We studied the presence of anabolic growth factors in human herniated intervertebral discs (IVD) using a reverse transcriptase-polymerase chain reaction (RT-PCR) and
It has been thought that lumbar intervertebral discs were innervated segmentally. We have previously shown that the L5-L6 intervertebral disc in the rat is innervated bilaterally from the L1 and L2 dorsal root ganglia through the paravertebral sympathetic trunks, but the pathways between the disc and the paravertebral sympathetic trunks were unknown. We have now studied the spines of 17 rats to elucidate the exact pathways. We examined serial sections of the lumbar spine using
Arthrofibrosis is a relatively common complication after joint injuries and surgery, particularly in the knee. The present study used a previously described and validated rabbit model to assess the biomechanical, histopathological, and molecular effects of the mast cell stabilizer ketotifen on surgically induced knee joint contractures in female rabbits. A group of 12 skeletally mature rabbits were randomly divided into two groups. One group received subcutaneous (SQ) saline, and a second group received SQ ketotifen injections. Biomechanical data were collected at eight, ten, 16, and 24 weeks. At the time of necropsy, posterior capsule tissue was collected for histopathological and gene expression analyses (messenger RNA (mRNA) and protein).Aims
Methods
The tissues surrounding 65 cemented and 36 cementless total joint replacements undergoing revision were characterised for cell types by
We compared the effects of continuous passive motion with those of intermittent active motion on the results of the resurfacing with autogenous periosteal grafts of full-thickness defects on the articular surface of rabbit patellae. Of 45 rabbits with defects, 30 received grafts. Fifteen of these had continuous passive motion for two weeks and intermittent active motion for four weeks; the other 15 had intermittent active motion for six weeks. In 15 the defects were not grafted (control group) and they had intermittent active motion for six weeks. Ten more rabbits had a sham operation. Six weeks after surgery, the results were assessed by the gross appearance, histology, histochemistry,
Particulate wear debris is associated with periprosthetic inflammation and loosening in total joint arthroplasty. We tested the effects of titanium alloy (Ti-alloy) and PMMA particles on monocyte/macrophage expression of the C-C chemokines, monocyte chemoattractant protein-1 (MCP-1), monocyte inflammatory protein-1 alpha (MIP-1α), and regulated upon activation normal T expressed and secreted protein (RANTES). Periprosthetic granulomatous tissue was analysed for expression of macrophage chemokines by
As our understanding of hip function and disease improves, it is evident that the acetabular fossa has received little attention, despite it comprising over half of the acetabulum’s surface area and showing the first signs of degeneration. The fossa’s function is expected to be more than augmenting static stability with the ligamentum teres and being a templating landmark in arthroplasty. Indeed, the fossa, which is almost mature at 16 weeks of intrauterine development, plays a key role in hip development, enabling its nutrition through vascularization and synovial fluid, as well as the influx of chondrogenic stem/progenitor cells that build articular cartilage. The pulvinar, a fibrofatty tissue in the fossa, has the same developmental origin as the synovium and articular cartilage and is a biologically active area. Its unique anatomy allows for homogeneous distribution of the axial loads into the joint. It is composed of intra-articular adipose tissue (IAAT), which has adipocytes, fibroblasts, leucocytes, and abundant mast cells, which participate in the inflammatory cascade after an insult to the joint. Hence, the fossa and pulvinar should be considered in decision-making and surgical outcomes in hip preservation surgery, not only for their size, shape, and extent, but also for their biological capacity as a source of cytokines, immune cells, and chondrogenic stem cells. Cite this article:
Composites of chondrocytes and polymerised fibrin were supplemented with insulin-like growth factor-I (IGF-I) during the arthroscopic repair of full-thickness cartilage defects in a model of extensive loss of cartilage in horses. Repairs facilitated with IGF-I and chondrocyte-fibrin composites, or control defects treated with chondrocyte-fibrin composites alone, were compared before death by the clinical appearance and repeated analysis of synovial fluid, and at termination eight months after surgery by tissue morphology, collagen typing, and biochemical assays. The structure of cartilage was evaluated histologically by Toluidine Blue reaction and collagen type-I and type-II in situ hybridisation and
