Few studies have assessed outcomes following non-metal-on-metal hip arthroplasty (non-MoMHA) revision surgery performed for adverse reactions to metal debris (ARMD). We assessed outcomes following non-MoMHA revision surgery performed for ARMD, and identified predictors of re-revision. We performed a retrospective observational study using data from the National Joint Registry for England and Wales. All non-MoMHAs undergoing revision surgery for ARMD between 2008 and 2014 were included (185 hips in 185 patients). Outcome measures following ARMD revision were intra-operative complications, mortality and re-revision surgery. Predictors of re-revision were identified using Cox regression.Objectives
Methods
To investigate the longevity of uncemented fixation of a femoral
component in total hip arthroplasty (THA) in patients with Dorr
type C proximal femoral morphology. A total of 350 consecutive uncemented THA in 320 patients were
performed between 1983 and 1987, by a single surgeon using the Taperloc
femoral component. The 63 patients (68 hips) with Dorr type C proximal
femoral morphology were the focus of this review. The mean age of
the patients was 69 years (24 to 88) and mean follow-up was 16.6
years (ten to 29). Survival analysis included eight patients (eight
hips) who died without undergoing revision surgery prior to obtaining
ten years follow-up. All 55 surviving patients (60 hips) were available
for clinical assessment and radiographic review. As a comparator
group, the survival and implant fixation in the remaining 282 THAs
(257 patients) with Dorr type A and B morphology were evaluated.
The mean age of these patients was 52 years (20 to 82).Aims
Patients and Methods
We report the clinical and radiographic outcomes
of 208 consecutive femoral revision arthroplasties performed in 202
patients (119 women, 83 men) between March 1991 and December 2007
using the X-change Femoral Revision System, fresh-frozen morcellised
allograft and a cemented polished Exeter stem. All patients were
followed prospectively. The mean age of the patients at revision
was 65 years (30 to 86). At final review in December 2013 a total
of 130 patients with 135 reconstructions (64.9%) were alive and
had a non re-revised femoral component after a mean follow-up of
10.6 years (4.7 to 20.9). One patient was lost to follow-up at six
years, and their data were included up to this point.
Re-operation for any reason was performed in 33 hips (15.9%), in
13 of which the femoral component was re-revised (6.3%). The mean
pre-operative Harris hip score was 52 (19 to 95) (n = 73) and improved
to 80 (22 to 100) (n = 161) by the last follow-up. Kaplan–Meier
survival with femoral re-revision for any reason as the endpoint
was 94.9% (95% confidence intervals (CI) 90.2 to 97.4) at ten years;
with femoral re-revision for aseptic loosening as the endpoint it was
99.4% (95% CI 95.7 to 99.9); with femoral re-operation for any reason
as the endpoint it was 84.5% (95% CI 78.3 to 89.1); and with subsidence ≥ 5
mm it was 87.3% (95% CI 80.5 to 91.8). Femoral revision with the
use of impaction allograft bone grafting and a cemented polished
stem results in a satisfying survival rate at a mean of ten years’ follow-up. Cite this article:
Revision of a cemented hemiarthroplasty of the
hip may be a hazardous procedure with high rates of intra-operative complications.
Removing well-fixed cement is time consuming and risks damaging
already weak bone or perforating the femoral shaft. The cement-in-cement
method avoids removal of intact cement and has shown good results
when used for revision total hip arthroplasty (THA). The use of
this technique for the revision of a hemiarthroplasty to THA has
not been previously reported. A total of 28 consecutive hemiarthroplasties (in 28 patients)
were revised to a THA using an Exeter stem and the cement-in-cement
technique. There were four men and 24 women; their mean age was
80 years (35 to 93). Clinical and radiographic data, as well as
operative notes, were collected prospectively and no patient was
lost to follow-up. Four patients died within two years of surgery. The mean follow
up of the remainder was 70 months (25 to 124). Intra-operatively
there was one proximal perforation, one crack of the
femoral calcar and one acetabular fracture. No femoral components
have required subsequent revision for aseptic loosening or are radiologically loose. Four patients with late complications (14%) have since undergone
surgery (two for a peri-prosthetic fracture, and one each for deep
infection and recurrent dislocation) resulting in an overall major
rate of complication of 35.7%. The cement-in-cement technique provides reliable femoral fixation
in this elderly population and may reduce operating time and rates
of complication. Cite this article:
When fracture of an extensively porous-coated
femoral component occurs, its removal at revision total hip arthroplasty
(THA) may require a femoral osteotomy and the use of a trephine.
The remaining cortical bone after using the trephine may develop
thermally induced necrosis. A retrospective review identified 11
fractured, well-fixed, uncemented, extensively porous-coated femoral
components requiring removal using a trephine with a minimum of
two years of follow-up. The mean time to failure was 4.6 years (1.7 to 9.1, standard
deviation ( A total of four patients (36.4%) required further revision: three
for instability and one for fracture of the revision component.
