Lately, concerns have arisen following the use of large metal-on-metal bearings in hip replacements owing to reports of catastrophic soft-tissue reactions resulting in implant failure and associated complications. This review examines the literature and contemporary presentations on current clinical dilemmas in metal-on-metal hip replacement.
Pseudotumours are a rare complication of hip resurfacing. They are thought to be a response to metal debris which may be caused by edge loading due to poor orientation of the acetabular component. Our aim was to determine the optimal acetabular orientation to minimise the risk of pseudotumour formation. We matched 31 hip resurfacings revised for pseudotumour formation with 58 controls who had a satisfactory outcome from this procedure. The radiographic inclination and anteversion angles of the acetabular component were measured on anteroposterior radiographs of the pelvis using Einzel-Bild-Roentgen-Analyse software. The mean inclination angle (47°, 10° to 81°) and anteversion angle (14°, 4° to 34°) of the pseudotumour cases were the same (p = 0.8, p = 0.2) as the controls, 46° (29° to 60°) and 16° (4° to 30°) respectively, but the variation was greater. Assuming an accuracy of implantation of ± 10° about a target position, the optimal radiographic position was found to be approximately 45° of inclination and 20° of anteversion. The incidence of pseudotumours inside the zone was four times lower (p = 0.007) than outside the zone. In order to minimise the risk of pseudotumour formation we recommend that surgeons implant the acetabular component at an inclination of 45° (± 10) and anteversion of 20° (± 10) on post-operative radiographs. Because of differences between the radiographic and the operative angles, this may be best achieved by aiming for an inclination of 40° and an anteversion of 25°.
We report a 12- to 15-year implant survival assessment
of a prospective single-surgeon series of Birmingham Hip Resurfacings
(BHRs). The earliest 1000 consecutive BHRs including 288 women (335
hips) and 598 men (665 hips) of all ages and diagnoses with no exclusions
were prospectively followed-up with postal questionnaires, of whom
the first 402 BHRs (350 patients) also had clinical and radiological
review. Mean follow-up was 13.7 years (12.3 to 15.3). In total, 59 patients
(68 hips) died 0.7 to 12.6 years following surgery from unrelated
causes. There were 38 revisions, 0.1 to 13.9 years (median 8.7)
following operation, including 17 femoral failures (1.7%) and seven
each of infections, soft-tissue reactions and other causes. With
revision for any reason as the end-point Kaplan–Meier survival analysis
showed 97.4% (95% confidence interval (CI) 96.9 to 97.9) and 95.8%
(95% CI 95.1 to 96.5) survival at ten and 15 years, respectively.
Radiological assessment showed 11 (3.5%) femoral and 13 (4.1%) acetabular
radiolucencies which were not deemed failures and one radiological
femoral failure (0.3%). Our study shows that the performance of the BHR continues to
be good at 12- to 15-year follow-up. Men have better implant survival
(98.0%; 95% CI 97.4 to 98.6) at 15 years than women (91.5%; 95%
CI 89.8 to 93.2), and women <
60 years (90.5%; 95% CI 88.3 to
92.7) fare worse than others. Hip dysplasia and osteonecrosis are
risk factors for failure. Patients under 50 years with osteoarthritis
fare best (99.4%; 95% CI 98.8 to 100 survival at 15 years), with
no failures in men in this group. Cite this article:
We report 17 patients (20 hips) in whom metal-on-metal resurfacing had been performed and who presented with various symptoms and a soft-tissue mass which we termed a pseudotumour. Each patient underwent plain radiography and in some, CT, MRI and ultrasonography were also performed. In addition, histological examination of available samples was undertaken. All the patients were women and their presentation was variable. The most common symptom was discomfort in the region of the hip. Other symptoms included spontaneous dislocation, nerve palsy, a noticeable mass or a rash. The common histological features were extensive necrosis and lymphocytic infiltration. To date, 13 of the 20 hips have required revision to a conventional hip replacement. Two are awaiting revision. We estimate that approximately 1% of patients who have a metal-on-metal resurfacing develop a pseudotumour within five years. The cause is unknown and is probably multifactorial. There may be a toxic reaction to an excess of particulate metal wear debris or a hypersensitivity reaction to a normal amount of metal debris. We are concerned that with time the incidence of these pseudotumours may increase. Further investigation is required to define their cause.
