful use and appropriate methodological approaches of AI in joint arthroplasty research are summarized. Of the 233 AI-related orthopaedics articles published, 178 (76%) constituted original research, while the rest consisted of editorials or reviews. A total of 52% of original AI-related research concerns hip and knee arthroplasty (n = 92), and a narrative review is described. Three studies were externally validated. Pitfalls surrounding present-day research include conflating vernacular (“AI/machine learning”), repackaging limited registry data, prematurely releasing internally validated prediction models, appraising model architecture instead of inputted data, withholding code, and evaluating studies using antiquated regression-based guidelines. While AI has been applied to a variety of hip and knee arthroplasty applications with limited clinical impact, the future remains promising if the question is meaningful, the methodology is rigorous and transparent, the data are rich, and the model is externally validated. Simple checkpoints for meaningful AI adoption include ensuring applications focus on: administrative support over clinical evaluation and management; necessity of the advanced model; and the novelty of the question being answered. Cite this article:
Our aim was to determine the most repeatable three-dimensional measurement of glenoid orientation and to compare it between shoulders with intact and torn rotator cuffs. Our null hypothesis was that glenoid orientation in the scapulae of shoulders with a full-thickness tear of the rotator cuff was the same as that in shoulders with an intact rotator cuff. We studied 24 shoulders in cadavers, 12 with an intact rotator cuff and 12 with a full-thickness tear. Two different observers used a three-dimensional digitising system to measure glenoid orientation in the scapular plane (ie glenoid inclination) using six different techniques. Glenoid version was also measured. The overall precision of the measurements revealed an error of less than 0.6°. Intraobserver reliability (correlation coefficients of 0.990 and 0.984 for each observer) and interobserver reliability (correlation coefficient of 0.985) were highest for measurement of glenoid
We used three-dimensional movement analysis by computer modelling of knee flexion from 0° to 50° in 14 knees in 12 patients with recurrent patellar dislocation and in 15 knees in ten normal control subjects to compare the in vivo three-dimensional movement of the patella. Flexion, tilt and spin of the patella were described in terms of rotation angles from 0°. The location of the patella and the tibial tubercle were evaluated using parameters expressed as percentage patellar shift and percentage tubercle shift. Patellar
Aims. Accurate placement of the acetabular component during total hip
arthroplasty (THA) is an important factor in the success of the
procedure. However, the reported accuracy varies greatly and is
dependent upon whether free hand or navigated techniques are used.
The aim of this study was to assess the accuracy of an instrument
system that incorporates 3D printed, patient-specific guides designed
to optimise the placement of the acetabular component. Patients and Methods. A total of 100 consecutive patients were prospectively enrolled
and the accuracy of placement of the acetabular component was measured
using post-operative CT scans. Results. The mean absolute deviation from the planned
To propose a new method for evaluating paediatric radial neck fractures and improve the accuracy of fracture angulation measurement, particularly in younger children, and thereby facilitate planning treatment in this population. Clinical data of 117 children with radial neck fractures in our hospital from August 2014 to March 2023 were collected. A total of 50 children (26 males, 24 females, mean age 7.6 years (2 to 13)) met the inclusion criteria and were analyzed. Cases were excluded for the following reasons: Judet grade I and Judet grade IVb (> 85° angulation) classification; poor radiograph image quality; incomplete clinical information; sagittal plane angulation; severe displacement of the ulna fracture; and Monteggia fractures. For each patient, standard elbow anteroposterior (AP) view radiographs and corresponding CT images were acquired. On radiographs, Angle P (complementary to the angle between the long axis of the radial head and the line perpendicular to the physis), Angle S (complementary to the angle between the long axis of the radial head and the midline through the proximal radial shaft), and Angle U (between the long axis of the radial head and the straight line from the distal tip of the capitellum to the coronoid process) were identified as candidates approximating the true coronal plane angulation of radial neck fractures. On the coronal plane of the CT scan, the angulation of radial neck fractures (CTa) was measured and served as the reference standard for measurement. Inter- and intraobserver reliabilities were assessed by Kappa statistics and intraclass correlation coefficient (ICC).Aims
Methods
The February 2023 Children’s orthopaedics Roundup360 looks at: Trends in management of paediatric distal radius buckle fractures; Pelvic osteotomy in patients with previous sacral-alar-iliac fixation; Sacral-alar-iliac fixation in patients with previous pelvic osteotomy; Idiopathic toe walking: an update on natural history, diagnosis, and treatment; A prediction model for treatment decisions in distal radial physeal injuries: a multicentre retrospective study; Angular deformities after percutaneous epiphysiodesis for leg length discrepancy; MRI assessment of anterior coverage is predictive of future radiological coverage; Predictive scoring for recurrent patellar instability after a first-time patellar dislocation.
