Static radiostereometric analysis (RSA) using implanted markers is considered the most accurate system for the evaluation of prosthesis migration. By using CT bone models instead of markers, combined with a dynamic RSA system, a non-invasive measurement of joint movement is enabled. This method is more accurate than current 3D skin marker-based tracking systems. The purpose of this study was to evaluate the accuracy of the CT model method for measuring knee joint kinematics in static and dynamic RSA using the marker method as the benchmark. Bone models were created from CT scans, and tantalum beads were implanted into the tibia and femur of eight human cadaver knees. Each specimen was secured in a fixture, static and dynamic stereoradiographs were recorded, and the bone models and marker models were fitted to the stereoradiographs.Objectives
Methods
The aim of the current study was to analyse the effects of posterior cruciate ligament (PCL) deficiency on forces of the posterolateral corner structure and on tibiofemoral (TF) and patellofemoral (PF) contact force under dynamic-loading conditions. A subject-specific knee model was validated using a passive flexion experiment, electromyography data, muscle activation, and previous experimental studies. The simulation was performed on the musculoskeletal models with and without PCL deficiency using a novel force-dependent kinematics method under gait- and squat-loading conditions, followed by probabilistic analysis for material uncertain to be considered.Objectives
Methods
Patellar instability most frequently presents
during adolescence. Congenital and infantile dislocation of the
patella is a distinct entity from adolescent instability and measurable
abnormalities may be present at birth. In the normal patellofemoral
joint an increase in quadriceps angle and patellar height are matched
by an increase in trochlear depth as the joint matures. Adolescent
instability may herald a lifelong condition leading to chronic disability
and arthritis. Restoring normal anatomy by trochleoplasty, tibial tubercle transfer
or medial patellofemoral ligament (MPFL) reconstruction in the young
adult prevents further instability. Although these techniques are
proven in the young adult, they may cause growth arrest and deformity
where the physis is open. A vigorous non-operative strategy may
permit delay of surgery until growth is complete. Where non-operative
treatment has failed a modified MPFL reconstruction may be performed
to maintain stability until physeal closure permits anatomical reconstruction.
If significant growth remains an extraosseous reconstruction of
the MPFL may impart the lowest risk to the physis. If minor growth
remains image intensifier guided placement of femoral intraosseous
fixation may impart a small, but acceptable, risk to the physis. This paper presents and discusses the literature relating to
adolescent instability and provides a framework for management of
these patients. Cite this article:
There have been differing descriptions of the
anterolateral structures of the knee, and not all have been named
or described clearly. The aim of this study was to provide a clear
anatomical interpretation of these structures. We dissected 40 fresh-frozen
cadaveric knees to view the relevant anatomy and identified a consistent
structure in 33 knees (83%); we termed this the anterolateral ligament
of the knee. This structure passes antero-distally from an attachment
proximal and posterior to the lateral femoral epicondyle to the
margin of the lateral tibial plateau, approximately midway between
Gerdy’s tubercle and the head of the fibula. The ligament is superficial
to the lateral (fibular) collateral ligament proximally, from which
it is distinct, and separate from the capsule of the knee. In the
eight knees in which it was measured, we observed that the ligament
was isometric from 0° to 60° of flexion of the knee, then slackened
when the knee flexed further to 90° and was lengthened by imposing
tibial internal rotation. Cite this article:
We conducted a randomised controlled trial to assess the accuracy
of positioning and alignment of the components in total knee arthroplasty
(TKA), comparing those undertaken using standard intramedullary
cutting jigs and those with patient-specific instruments (PSI). There were 64 TKAs in the standard group and 69 in the PSI group. The post-operative hip-knee-ankle (HKA) angle and positioning
was investigated using CT scans. Deviation of >
3° from the planned
position was regarded as an outlier. The operating time, Oxford
Knee Scores (OKS) and Short Form-12 (SF-12) scores were recorded.Aims
Patients and Methods
The aim of this study was to evaluate the risk
factors for dislocation of the bearing after a mobile-bearing Oxford medial
unicompartmental knee replacement (UKR) and to test the hypothesis
that surgical factors, as measured from post-operative radiographs,
are associated with its dislocation From a total of 480 UKRs performed between 2001 and 2012, in
391 patients with a mean age of 66.5 years (45 to 82) (316 female,
75 male), we identified 17 UKRs where bearing dislocation occurred.
