Advertisement for orthosearch.org.uk
Results 41 - 60 of 335
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 73-B, Issue 3 | Pages 501 - 505
1 May 1991
Kirkeby O

Revascularisation of syngeneic and allogeneic intramuscular bone grafts have been studied using radioactive microspheres to measure the ingrowth of blood vessels. New bone formation and resorption were measured by 85strontium uptake and by graft weight reduction. Revascularisation, and mineralisation rate were significantly higher in syngeneic grafts than in allogeneic grafts at two, three and six weeks after implantation. The syngeneic grafts lost weight faster indicating that the allogeneic grafts resorbed more slowly. The ingrowth of new vessels is impaired in allogeneic bone, and this probably inhibits the rate of bone formation and resorption of the grafts.


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 4 | Pages 731 - 736
1 Jul 1998
Maeda A Horibe S Matsumoto N Nakamura N Mae T Shino K

We examined solvent-dried, gamma-irradiated (SD-R) allografts and fresh-frozen (FF) allografts mechanically and morphologically. Before transplantation, FF grafts were more than six times stronger than SD-R grafts. After four weeks, the tensile strength was about the same in both groups. At 24 weeks only collagen fibrils of small diameter were observed in the SD-R grafts while in FF grafts fibrils of small and intermediate diameter were seen. Clinically, we suggest that SD-R grafts could be used as a favourable alternative to FF grafts if care was taken regarding their initial mechanical weakness.


The Journal of Bone & Joint Surgery British Volume
Vol. 47-B, Issue 1 | Pages 140 - 144
1 Feb 1965
Stevens J Ray RD

1. The radiographs of paired living and dead rat tibiae, obtained in an experiment previously reported, have been examined by densitometry.

2. The dead bone became progressively less dense than the living bone as the duration of the implantation increased.

3. The change in density was related to the quantity, but not to the quality, of the bone tissue examined.


The Journal of Bone & Joint Surgery British Volume
Vol. 46-B, Issue 2 | Pages 336 - 345
1 May 1964
Brookes M Landon DN

1. The results of the present investigation indicate that in the foetal rat the juxta-epiphysial vascular bed consists of a dense irregular network of sinusoids in direct contact with the growth cartilage, supplied by end-arteries, and drained by a profusion of metaphysial sinusoids.

2. The circulation is a closed one–that is, the endothelium is unbroken in its continuity and microhaemorrhages do not occur against the cartilage.

3. It is possible that juxta-epiphysial endothelial cells or their derivatives are chondrolytic, and that they participate directly, together with other mesenchymal derivatives, in the removal of cartilage as a preparatory stage in enchondral bone formation.


The Journal of Bone & Joint Surgery British Volume
Vol. 31-B, Issue 3 | Pages 444 - 450
1 Aug 1949
De V. Weir JB Bell GH Chambers JW

One of the aims of this work was to find criteria by which the quality of bone as a supporting tissue might be judged. This inevitably involves discussion and, if possible, assessment, of the relative importance of the inorganic and organic material of the bone. It is relatively easy to measure the mineral content, and for that reason it has always received more than its due share of attention.

In the present experiment the composition of the ash of all bones was remarkably constant, with a Ca/P ratio of 2. Furthermore, X-ray crystallography showed that the structure of the inorganic material was the same in all cases. The great difficulty of measuring variations in the quality of the organic material which is, of course, protein in nature makes it impossible to say how much it influences bone strength. Since at least 40 per cent. of the bone is collagen, either a quantitative or a qualitative alteration might alter bone strength. X-ray crystallography revealed no qualitative differences in the collagen material of bones of the three groups; so that for the present it would seem safer to assume that alterations in the physical properties of the bones are due to variations in the relative proportions of organic and inorganic constituents (Dawson 1946, Bell et al. 1947).

These experiments show that the three diets produce highly significant differences in the percentage of ash, in SB, and in E. It is possible that some variations in the percentage of ash are due to variations in the absolute collagen (weight of collagen in unit volume of bone substance); but the range of variation in the percentage of ash leaves no reasonable doubt that differences in percentage ash between the diet groups are due essentially to differences in absolute ash. Presumably the collagen contributes something to the strength of the bone; but the indications are that it plays a minor part and that the relative weakness and flexibility of rachitic bones is due to decrease in the absolute ash content. Within any one diet group, the relation between percentage ash and the other two variables, SB and E, is masked by other sources of variation such as those associated with the many measurements involved; and thus the correlation between percentage ash and SB, and also between percentage ash and E, is not significant.

At first sight, the scatter diagrams (Figs. 5 and 6) appear to indicate a correlation between ash and SB, and between ash and E. Closer inspection shows, however, that the apparent trend is due largely to differences between the means of the diet groups, and that the points within any one group show no such obvious trend. Figure 7 shows that the position with regard to correlation between SB and E is very different. Here there is an obvious trend within each diet group; the amount of scatter is very much less. Calculation shows that, even when the differences between the means of diet groups is excluded, there is still a significant correlation between SB and E. The question of the correlation between the three variables is discussed more fully in the addendum to this paper.

