We compared the
1. When cortisone is administered to rabbits there is early rapid resorption of bone and a partial inhibition of new bone formation. After a few days the effect becomes less obvious, so that, if observations are made at later stages, the results may be ascribed then to simple inhibition of bone growth. 2. The effect of
A review is presented of early results of a consecutive series of 45 bucket-handle or flap tears of a meniscus treated by closed partial meniscectomy over a two-year period. The mean operating time was 45 minutes. All patients were treated in hospital and 39 of 41 assessable patients were discharged within 24 hours of operation. The mean time to return to work was 12.9 days. One patient later required arthrotomy to excise a residual nubbin of meniscal tissue which had been incompletely removed and caused pain. At follow-up at a mean of eight months after operation only one patient had temporary
A method is described which produces an isolated Grade II injury in the medial collateral ligament of the sheep's knee. The untreated injury was followed in 32 animals for up to six weeks. Histology revealed progressive healing of the lesions by a cellular response mediated by fibrocytes rather than by the classically described inflammatory response.
Articular cartilage from the femoral heads of 27 patients having an arthroplasty for subcapital fracture was studied, and its
From 1970 to 1980 cemented metal-on-plastic total hip replacement was performed on 799 hips with primary osteoarthritis using one surgical technique. At the 10- to 20-year follow-up there had been 97 revisions for
Clinical experience of impaction bone grafting for revision knee arthroplasty is limited, with initial stability of the tibial tray emerging as a major concern. The length of the stem and its diameter have been altered to improve stability. Our aim was to investigate the effect of the type of stem, support of the rim and graft impaction on early stability of the tray. We developed a system for impaction grafting of trays which we used with morsellised bone in artificial tibiae. Trays with short, long thick or long thin stems were implanted, with or without support of the rim. They were cyclically loaded while measuring relative movement. Long-stemmed trays migrated 4.5 times less than short-stemmed trays, regardless of diameter. Those with support migrated 2.8 times less than those without. The migration of short-stemmed trays correlated inversely with the density of the impacted groups. That of impaction-grafted tibial trays was in the range reported for uncemented primary trays. Movements of short-stemmed trays without cortical support were largest and sensitive to the degree of compaction of the graft. If support of the rim was sufficient or a long stem was used, impacted morsellised bone graft achieved adequate initial stability.
The objective of this study was to determine if a synthetic bone
substitute would provide results similar to bone from osteoporotic
femoral heads during Pushout studies were performed with the dynamic hip screw (DHS)
and the DHS Blade in both cadaveric femoral heads and artificial
bone substitutes in the form of polyurethane foam blocks of different
density. The pushout studies were performed as a means of comparing
the force displacement curves produced by each implant within each
material.Introduction
Methods
Coloured bone cements have been introduced to
make the removal of cement debris easier at the time of primary and
revision joint replacement. We evaluated the physical, mechanical
and pharmacological effects of adding methylene blue to bone cement
with or without antibiotics (gentamicin, vancomycin or both). The
addition of methylene blue to plain cement significantly decreased
its mean setting time (570 seconds (
Bone-ACL-bone allograft transplantation is a potential solution to the problem of reconstruction of the anterior cruciate ligament (ACL), but sterilisation by gamma irradiation or ethylene oxide causes degradation of the graft. We have studied the biomechanical and histological properties of deep-frozen canine bone-ACL-bone allografts sterilised by gamma irradiation (2.5 Mrad) under argon gas protection. Particular attention was paid to their collagen structure and neuroanatomy compared with those of non-irradiated allografts. We used 60 skeletally mature foxhounds. In 30 animals one ACL was replaced by an irradiated allograft and in the other 30 a non-irradiated graft was used. In both groups the graft was augmented by a Kennedy Ligament Augmentation Device. Examination of the allografts at 3, 6 and 12 months after implantation included
1. Some of the factors responsible for vertebral growth have been discussed. 2. In kyphosis and scoliosis it is important to prevent progressive epiphysial damage. 3. In selected cases of progressive scoliosis, epiphysiodesis on the convex side will correct unequal growth. 4. The technique of spinal epiphysiodesis is described and the results that may be expected are discussed.