The post-operative radiological measurements of the 17 UKRs and
51 matched controls were analysed using conditional logistic regression analysis.
The post-operative radiological measurements included post-operative
change in limb alignment, the position of the femoral and tibial
components, the resection depth of the proximal tibia, and the femoral component-posterior
condyle classification. We concluded that a post-operative decrease in the posterior
tibial slope relative to the pre-operative value was the only significant
determinant of dislocation of the bearing after medial Oxford UKR
(odds ratio 1.881; 95% confidence interval 1.272 to 2.779). A post-operative
posterior tibial slope <
8.45° and a difference between the pre-operative
and post-operative posterior tibial slope of >
2.19° may increase
the risk of dislocation. Cite this article:
The August 2012 Knee Roundup360 looks at: meniscal defects and a polyurethane scaffold; which is best between a single or double bundle; OA of the knee; how to resolve anterior knee pain; whether yoga can be bad for your menisci; metal ions in the serum; whether ACI is any good; the ACL; whether hyaluronic acid delays collagen degradation; and hyaluronan and patellar tendinopathy.
The lateral compartment is predominantly affected
in approximately 10% of patients with osteoarthritis of the knee. The
anatomy, kinematics and loading during movement differ considerably
between medial and lateral compartments of the knee. This in the
main explains the relative protection of the lateral compartment
compared with the medial compartment in the development of osteoarthritis.
The aetiology of lateral compartment osteoarthritis can be idiopathic,
usually affecting the femur, or secondary to trauma commonly affecting
the tibia. Surgical management of lateral compartment osteoarthritis
can include osteotomy, unicompartmental knee replacement and total
knee replacement. This review discusses the biomechanics, pathogenesis
and development of lateral compartment osteoarthritis and its management. Cite this article:
Although it is clear that opening-wedge high
tibial osteotomy (HTO) changes alignment in the coronal plane, which is
its objective, it is not clear how this procedure affects knee kinematics
throughout the range of joint movement and in other planes. Our research question was: how does opening-wedge HTO change
three-dimensional tibiofemoral and patellofemoral kinematics in
loaded flexion in patients with varus deformity?Three-dimensional
kinematics were assessed over 0° to 60° of loaded flexion using
an MRI method before and after opening-wedge HTO in a cohort of
13 men (14 knees). Results obtained from an iterative statistical
model found that at six and 12 months after operation, opening-wedge
HTO caused increased anterior translation of the tibia (mean 2.6
mm, p <
0.001), decreased proximal translation of the patella
(mean –2.2 mm, p <
0.001), decreased patellar spin (mean –1.4°,
p <
0.05), increased patellar tilt (mean 2.2°, p <
0.05) and
changed three other parameters. The mean Western Ontario and McMaster
Universities Arthritis Index improved significantly (p <
0.001)
from 49.6 (standard deviation ( The three-dimensional kinematic changes found may be important
in explaining inconsistency in clinical outcomes, and suggest that
measures in addition to coronal plane alignment should be considered. Cite this article:
The treatment of bone loss in revision total
knee arthroplasty has evolved over the past decade. While the management
of small to moderate sized defects has demonstrated good results
with a variety of traditional techniques (cement and screws, small
metal augments, impaction bone grafting or modular stems), the treatment of
severe defects continues to be problematic. The use of a structural
allograft has declined in recent years due to an increased failure
rate with long-term follow-up and with the introduction of highly
porous metal augments that emphasise biological metaphyseal fixation.
Recently published mid-term results on the use of tantalum cones
in patients with severe bone loss has reaffirmed the success of
this treatment strategy. Cite this article:
This study used CT analysis to determine the rotational alignment of 39 painful and 26 painless fixed-bearing total knee replacements (TKRs) from a cohort of 740 NexGen Legacy posterior-stabilised and cruciate-retaining prostheses implanted between May 1996 and August 2003. The mean rotation of the tibial component was 4.3° of internal rotation (25.4° internal to 13.9° external rotation) in the painful group and 2.2° of external rotation (8.5° internal to 18.2° external rotation) in the painfree group (p = 0.024). In the painful group 17 tibial components were internally rotated more than 9° compared with none in the painfree group (p <
0.001). Additionally, six femoral components in the painful group were internally rotated more than 6° compared with none in the painfree group (p = 0.017). External rotational errors were not found to be associated with pain. Overall, 22 (56.4%) of the painful TKRs had internal rotational errors involving the femoral, the tibial or both components. It is estimated that at least 4.6% of all our TKRs have been implanted with significant internal rotational errors.