Cigarette smoking has a negative impact on the skeletal system, causes a decrease in bone mass in both young and old patients, and is considered a risk factor for the development of osteoporosis. In addition, it disturbs the bone healing process and prolongs the healing time after fractures. The mechanisms by which cigarette smoking impairs fracture healing are not fully understood. There are few studies reporting the effects of cigarette smoking on new blood vessel formation during the early stage of fracture healing. We tested the hypothesis that cigarette smoke inhalation may suppress angiogenesis and delay fracture healing. We established a custom-made chamber with airflow for rats to inhale cigarette smoke continuously, and tested our hypothesis using a femoral osteotomy model, radiograph and microCT imaging, and various biomechanical and biological tests.Aims
Methods
Our aim was to investigate whether nitric oxide synthase (NOS) isoforms, responsible for the generation of NO, are expressed during the healing of fractures. To localise the sites of expression compared with those in normal bone we made standardised, stabilised, unilateral tibial fractures in male Wistar rats. Immunostaining was used to determine the precise tissue localisation of the different NOS isoforms. Western blotting was used to assess expression of NOS isoform protein and L-citrulline assays for studies on NOS activity. Control tissue was obtained from both the contralateral uninjured limb and limbs of normal rats.
The multifunctional adhesion molecule CD44 is a major cell-surface receptor for hyaluronic acid (HUA). Recent data suggest that it may also bind the ubiquitous bone-matrix protein, osteopontin (OPN). Because OPN has been shown to be a potentially important protein in bone remodelling, we investigated the hypothesis that OPN interactions with the CD44 receptor on bone cells participate in the regulation of the healing of fractures. We examined the spatial and temporal patterns of expression of OPN and CD44 in healing fractures of rat femora by in situ hybridisation and
MicroRNAs (miRNAs) have been reported as key regulators of bone formation, signalling, and repair. Fracture healing is a proliferative physiological process where the body facilitates the repair of a bone fracture. The aim of our study was to explore the effects of microRNA-186 (miR-186) on fracture healing through the bone morphogenetic protein (BMP) signalling pathway by binding to Smad family member 6 (SMAD6) in a mouse model of femoral fracture. Microarray analysis was adopted to identify the regulatory miR of SMAD6. 3D micro-CT was performed to assess the bone volume (BV), bone volume fraction (BVF, BV/TV), and bone mineral density (BMD), followed by a biomechanical test for maximum load, maximum radial degrees, elastic radial degrees, and rigidity of the femur. The positive expression of SMAD6 in fracture tissues was measured. Moreover, the miR-186 level, messenger RNA (mRNA) level, and protein levels of SMAD6, BMP-2, and BMP-7 were examined.Objectives
Methods
Kashin-Beck disease (KBD) is a kind of chronic osteochondropathy, thought to be caused by environmental risk factors such as T-2 toxin. However, the exact aetiology of KBD remains unclear. In this study, we explored the functional relevance and biological mechanism of cartilage oligosaccharide matrix protein (COMP) in the articular cartilage damage of KBD. The articular cartilage specimens were collected from five KBD patients and five control subjects for cell culture. The messenger RNA (mRNA) and protein expression levels were detected by quantitative reverse transcription PCR (qRT-PCR) and western blot. The survival rate of C28/I2 chondrocyte cell line was detected by MTT assay after T-2 toxin intervention. The cell viability and mRNA expression levels of apoptosis related genes between Aims
Methods
Surgeons and most engineers believe that bone compaction improves implant primary stability without causing undue damage to the bone itself. In this study, we developed a murine distal femoral implant model and tested this dogma. Each mouse received two femoral implants, one placed into a site prepared by drilling and the other into the contralateral site prepared by drilling followed by stepwise condensation.Aims
Methods