Metal-on-metal hip resurfacing is commonly performed for osteoarthritis in young active patients. We have observed cystic or solid masses, which we have called inflammatory pseudotumours, arising around these devices. They may cause soft-tissue destruction with severe symptoms and a poor outcome after revision surgery. The aim of this study was to determine the incidence of and risk factors for pseudotumours that are serious enough to require revision surgery. Since 1999, 1419 metal-on-metal hip resurfacings have been implanted by our group in 1224 patients; 1.8% of the patients had a revision for pseudotumour. In this series the Kaplan-Meier cumulative revision rate for pseudotumour increased progressively with time. At eight years, in all patients, it was 4% (95% confidence interval (CI) 2.2 to 5.8). Factors significantly associated with an increase in revision rate were female gender (p <
0.001), age under 40 (p = 0.003), small components (p = 0.003), and dysplasia (p = 0.019), whereas implant type was not (p = 0.156). These factors were inter-related, however, and on fitting a Cox proportional hazard model only gender (p = 0.002) and age (p = 0.024) had a significant independent influence on revision rate; size nearly reached significance (p = 0.08). Subdividing the cohort according to significant factors, we found that the revision rate for pseudotumours in men was 0.5% (95% CI 0 to 1.1) at eight years wheras in women over 40 years old it was 6% (95% CI 2.3 to 10.1) at eight years and in women under 40 years it was 13.1% at six years (95% CI 0 to 27) (p <
0.001). We recommend that resurfacings are undertaken with caution in women, particularly those under 40 years of age but they remain a good option in young men. Further work is required to understand the aetiology of pseudotumours so that this complication can be avoided.
Hip simulators have been used for ten years to determine the tribological performance of large-head metal-on-metal devices using traditional test conditions. However, the hip simulator protocols were originally developed to test metal-on-polyethylene devices. We have used patient activity data to develop a more physiologically relevant test protocol for metal-on-metal devices. This includes stop/start motion, a more appropriate walking frequency, and alternating kinetic and kinematic profiles. There has been considerable discussion about the effect of heat treatments on the wear of metal-on-metal cobalt chromium molybdenum (CoCrMo) devices. Clinical studies have shown a higher rate of wear, levels of metal ions and rates of failure for the heat-treated metal compared to the as-cast metal CoCrMo devices. However, hip simulator studies in vitro under traditional testing conditions have thus far not been able to demonstrate a difference between the wear performance of these implants. Using a physiologically relevant test protocol, we have shown that heat treatment of metal-on-metal CoCrMo devices adversely affects their wear performance and generates significantly higher wear rates and levels of metal ions than in as-cast metal implants.
Femoroacetabular impingement (FAI) is commonly
associated with early hip arthritis. We reviewed our series of 1300
hip resurfacing procedures. More than 90% of our male patients,
with an average age of 53 years, had cam impingement lesions. In
this condition, there are anterior femoral neck osteophytes, and
a retroverted femoral head on a normally anteverted neck. It is
postulated that FAI results in collision of the anterior neck of
the femur against the rim of the acetabulum, causing damage to the
acetabular labrum and articular cartilage, resulting in osteoarthritis.
Early treatment of FAI involves arthroscopic or open removal of
bone from the anterior femoral neck, as well as repair or removal
of labral tears. However, once osteoarthritis has developed, hip
replacement or hip resurfacing is indicated. Hip resurfacing can
re-orient the head and re-shape the neck. This helps to restore
normal biomechanics to the hip, eliminate FAI, and improve range
of motion. Since many younger men with hip arthritis have FAI, and
are also considered the best candidates for hip resurfacing, it
is evident that resurfacing has a role in these patients.
Despite the worldwide usage of the cemented Contemporary
acetabular component (Stryker), no published data are available
regarding its use in patients aged <
50 years. We undertook a
mid- to long-term follow-up study, including all consecutive patients
aged
<
50 years who underwent a primary total hip replacement using
the Contemporary acetabular component with the Exeter cemented stem
between January 1999 and January 2006. There were 152 hips in 126
patients, 61 men and 65 women, mean age at surgery 37.6 years (16
to 49 yrs). One patient was lost to follow-up. Mean clinical follow-up of all implants was 7.6 years (0.9 to
12.0). All clinical questionnaire scores, including Harris hip score,
Oxford hip score and several visual analogue scales, were found
to have improved. The eight year survivorship of all acetabular
components for the endpoints revision for any reason or revision
for aseptic loosening was 94.4% (95% confidence interval (CI) 89.2
to 97.2) and 96.4% (95% CI 91.6 to 98.5), respectively. Radiological follow-up
was complete for 146 implants. The eight year survival for the endpoint
radiological loosening was 93.1% (95% CI 86.2 to 96.6). Three surviving
implants were considered radiologically loose but were asymptomatic.