Although the "goodness" of a bone is usually judged by its breaking stress, the experimental findings recorded above suggest that it may be assessed equally well on the basis of elastic properties as shown by Young's modulus. Normal bones, group S in these experiments, were elastic up to 79 per cent. of their breaking stress (Table II): the poorer bones of groups R and N were, however, only a little inferior in this respect. In some cases there was no apparent deviation of the load-deflexion curve from a straight line until the bone was about to break. Such a curve was published in the first paper of this series (Bell, Cuthbertson and Orr 1941), but in the light of further experience this curve is scarcely typical. The terminal falling over of the curve is illustrated in Figure 4 and is much more marked in the bones of group R.

While stress at the upper limit of elasticity varies over a wide range in the three groups (Table II and Fig. 4), the strain at this point is remarkably constant at about 1·5 per cent. This same percentage displacement must occur between the molecules of the bone material at the elastic limit—and it may be that, up to this amount of molecular displacement, the deformation is reversible; but that beyond it, plastic changes occur. We have no evidence as to whether the limiting displacement concerns mineral or protein constituents of the bone, or both.

We have already commented on the remarkable strength of bone material (Bell et al., 1941). The breaking stress of normal rat bone is about the same as that of cast iron, and about half that of mild steel. Young's modulus, however, is only one-tenth that of cast iron and one-twentieth that of steel. Thus bone, despite its lightness (specific gravity about 2·5 as compared with 7·9 for iron), is remarkably strong and at the same time more flexible than might be expected. Presumably the biological advantage is that greater flexibility helps to absorb sudden impacts. It is unusual in metallic substances to find the elastic modulus proportional to the strength; this is more characteristic of materials like concrete and timber. Another remarkable property of bone is that it remains elastic up to three-quarters of the breaking stress. Most metals show considerable ductility before reaching their breaking point.

While Young's modulus is of interest, both on its own account and as an index of the quality of the bone, its close association with breaking stress suggests that it might be used to predict the maximum load which a bone can carry safely. Since E, unlike SB, can be measured without damage, useful information might be gained by measuring the elasticity of living human bones.


The Journal of Bone & Joint Surgery British Volume
Vol. 68-B, Issue 4 | Pages 629 - 634
1 Aug 1986
Volpin G Rees J Ali S Bentley G

Experimentally produced fractures in long bones studied by light and electron microscopic histochemistry were found to heal by a process of enchondral calcification. There was intense proliferation in the cells of the cambium layer of the periosteum, with differentiation to chondroblasts and osteoblasts, suggesting that this layer was the primary tissue responsible for development of the callus. Cytoplasmic processes of the hypertrophic chondrocytes appeared to bud and produce matrix vesicles. Alkaline phosphatase activity was detected along the plasma membrane of the hypertrophic chondrocytes and around the matrix vesicles, before any signs of mineral deposition. Calcification took place by deposition of hydroxyapatite crystals in and around these matrix vesicles which frequently showed alkaline phosphatase activity. It is suggested that there is a close functional association between alkaline phosphatase activity and calcification in the process of fracture healing, which is another type of enchondral calcification mediated by matrix vesicles.


The Journal of Bone & Joint Surgery British Volume
Vol. 45-B, Issue 4 | Pages 770 - 779
1 Nov 1963
Udupa KN Prasad GC

1. The process of repair after fracture of the humerus of the growing rat has been studied by histological, histochemical and biochemical methods.

2. Both periosteal and surrounding mesenchymal cells take part in the process of repair.

3. The primary framework of collagen bridging the gap is mainly formed by the mesenchymal cells, while calcification and ossification of the framework is largely a function of the periosteum.

4. The mucopolysaccharide content rises rapidly in the first week after injury, and is followed by a rise in the collagen content during the second week. The deposition of calcium phosphate during the third and fourth weeks causes an apparent fall in the collagen content during that period. The collagen content tends to return to normal during the phase of remodelling in the fifth and sixth weeks.

5. The tensile strength of the healing bone bears a close relation to its collagen content.


The Journal of Bone & Joint Surgery British Volume
Vol. 40-B, Issue 2 | Pages 274 - 281
1 May 1958
Girgis FG Pritchard JJ

Cartilage formation was provoked in the skull vault of the young rat by making multiple incisions, and scraping the periosteum to reduce the blood supply to the injured area. The hypothesis that ischaemia induces osteogenic cells to produce cartilage in the course of fracture repair thus receives experimental support.


The Journal of Bone & Joint Surgery British Volume
Vol. 45-B, Issue 3 | Pages 572 - 581
1 Aug 1963
Trueta J Buhr AJ

1. It has been shown that in experimental rickets the well known changes in the epiphysial cartilage which so seriously affect growth are accompanied by severe interference with the progress of the metaphysial vessels into the growth cartilage.

2. Further evidence has been found that, by the repeated increase in their number, the cartilage cells occupying the more distal part of the proliferative segment become more and more affected by their remoteness from the epiphysial vessels, which supply the transudates to these cells. At a given distance these cells are affected and change, becoming hypertrophic, with increasingly large vacuolae, and are rich in glycogen and alkaline phosphatase.