There was no statistically significant difference in the mean Harris
hip score before implant fracture (82.4; These findings suggest that removal of a fractured, well-fixed,
uncemented, extensively porous-coated femoral component using a
trephine does not compromise subsequent fixation at revision THA
and the patient’s pre-operative level of function can be restored.
However, the loss of proximal bone stock before revision may be associated
with a high rate of dislocation post-operatively. Cite this article:
Mobile-bearing unicompartmental knee replacements
(UKRs) with a flat tibial plateau have not performed well in the
lateral compartment, owing to a high dislocation rate. This led
to the development of the Domed Lateral Oxford UKR (Domed OUKR)
with a biconcave bearing. The aim of this study was to assess the
survival and clinical outcomes of the Domed OUKR in a large patient
cohort in the medium term. We prospectively evaluated 265 consecutive knees with isolated
disease of the lateral compartment and a mean age at surgery of
64 years (32 to 90). At a mean follow-up of four years ( The Domed Lateral OUKR gives good clinical outcomes, low re-operation
and revision rates and a low dislocation rate in patients with isolated
lateral compartmental disease, in the hands of the designer surgeons. Cite this article:
This study reports the results of 38 total hip
arthroplasties (THAs) in 33 patients aged <
50 years, using the
JRI Furlong hydroxyapatite ceramic (HAC)-coated femoral component.
This represents an update of previous reports of the same cohort
at ten and 16 years, which were reported in 2004 and 2009, respectively.
We describe the survival, radiological and functional outcomes at
a mean follow-up of 21 years (17 to 25). Of the surviving 34 THAs,
one underwent femoral revision for peri-prosthetic fracture after
21 years, and one patient (one hip) was lost to follow-up. Using
aseptic loosening as the end-point, 12 hips (31.5%) needed acetabular
revision but none needed femoral revision, demonstrating 100% survival
(95% confidence interval 89 to 100). In young patients with high demands, the Furlong HAC–coated femoral
component gives excellent long-term results. Cite this article:
Total hip replacement for developmental hip dysplasia
is challenging. The anatomical deformities on the acetabular and
femoral sides are difficult to predict. The Crowe classification
is usually used to describe these cases – however, it is not a very
helpful tool for pre-operative planning. Small acetabular components,
acetabular augments, and modular femoral components should be available
for all cases. Regardless of the Crowe classification, the surgeon must
be prepared to perform a femoral osteotomy for shortening, or to
correct rotation, and/or angulation. Cite this article:
The long-term survival of the cementless Spotorno
CLS femoral component in patients aged >
50 years at the time of
arthroplasty was investigated. Survivorship analysis of a consecutive
series of 85 patients (100 hips; under 50 years of age at a mean
follow-up of 18.4 years (16.3 to 20.8)) was performed. The clinical
and radiographic outcomes were satisfactory. The overall rate of
survival of the femoral component was 93.5% (95% confidence interval
(CI), 90.9 to 96.1) after 19 years. Survival with revision for aseptic
loosening as the end point was 95.7% (95% CI 93.6 to 97.8%) at 19
years. This study demonstrates an excellent long-term survival of the
Spotorno CLS femoral component after 16 to 20 years in young patients
undergoing total hip arthroplasty. Cite this article:
We present a comparison of the results of the Oxford unicompartmental knee arthroplasty in patients younger and older than 60 years of age. The ten-year all-cause survival of the <
60 years of age group (52) was 91% (95% confidence interval (CI) 12), while in the ≥ 60 years of age group (512), the figure was 96% (95% CI 3). For the younger group, the mean Hospital for Special Surgery score at ten-year follow-up (n = 21) was 94 of 100, compared with a mean of 86 of 100 for the older group (n = 135). The results show that the Oxford unicompartmental arthroplasty can achieve ten-year results that are comparable to total knee arthroplasty in patients <
60 years of age. We conclude that for patients aged over 50, age should not be considered a contraindication for this procedure.
In this retrospective study, we investigated
the results of revision total hip replacement (THR) using a cemented long-stemmed
Exeter femoral component, with a minimum length of 205 mm in patients
with extensive femoral bone defects. The study included 37 consecutive
patients with a mean age of 76 years (39 to 93) and a mean follow-up
of nine years (5 to 16). A total of 26 patients (70%) had a pre-operative
Endo-Klinik score of 3 or 4. Impaction bone grafting was used in
24 patients (65%). At the time of evaluation, 22 patients (59%)
were still alive and were evaluated clinically and radiologically.