We retrospectively reviewed the hospital records of 68 patients who had been referred with an injury to the posterolateral corner of the knee to a specialist knee surgeon between 2005 and 2009. These injuries were diagnosed based on a combination of clinical testing and imaging and arthroscopy when available. In all, 51 patients (75%) presented within 24 hours of their injury with a mean presentation at eight days (0 to 20) after the injury. A total of 63 patients (93%) had instability of the knee at presentation. There was a mean delay to the diagnosis of injury to the posterolateral corner of 30 months (0 to 420) from the time of injury. In all, the injuries in 49 patients (72%) were not identified at the time of the initial presentation, with the injury to the posterolateral corner only recognised in those patients who had severe multiple ligamentous injuries. The correct diagnosis, including injury to the posterolateral corner, had only been made in 34 patients (50%) at time of referral to a specialist knee clinic. MRI correctly identified 14 of 15 injuries when performed acutely (within 12 weeks of injury), but this was the case in only four of 15 patients in whom it was performed more than 12 weeks after the injury. Our study highlights a need for greater diligence in the examination and investigation of acute ligamentous injuries at the knee with symptoms of instability, in order to avoid failure to identify the true extent of the injury at the time when anatomical repair is most straightforward.
Mobile-bearing posterior-stabilised knee replacements have been developed as an alternative to the standard fixed- and mobile-bearing designs. However, little is known about the We conclude that mobile-bearing posterior-stabilised knee replacements reproduce internal rotation of the tibia more closely during flexion than fixed-bearing posterior-stabilised designs. Furthermore, mobile-bearing posterior-stabilised knee replacements demonstrate a unidirectional movement which occurs at the upper and lower sides of the mobile insert. The femur moves in an anteroposterior direction on the upper surface of the insert, whereas the movement at the lower surface is pure rotation. Such unidirectional movement may lead to less wear when compared with the multidirectional movement seen in fixed-bearing posterior-stabilised knee replacements, and should be associated with more evenly applied cam-post stresses.
Component malalignment can be associated with
pain following total knee replacement (TKR). Using MRI, we reviewed
50 patients with painful TKRs and compared them with a group of
16 asymptomatic controls to determine the feasibility of using MRI
in evaluating the rotational alignment of the components. Using
the additional soft-tissue detail provided by this modality, we
also evaluated the extent of synovitis within these two groups.
Angular measurements were based on the femoral transepicondylar
axis and tibial tubercle. Between two observers, there was very
high interobserver agreement in the measurements of all values.
Patients with painful TKRs demonstrated statistically significant
relative internal rotation of the femoral component (p = 0.030).
There was relative internal rotation of the tibial to femoral component
and combined excessive internal rotation of the components in symptomatic
knees, although these results were significant only with one of
the observers (p = 0.031). There was a statistically significant
association between the presence and severity of synovitis and painful
TKR (p <
0.001). MRI is an effective modality in evaluating component rotational
alignment.
Our goal was to evaluate the use of Ponseti’s
method, with minor adaptations, in the treatment of idiopathic clubfeet
presenting in children between five and ten years of age. A retrospective
review was performed in 36 children (55 feet) with a mean age of
7.4 years (5 to 10), supplemented by digital images and video recordings
of gait. There were 19 males and 17 females. The mean follow-up
was 31.5 months (24 to 40). The mean number of casts was 9.5 (6
to 11), and all children required surgery, including a percutaneous
tenotomy or open tendo Achillis lengthening (49%), posterior release
(34.5%), posterior medial soft-tissue release (14.5%), or soft-tissue
release combined with an osteotomy (2%). The mean dorsiflexion of
the ankle was 9° (0° to 15°). Forefoot alignment was neutral in
28 feet (51%) or adducted (<
10°) in 20 feet (36%), >
10° in
seven feet (13%). Hindfoot alignment was neutral or mild valgus
in 26 feet (47%), mild varus (<
10°) in 19 feet (35%), and varus
(>
10°) in ten feet (18%). Heel–toe gait was present in 38 feet
(86%), and 12 (28%) exhibited weight-bearing on the lateral border
(out of a total of 44 feet with gait videos available for analysis).