The presence of acetabular osteolysis (n = 17, 11.8%) and radiolucent
lines (n = 20, 13.9%) in the 144 surviving cups indicates a need
for continued observation in the second decade of follow-up in order
to observe their influence on long-term survival. The clinical and radiological data resulting in a ten-year survival
rate >
90% in young patients support the use of the Contemporary
acetabular component in this specific patient group. Cite this article:
In this paper, we will consider the current role
of metal-on-metal bearings by looking at three subtypes of MoM hip
arthroplasty separately: Hip resurfacing, large head (>
36 mm) MoM
THA and MoM THA with traditional femoral head sizes.
The purpose of this study was to compare the
amount of acetabular bone removed during hip resurfacing (HR) and cementless
total hip replacement (THR), after controlling for the diameter
of the patient’s native femoral head. Based on a power analysis,
64 consecutive patients (68 hips) undergoing HR or THR were prospectively
enrolled in the study. The following data were recorded intra-operatively:
the diameter of the native femoral head, the largest reamer used,
the final size of the acetabular component, the size of the prosthetic
femoral head and whether a decision was made to increase the size
of the acetabular component in order to accommodate a larger prosthetic femoral
head. Results were compared using two-sided, independent samples
Student’s
The June 2012 Hip &
Pelvis Roundup360 looks at: whether metal-on-metal is really such a disaster; resurfacings with unexplained pain; large heads and high ion levels; hip arthroscopy for FAI; the inaccuracy of clinical tests for impingement; arthroscopic lengthening of iliopsoas; the OA hip; the injured hamstring – football’s most common injury; an algorithm for hip fracture surgery; and sparing piriformis at THR.
Plasma levels of cobalt and chromium ions and
Metal Artefact Reduction Sequence (MARS)-MRI scans were performed
on patients with 209 consecutive, unilateral, symptomatic metal-on-metal
(MoM) hip arthroplasties. There was wide variation in plasma cobalt
and chromium levels, and MARS-MRI scans were positive for adverse reaction
to metal debris (ARMD) in 84 hips (40%). There was a significant
difference in the median plasma cobalt and chromium levels between
those with positive and negative MARS-MRI scans (p <
0.001).
Compared with MARS-MRI as the potential reference standard for the
diagnosis of ARMD, the sensitivity of metal ion analysis for cobalt
or chromium with a cut-off of >
7 µg/l was 57%. The specificity was
65%, positive predictive value was 52% and the negative predictive
value was 69% in symptomatic patients. A lowered threshold of >
3.5 µg/l for cobalt and chromium ion levels improved the sensitivity
and negative predictive value to 86% and 74% but at the expense
of specificity (27%) and positive predictive value (44%). Metal ion analysis is not recommended as a sole indirect screening
test in the surveillance of symptomatic patients with a MoM arthroplasty.
The investigating clinicians should have a low threshold for obtaining
cross-sectional imaging in these patients, even in the presence
of low plasma metal ion levels.
Pseudotumours (abnormal peri-prosthetic soft-tissue reactions)
following metal-on-metal hip resurfacing arthroplasty (MoMHRA) have
been associated with elevated metal ion levels, suggesting that
excessive wear may occur due to edge-loading of these MoM implants.
This study aimed to quantify The duration and magnitude of edge-loading Objectives
Methods
We report the findings of an independent review
of 230 consecutive Birmingham hip resurfacings (BHRs) in 213 patients
(230 hips) at a mean follow-up of 10.4 years (9.6 to 11.7). A total
of 11 hips underwent revision; six patients (six hips) died from
unrelated causes; and 13 patients (16 hips) were lost to follow-up.
The survival rate for the whole cohort was 94.5% (95% confidence
interval (CI) 90.1 to 96.9). The survival rate in women was 89.1%
(95% CI 79.2 to 94.4) and in men was 97.5% (95% CI 92.4 to 99.2).
Women were 1.4 times more likely to suffer failure than men. For
each millimetre increase in component size there was a 19% lower
chance of a failure. The mean Oxford hip score was 45.0 (median
47.0, 28 to 48); mean University of California, Los Angeles activity
score was 7.4 (median 8.0, 3 to 9); mean patient satisfaction score
was 1.4 (median 1.0, 0 to 9). A total of eight hips had lysis in
the femoral neck and two hips had acetabular lysis. One hip had
progressive radiological changes around the peg of the femoral component.