The effect of storage at sub-zero temperatures and subsequent thawing was investigated in dissected muscles, tendons, limbs and spines. Freezing caused a noticeable shortening of muscles which when thawed could easily be elongated; the same effects, though less pronounced, were observed with tendons. During freezing, myotomy or tenotomy led to the development of a striking deformity owing to unopposed shortening of the opposing muscles. After thawing, all frozen specimens containing muscles and joints showed an increased range of passive movements, easily demonstrable by mild tensile forces.
The case reports of four patients with breakage of the intramedullary nail of the femur are presented. In all four patients the nail broke after consolidation of the fracture of the femoral shaft. All the nails broke at the same place: the junction between the round cross-section and the cloverleaf cross-section.
Cadaveric knees replaced with the Geomedic, ICLH, Marmor and Total Condylar prostheses were tested in axial compression, in rotation and in hyperextension in order to observe the strength of fixation of the tibial components. In axial compression the strengths at failure varied widely, both with any one prosthesis and between prostheses. This is attributed largely to the strength of the cancellous bone of the tibia, which was measured in each case and also varied widely. Three natural knees failed at loads of 7300, 7600 and 8300 newtons respectively, whereas the strengths of replaced knees ranged from 3000 to 15750 newtons. At least one example of each design failed at less than 7300 newtons, suggesting little or no reserve of strength. The strength of fixation was greater when the tibial prosthesis was large enough to rest on the whole cross-section of the tibia. In rotation the three prostheses embodying rollers in troughs were stiffer than the Marmor which had a nearly flat tibial-bearing surface. The presence or absence of the cruciate ligaments had a negligible effect on torsional stiffness. In hyperextension, knees replaced with the ICLH, Marmor and Total Condylar prostheses failed by rupture of the posterior capsule at moments of about 60 newton-metres, compared with about 100 for natural knees. With the Marmor prosthesis the anterior cruciate ligament was avulsed at about 20 newton-metres compared with about 75 in natural knees, suggesting that in this respect the retention of the cruciate ligaments contributes little. None of the four knees tested after inserting a Geomedic prosthesis showed strengths as high as those replaced with the other three designs.
This study investigated the quality and quantity of healing of a bone defect following intramedullary reaming undertaken by two fundamentally different systems; conventional, using non-irrigated, multiple passes; or suction/irrigation, using one pass. The result of a measured re-implantation of the product of reaming was examined in one additional group. We used 24 Swiss mountain sheep with a mean tibial medullary canal diameter between 8 mm and 9 mm. An 8 mm ‘napkin ring’ defect was created at the mid-diaphysis. The wound was either surgically closed or occluded. The medullary cavity was then reamed to 11 mm. The Reamer/Irrigator/Aspirator (RIA) System was used for the reaming procedure in groups A (RIA and autofilling) and B (RIA, collected reamings filled up), whereas reaming in group C (Synream and autofilling) was performed with the Synream System. The defect was allowed to auto-fill with reamings in groups A and C, but in group B, the defect was surgically filled with collected reamings. The tibia was then stabilised with a solid locking Unreamed Humerus Nail (UHN), 9.5 mm in diameter. The animals were killed after six weeks. After the implants were removed, measurements were taken to assess the stiffness, strength and callus formation at the site of the defect. There was no significant difference between healing after conventional reaming or suction/irrigation reaming. A significant improvement in the quality of the callus was demonstrated by surgically placing captured reamings into the defect using a graft harvesting system attached to the aspirator device. This was confirmed by biomechanical testing of stiffness and strength. This study suggests it could be beneficial to fill cortical defects with reaming particles in clinical practice, if feasible.
Differential strain has been proposed to be a causative factor in failure of the supraspinatus tendon. We quantified the strains on the joint and bursal sides of the supraspinatus tendon with increasing load (20 to 200 N) and during 120° of glenohumeral abduction with a constant tensile load (20 to 100 N). We tested ten fresh frozen cadaver shoulders on a purpose-built rig. Differential variable reluctance extensometers allowed calculation of the strain. Static loading to 100 N or more increased strains on the joint side significantly more than on the bursal side. During glenohumeral abduction an increasing and significant difference in strain was measured between the joint and bursal sides of the supraspinatus tendon, which reached a maximum of 10.6% at abduction of 120°. The joint side strain of 7.5% reached values which were previously reported to cause failure. Differential strain causes shearing between the layers of the supraspinatus tendon, which may contribute to the propagation of intratendinous defects that are initiated by high joint side strains.