Overt relapse was identified in nine feet (16%, six children). The
parents of 27 children (75%) were completely satisfied. A plantigrade foot was achieved in 46 feet (84%) without an extensive
soft-tissue release or bony procedure, although under-correction
was common, and longer-term follow-up will be required to assess
the outcome. Cite this article:
The Oxford medial unicompartmental knee replacement was designed to reproduce normal mobility and forces in the knee, but its detailed effect on the patellofemoral joint has not been studied previously. We have examined the effect on patellofemoral mechanics of the knee by simultaneously measuring patellofemoral kinematics and forces in 11 cadaver knee specimens in a supine leg-extension rig. Comparison was made between the intact normal knee and sequential unicompartmental and total knee replacement. Following medial mobile-bearing unicompartmental replacement in 11 knees, patellofemoral kinematics and forces did not change significantly from those in the intact knee across any measured parameter. In contrast, following posterior cruciate ligament retaining total knee replacement in eight knees, there were significant changes in patellofemoral movement and forces. The Oxford device appears to produce near-normal patellofemoral mechanics, which may partly explain the low incidence of complications with the extensor mechanism associated with clinical use.
Injury to the anterior cruciate ligament (ACL)
is one of the most devastating and frequent injuries of the knee. Surgical
reconstruction is the current standard of care for treatment of
ACL injuries in active patients. The widespread adoption of ACL
reconstruction over primary repair was based on early perception
of the limited healing capacity of the ACL. Although the majority
of ACL reconstruction surgeries successfully restore gross joint stability,
post-traumatic osteoarthritis is commonplace following these injuries,
even with ACL reconstruction. The development of new techniques
to limit the long-term clinical sequelae associated with ACL reconstruction
has been the main focus of research over the past decades. The improved
knowledge of healing, along with recent advances in tissue engineering
and regenerative medicine, has resulted in the discovery of novel
biologically augmented ACL-repair techniques that have satisfactory
outcomes in preclinical studies. This instructional review provides
a summary of the latest advances made in ACL repair. Cite this article:
Instability in flexion after total knee replacement
(TKR) typically occurs as a result of mismatched flexion and extension
gaps. The goals of this study were to identify factors leading to
instability in flexion, the degree of correction, determined radiologically,
required at revision surgery, and the subsequent clinical outcomes.
Between 2000 and 2010, 60 TKRs in 60 patients underwent revision
for instability in flexion associated with well-fixed components.
There were 33 women (55%) and 27 men (45%); their mean age was 65
years (43 to 82). Radiological measurements and the Knee Society
score (KSS) were used to assess outcome after revision surgery.
The mean follow-up was 3.6 years (2 to 9.8). Decreased condylar
offset (p <
0.001), distalisation of the joint line (p <
0.001)
and increased posterior tibial slope (p <
0.001) contributed
to instability in flexion and required correction at revision to regain
stability. The combined mean correction of posterior condylar offset
and joint line resection was 9.5 mm, and a mean of 5° of posterior
tibial slope was removed. At the most recent follow-up, there was
a significant improvement in the mean KSS for the knee and function
(both p <
0.001), no patient reported instability and no patient
underwent further surgery for instability. The following step-wise approach is recommended: reduction of
tibial slope, correction of malalignment, and improvement of condylar
offset. Additional joint line elevation is needed if the above steps
do not equalise the flexion and extension gaps. Cite this article:
Excessive foot pronation has been considered to be related to anterior knee pain. We undertook a prospective study to test the hypothesis that exertional anterior knee pain is related to the static and dynamic parameters of foot pronation. Two weeks before beginning basic training lasting for 14 weeks, 473 infantry recruits were enrolled into the study and underwent two-dimensional measurement of their subtalar joint displacement angle during walking on a treadmill. Of the 405 soldiers who finished the training 61 (15%) developed exertional anterior knee pain. No consistent association was found between the incidence of anterior knee pain and any of the parameters of foot pronation. While a statistically significant association was found between anterior knee pain and pronation velocity (left foot, p = 0.05; right foot, p = 0.007), the relationship was contradictory for the right and left foot. Our study does not support the hypothesis that anterior knee pain is related to excessive foot pronation.