There was no evidence of progressive neck narrowing between five
and ten years. Our results confirm that BHR provides good functional outcome
and durability for men, at a mean follow-up of ten years. We are
now reluctant to undertake hip resurfacing in women with this implant.
Endoprosthetic replacement of the pelvis is one of the most challenging types of limb-salvage surgery, with a high rate of complications. In an attempt to reduce this and build greater versatility into the reconstruction process, a new type of pelvic endoprosthesis was developed in 2003, based on the old McKee-Farrar prosthesis. This study reviews the outcomes in 27 patients who had an ice-cream cone pelvic prosthesis inserted at two different specialist bone tumour centres in the United Kingdom over the past six years. The indications for treatment included primary bone tumours in 19 patients and metastatic disease in two, and six implants were inserted following failure of a previous pelvic reconstruction. Most of the patients had a P2+P3 resection as classified by Enneking, and most had resection of the ilium above the sciatic notch. The mean age of the patients at operation was 49 years (13 to 81). Complications occurred in ten patients (37.0%), of which dislocation was the most common, affecting four patients (14.8%). A total of three patients (11.1%) developed a deep infection around the prosthesis but all were successfully controlled by early intervention and two patients (7.4%) developed a local recurrence, at the same time as widespread metastases appeared. In one patient the prosthesis was removed for severe pain. This method of treatment is still associated with high morbidity, but early results are promising. Complications are diminishing with increasing experience.
It is accepted that resurfacing hip replacement
preserves the bone mineral density (BMD) of the femur better than total
hip replacement (THR). However, no studies have investigated any
possible difference on the acetabular side. Between April 2007 and March 2009, 39 patients were randomised
into two groups to receive either a resurfacing or a THR and were
followed for two years. One patient’s resurfacing subsequently failed,
leaving 19 patients in each group. Resurfaced replacements maintained proximal femoral BMD and,
compared with THR, had an increased bone mineral density in Gruen
zones 2, 3, 6, and particularly zone 7, with a gain of 7.5% (95%
confidence interval (CI) 2.6 to 12.5) compared with a loss of 14.6%
(95% CI 7.6 to 21.6). Resurfacing replacements maintained the BMD
of the medial femoral neck and increased that in the lateral zones
between 12.8% (95% CI 4.3 to 21.4) and 25.9% (95% CI 7.1 to 44.6). On the acetabular side, BMD was similar in every zone at each
point in time. The mean BMD of all acetabular regions in the resurfaced
group was reduced to 96.2% (95% CI 93.7 to 98.6) and for the total
hip replacement group to 97.6% (95% CI 93.7 to 101.5) (p = 0.4863).
A mean total loss of 3.7% (95% CI 1.0 to 6.5) and 4.9% (95% CI 0.8
to 9.0) of BMD was found above the acetabular component in W1 and
10.2% (95% CI 0.9 to 19.4) and 9.1% (95% CI 3.8 to 14.4) medial
to the implant in W2 for resurfaced replacements and THRs respectively.
Resurfacing resulted in a mean loss of BMD of 6.7% (95% CI 0.7 to
12.7) in W3 but the BMD inferior to the acetabular component was
maintained in both groups. These results suggest that the ability of a resurfacing hip replacement
to preserve BMD only applies to the femoral side.
There is widespread concern regarding the incidence of adverse soft-tissue reactions after metal-on-metal (MoM) hip replacement. Recent National Joint Registry data have shown clear differences in the rates of failure of different designs of hip resurfacing. Our aim was to update the failure rates related to metal debris for the Articular Surface Replacement (ASR). A total of 505 of these were implanted. Kaplan-Meier analysis showed a failure rate of 25% at six years for the ASR resurfacing and of 48.8% for the ASR total hip replacement (THR). Of 257 patients with a minimum follow-up of two years, 67 (26.1%) had a serum cobalt concentration which was greater than 7 μg/l. Co-ordinate measuring machine analysis of revised components showed that all patients suffering adverse tissue reactions in the resurfacing group had abnormal wear of the bearing surfaces. Six THR patients had relatively low rates of articular wear, but were found to have considerable damage at the trunion-taper interface. Our results suggest that wear at the modular junction is an important factor in the development of adverse tissue reactions after implantation of a large-diameter MoM THR.