The December 2023 Wrist & Hand Roundup360 looks at: Volar locking plate for distal radius fractures with patient-reported outcomes in older adults; Total joint replacement or trapeziectomy?; Replantation better than revision amputation in traumatic amputation?; What factors are associated with revision cubital tunnel release within three years?; Use of nerve conduction studies in carpal tunnel syndrome; Surgical site infection following surgery for hand trauma: a systematic review and meta-analysis; Association between radiological and clinical outcomes following distal radial fractures; Reducing the carbon footprint in carpal tunnel surgery inside the operating room with a lean and green model: a comparative study.
To describe the epidemiology of acetabular fractures including patient characteristics, injury mechanisms, fracture patterns, treatment, and mortality. We retrieved information from the Swedish Fracture Register (SFR) on all patients with acetabular fractures, of the native hip joint in the adult skeleton, sustained between 2014 and 2020. Study variables included patient age, sex, injury date, injury mechanism, fracture classification, treatment, and mortality.Aims
Methods
The primary aim of this study is to quantify and compare outcomes following a dorsally displaced fracture of the distal radius in elderly patients (aged ≥ 65 years) who are managed conservatively versus with surgical fixation (open reduction and internal fixation). Secondary aims are to assess and compare upper limb-specific function, health-related quality of life, wrist pain, complications, grip strength, range of motion, radiological parameters, healthcare resource use, and cost-effectiveness between the groups. A prospectively registered (ISRCTN95922938) randomized parallel group trial will be conducted. Elderly patients meeting the inclusion criteria with a dorsally displaced distal radius facture will be randomized (1:1 ratio) to either conservative management (cast without further manipulation) or surgery. Patients will be assessed at six, 12, 26 weeks, and 52 weeks post intervention. The primary outcome measure and endpoint will be the Patient-Rated Wrist Evaluation (PRWE) at 52 weeks. In addition, the abbreviated version of the Disabilities of Arm, Shoulder and Hand questionnaire (QuickDASH), EuroQol five-dimension questionnaire, pain score (visual analogue scale 1 to 10), complications, grip strength (dynamometer), range of motion (goniometer), and radiological assessments will be undertaken. A cost-utility analysis will be performed to assess the cost-effectiveness of surgery. We aim to recruit 89 subjects per arm (total sample size 178).Aims
Methods
The aim of this study was to describe the incidence of refractures among children, following fractures of all long bones, and to identify when the risk of refracture decreases. All patients aged under 16 years with a fracture that had occurred in a bone with ongoing growth (open physis) from 1 May 2015 to 31 December 2020 were retrieved from the Swedish Fracture Register. A new fracture in the same segment within one year of the primary fracture was regarded as a refracture. Fracture localization, sex, lateral distribution, and time from primary fracture to refracture were analyzed for all long bones.Aims
Methods
There is no level I evidence dealing with the optimal period of immobilization for patients with a displaced distal radial fracture following closed reduction. A shorter period might lead to a better functional outcome due to less stiffness and pain. The aim of this study was to investigate whether this period could be safely reduced from six to four weeks. This multicentre randomized controlled trial (RCT) included adult patients with a displaced distal radial fracture, who were randomized to be treated with immobilization in a cast for four or six weeks following closed reduction. The primary outcome measure was the Patient-Rated Wrist Evaluation (PRWE) score after follow-up at one year. Secondary outcomes were the abbreviated version of the Disability of Arm, Shoulder and Hand (QuickDASH) score after one year, the functional outcome at six weeks, 12 weeks, and six months, range of motion (ROM), the level of pain after removal of the cast, and complications.Aims
Methods