The aim of this study was to systematically review the literature for evidence of the effect of a high-fat diet (HFD) on the onset or progression of osteoarthritis (OA) in mice. A literature search was performed in PubMed, Embase, Web of Science, and Scopus to find all studies on mice investigating the effects of HFD or Western-type diet on OA when compared with a control diet (CD). The primary outcome was the determination of cartilage loss and alteration. Secondary outcomes regarding local and systemic levels of proteins involved in inflammatory processes or cartilage metabolism were also examined when reported.Aims
Methods
Activation of the leptin pathway is closely correlated with human knee cartilage degeneration. However, the role of the long form of the leptin receptor (Ob-Rb) in cartilage degeneration needs further study. The aim of this study was to determine the effect of increasing the expression of Ob-Rb on chondrocytes using a lentiviral vector containing Ob-Rb. The medial and lateral cartilage samples of the tibial plateau from 12 osteoarthritis (OA) patients were collected. Ob-Rb messenger RNA (mRNA) was detected in these samples. The Ob-Rb-overexpressing chondrocytes and controls were treated with different doses of leptin for two days. The activation of the p53/p21 pathway and the number of senescence-associated β-galactosidase (SA-β-gal)-positive cells were evaluated. The mammalian target of rapamycin (mTOR) signalling pathway and autophagy were detected after the chondrocytes were treated with a high dose of leptin.Objectives
Methods
Dupuytren’s disease is a chronic inflammatory process which produces contractures of the fingers. The nodules present in Dupuytren’s tissue contain inflammatory cells, mainly lymphocytes and macrophages. These express a common integrin known as VLA4. The corresponding binding ligands to VLA4 are vascular cell adhesion molecule-1 (VCAM-1) present on the endothelial cells and the CS1 sequence of the fibronectin present in the extracellular matrix. Transforming growth factor-beta (TGF-ß) is a peptide hormone which has a crucial role in the process of fibrosis. We studied tissue from 20 patients with Dupuytren’s disease, four samples of normal palmar fascia from patients undergoing carpal tunnel decompression and tissue from ten patients who had received perinodular injections of depomedrone into the palm five days before operation. The distribution of VLA4, VCAM-1, CS1 fibronectin and TGF-ß was shown by
The purpose of this study was to evaluate the in vitro effects of apocynin, an inhibitor of nicotinamide adenine dinucleotide phosphate oxidase (NOX) and a downregulator of intracellular reactive oxygen species (ROS), on high glucose-induced oxidative stress on tenocytes. Tenocytes from normal Sprague-Dawley rats were cultured in both control and high-glucose conditions. Apocynin was added at cell seeding, dividing the tenocytes into four groups: the control group; regular glucose with apocynin (RG apo+); high glucose with apocynin (HG apo+); and high glucose without apocynin (HG apo–). Reactive oxygen species production, cell proliferation, apoptosis and messenger RNA (mRNA) expression of NOX1 and 4, and interleukin-6 (IL-6) were determined in vitro.Aims
Methods
Previously, we reported the improved transfection efficiency of a plasmid DNA-chitosan (pDNA-CS) complex using a phosphorylatable nuclear localization signal-linked nucleic kinase substrate short peptide (pNNS) conjugated to chitosan (pNNS-CS). This study investigated the effects of pNNS-CS-mediated miR-140 and interleukin-1 receptor antagonist protein (IL-1Ra) gene transfection both in rabbit chondrocytes and a cartilage defect model. The pBudCE4.1-miR-140, pBudCE4.1-IL-1Ra, and negative control pBudCE4.1 plasmids were constructed and combined with pNNS-CS to form pDNA/pNNS-CS complexes. These complexes were transfected into chondrocytes or injected into the knee joint cavity.Objectives
Methods
Mesenchymal stem cells (MSCs) have several properties that may support their use as an early treatment option for osteoarthritis (OA). This study investigated the role of multiple injections of allogeneic bone marrow-derived stem cells (BMSCs) to alleviate the progression of osteoarthritic changes in the various structures of the mature rabbit knee in an anterior cruciate ligament (ACL)-deficient OA model. Two months after bilateral section of the ACL of Japanese white rabbits aged nine months or more, either phosphate buffered saline (PBS) or 1 x 106 MSCs were injected into the knee joint in single or three consecutive doses. After two months, the articular cartilage and meniscus were assessed macroscopically, histologically, and immunohistochemically using collagen I and II.Aim
Materials and Methods