A total of 14 patients died during follow-up and their data were
included until the time of their death. One reconstruction failed
after five years and five months owing to recurrent dislocation:
the hip was converted to an excision arthroplasty. Intra-operative
fractures or fissures were encountered in nine patients (24%), but
none occurred during impaction of the bone graft. Post-operative
peri-prosthetic fractures occurred in two patients (5%); both were
treated with plate fixation. At nine years, survival with the endpoint
of all-cause re-revision was 96.3% (95% CI 76.4 to 99.5); including
re-operations for any reason, it was 80.7% (95% CI 56.3 to 92.3%).
There were no re-revisions for aseptic loosening. The survival of long stem cemented femoral components following
revision THR is satisfactory in a fragile population with extensive
femoral defects. Cite this article:
We report the long-term outcome of a modified second-generation cementing technique for fixation of the acetabular component of total hip replacement. An earlier report has shown the superiority of this technique assessed by improved survival compared with first-generation cementing. The acetabular preparation involved reaming only to the subchondral plate, followed by impaction of the bone in the anchorage holes. Between 1978 and 1993, 287 total hip replacements were undertaken in 244 patients with a mean age of 65.3 years (21 to 90) using a hemispherical Weber acetabular component with this modified technique for cementing and a cemented femoral component. The survival with acetabular revision for aseptic loosening as the endpoint was 99.1% (95% confidence interval 97.9 to 100 after ten years and 85.5% (95% confidence interval 74.7 to 96.2) at 20 years. Apart from contributing to a long-lasting fixation of the component, this technique also preserved bone, facilitating revision surgery when necessary.
A prospective cohort of 222 patients who underwent revision hip replacement between April 2001 and March 2004 was evaluated to determine predictors of function, pain and activity level between one and two years post-operatively, and to define quality of life outcomes using validated patient reported outcome tools. Predictive models were developed and proportional odds regression analyses were performed to identify factors that predict quality of life outcomes at one and two years post-operatively. The dependent outcome variables were the Western Ontario and McMaster Osteoarthritis Index (WOMAC) function and pain scores, and University of California Los Angeles activity scores. The independent variables included patient demographics, operative factors, and objective quality of life parameters, including pre-operative WOMAC, and the Short Form-12 mental component score. There was a significant improvement ( Predictors of quality of life outcomes after revision hip replacement were established. Although some patient-specific and surgery-specific variables were important, age, gender, Charnley class and pre-operative WOMAC function score had the most robust associations with outcome.
We describe the survivorship of the Exeter femoral component in a District General Hospital. Between 1994 and 1996, 230 Exeter Universal cemented femoral components were implanted in 215 patients who were reviewed at a mean of 11.2 years (10 to 13). We used one acetabular implant, the Elite Ogee component, in 218 of the 230 hips. During the period of this study 76 patients (79 hips) died. Of the remaining 139 patients (151 hips), 121 were able to attend for radiological analysis at a minimum of ten years. One patient was lost to follow-up. No femoral component was revised for aseptic loosening. Three hips were revised for deep infection and six acetabular components required revision, four for loosening and two for recurrent dislocation. Taking the ‘worst-case scenario’ including the one patient lost to follow-up, the overall survival rate was 94.4% at 13 years. Our results confirm excellent medium-term results for the Exeter Universal femoral component, implanted in a general setting. The excellent survival of this femoral component, when used in combination with the Ogee acetabular component, suggests that this is a successful pairing.
Juvenile idiopathic arthritis (JIA) is a chronic disease of childhood; it causes joint damage which may require surgical intervention, often in the young adult. The aim of this study was to describe the long-term outcome and survival of hip replacement in a group of adult patients with JIA and to determine predictors of survival for the prosthesis. In this retrospective comparative study patients were identified from the database of a regional specialist adult JIA clinic. This documented a series of 47 hip replacements performed in 25 adult patients with JIA. Surgery was performed at a mean age of 27 years (11 to 47), with a mean follow-up of 19 years (2 to 36). The mean Western Ontario and McMaster Universities osteoarthritis index questionnaire (WOMAC) score at the last follow-up was 53 (19 to 96) and the mean Health Assessment Questionnaire score was 2.25 (0 to 3). The mean pain component of the WOMAC score (60 (20 to 100)) was significantly higher than the mean functional component score (46 (0 to 97)) (p = 0.02). Kaplan-Meier survival analysis revealed a survival probability of 46.6% (95% confidence interval 37.5 to 55.7) at 19 years, with a trend towards enhanced survival with the use of a cemented acetabular component and a cementless femoral component. This was not, however, statistically significant (acetabular component, p = 0.76, femoral component, p = 0.45). Cox’s proportional hazards regression analysis showed an implant survival rate of 54.9% at 19 years at the mean of covariates. Survival of the prosthesis was significantly poorer (p = 0.001) in patients who had been taking long-term corticosteroids and significantly better (p = 0.02) in patients on methotrexate.
We prospectively evaluated the long-term outcome of 158 consecutive patients who underwent revision total hip replacement using uncemented computer-assisted design-computer-assisted manufacture femoral components. There were 97 men and 61 women. Their mean age was 63.1 years (34.6 to 85.9). The mean follow-up was 10.8 years (10 to 12). The mean Oxford, Harris and Western Ontario and McMaster hip scores improved from 41.1, 44.2 and 52.4 pre-operatively to 18.2, 89.3 and 12.3, respectively (p <
0.0001, for each). Six patients required further surgery. The overall survival of the femoral component was 97% (95% confidence interval 94.5 to 99.7). These results are comparable to those of previously published reports for revision total hip replacement using either cemented or uncemented components.
We reviewed 123 second-generation uncemented total hip replacements performed on 115 patients by a single surgeon between 1993 and 1994. The acetabular component used in all cases was a fully porous-coated threaded hemispheric titanium shell (T-Tap ST) with a calcium ion stearate-free, isostatically compression-moulded polyethylene liner. The titanium femoral component used was a Taperloc with a reduced distal stem. No patient was lost to follow-up. Complete clinical and radiological follow-up was obtained for all 123 hips at a mean of 14 years (12 to 16). One femoral component was revised after a fracture, and three acetabular components for aseptic loosening. No additional femoral or acetabular components were judged loose by radiological criteria. Mild proximal femoral osteolysis was identified in two hips and minor acetabular osteolysis was present in four. The mean rate of penetration of the femoral head was 0.036 mm/year (0.000 to 0.227). These findings suggest that refinements in component design may be associated with excellent long-term fixation in cementless primary total hip replacement.
The long-term success of total knee replacement is multifactorial, including factors relating to the patient, the operation and the implant. The purpose of this study was to examine the 20-year survival of the cemented Anatomical Graduated Component (AGC) total knee replacement. Between 1983 and 2004, 7760 of these were carried out at our institution. Of these, 6726 knees which received the non-modular metal-backed tibial component with compression-moulded polyethylene and had a minimum two-year follow-up were available for study. In all, 36 knees were followed over 20 years with a survival of the tibial and femoral components together of 97.8% (95% confidence interval (CI) 0.9851 to 0.9677), with no implants being revised for polyethylene wear or osteolysis. Age >
70 was associated with increased survival (99.6%, 95% CI 99.0 to 99.8) (p <
0.0001) but pre-operative valgus alignment reduced survival (95.1%, 95% CI 90.0 to 97.6) (p = 0.0056). Age <
55 (p = 0.129), pre-operative varus alignment (p = 0.707), osteonecrosis (p = 0.06), rheumatoid arthritis (p = 0.247), and gender (p = 0.666) were not statistically associated with failure. We attribute the success of the AGC implant to its relatively unconstrained articular geometry and the durability of a non-modular metal-backed tibial component with compression moulded polyethylene.
The original forged Müller straight stem (CoNiCr) has shown excellent ten- to 15-year results. We undertook a long-term survival analysis with special emphasis on radiological changes within a 20-year period of follow-up. In all, 165 primary total hip replacements, undertaken between July 1984 and June 1987 were followed prospectively. Clinical follow-up included a standardised clinical examination, and radiological assessment was based on a standardised anteroposterior radiograph of the pelvis, which was studied for the presence of osteolysis, debonding and cortical atrophy. Survival of the stem with revision for any reason was 81% (95% confidence interval (CI), 76 to 86) at 20 years and for aseptic loosening 87% (95% CI, 82 to 90). At the 20-year follow-up, 15 of the surviving 36 stems showed no radiological changes. Debonding (p = 0.005), osteolysis (p = 0.003) and linear polyethylene wear (p = 0.016) were associated with aseptic loosening, whereas cortical atrophy was not associated with failure (p = 0.008). The 20-year results of the Müller straight stem are comparable to those of other successful cemented systems with similar follow-up. Radiological changes are frequently observed, but with a low incidence of progression, and rarely result in revision. Cortical atrophy appears to be an effect of ageing and not a sign of loosening of the femoral component.
We evaluated the outcome of 104 consecutive primary cemented Exeter femoral components in 78 patients (34 men, 44 women) under the age of 40 years who underwent total hip replacement between October 1993 and May 2004. The mean age at operation was 31 years (16 to 39). No hip was lost to follow-up, but three patients (four hips) died. None of the deaths were related to the surgery. At a mean follow-up of 6.2 years (2 to 13), three femoral components had been revised for septic loosening. Using Kaplan-Meier survival analysis, the seven-year survival of the component with revision for any reason as the endpoint was 95.8% (95% confidence interval 86.67 to 98.7). The seven-year survival with aseptic femoral loosening as the endpoint was 100% (95% confidence interval 100). The cemented Exeter femoral component in patients under the age of 40 shows promising medium-term results. As it is available in a wide range of sizes and offsets, we could address all types of anatomical variation in this series without the need for custom-made components.