3. The hypertrophic cells alter the nature of the intercellular substance they deposit and this becomes calcifiable. Provided that the metaphysial vessels are situated at an appropriate distance–about three cell capsules away–and that the blood has its necessary components, calcification occurs.

4. Calcification produces the advancing, rigid multitubular structure within which the progressing metaphysial vessels are protected.

5. The interruption of calcification by the withdrawal of fat-soluble vitamins breaks down the whole mechanism of growth and stops the vessels growing into their proper position. The administration of the required vitamins re-establishes the normal sequence of events and allows the vessels to play their decisive role in osteogenesis.

6. Any mechanism which causes the interruption of the vascular progression, whether from metaphysial ischaemia (Trueta and Amato 1960), from severe pressure (Trueta and Trias 1961) or from lack of calcification by withdrawing the fat-soluble vitamins, equally interrupts growth.


Bone & Joint Research
Vol. 11, Issue 11 | Pages 803 - 813
1 Nov 2022
Guan X Gong X Jiao ZY Cao HY Liu S Lin C Huang X Lan H Ma L Xu B

Aims. The involvement of cyclin D1 in the proliferation of microglia, and the generation and maintenance of bone cancer pain (BCP), have not yet been clarified. We investigated the expression of microglia and cyclin D1, and the influences of cyclin D1 on pain threshold. Methods. Female Sprague Dawley (SD) rats were used to establish a rat model of BCP, and the messenger RNA (mRNA) and protein expression of ionized calcium binding adaptor molecule 1 (IBA1) and cyclin D1 were detected by reverse transcription-polymerase chain reaction (RT-PCR) and western blot, respectively. The proliferation of spinal microglia was detected by immunohistochemistry. The pain behaviour test was assessed by quantification of spontaneous flinches, limb use, and guarding during forced ambulation, mechanical paw withdrawal threshold, and thermal paw withdrawal latency. Results. IBA1 and cyclin D1 in the ipsilateral spinal horn increased in a time-dependent fashion. Spinal microglia proliferated in BCP rats. The microglia inhibitor minocycline attenuated the pain behaviour in BCP rats. The cyclin-dependent kinase inhibitor flavopiridol inhibited the proliferation of spinal microglia, and was associated with an improvement in pain behaviour in BCP rats. Conclusion. Our results revealed that the inhibition of spinal microglial proliferation was associated with a decrease in pain behaviour in a rat model of BCP. Cyclin D1 acts as a key regulator of the proliferation of spinal microglia in a rat model of BCP. Disruption of cyclin D1, the restriction-point control of cell cycle, inhibited the proliferation of microglia and attenuated the pain behaviours in BCP rats. Cyclin D1 and the proliferation of spinal microglia may be potential targets for the clinical treatment of BCP. Cite this article: Bone Joint Res 2022;11(11):803–813


Bone & Joint Research
Vol. 11, Issue 8 | Pages 585 - 593
1 Aug 2022
Graham SM Jalal MMK Lalloo DG Hamish R. W. Simpson A

Aims. A number of anti-retroviral therapies (ART) have been implicated in potentially contributing to HIV-associated bone disease. The aim of this study was to evaluate the effect of combination ART on the fracture healing process. Methods. A total of 16 adult male Wistar rats were randomly divided into two groups (n = eight each): Group 1 was given a combination of Tenfovir 30 mg, Lamivudine 30 mg, and Efavirenz 60 mg per day orally, whereas Group 2 was used as a control. After one week of medication preload, all rats underwent a standardized surgical procedure of mid-shaft tibial osteotomy fixed by intramedullary nail with no gap at the fracture site. Progress in fracture healing was monitored regularly for eight weeks. Further evaluations were carried out after euthanasia by micro-CT, mechanically and histologically. Two blinded orthopaedic surgeons used the Radiological Union Scoring system for the Tibia (RUST) to determine fracture healing. Results. The fracture healing process was different between the two groups at week 4 after surgery; only two out of eight rats showed full healing in Group 1 (ART-treated), while seven out of eight rats had bone union in Group 2 (control) (p = 0.040). However, at week eight postoperatively, there was no statistical difference in bone healing; seven out of eight progressed to full union in both groups. Conclusion. This study demonstrated that combination ART resulted in delayed fracture healing at week 4 after surgery in rats, but did not result in the development of nonunion. Cite this article: Bone Joint Res 2022;11(8):585–593


Bone & Joint Research
Vol. 13, Issue 1 | Pages 40 - 51
11 Jan 2024
Lin J Suo J Bao B Wei H Gao T Zhu H Zheng X

Aims. To investigate the efficacy of ethylenediaminetetraacetic acid-normal saline (EDTA-NS) in dispersing biofilms and reducing bacterial infections. Methods. EDTA-NS solutions were irrigated at different durations (1, 5, 10, and 30 minutes) and concentrations (1, 2, 5, 10, and 50 mM) to disrupt Staphylococcus aureus biofilms on Matrigel-coated glass and two materials widely used in orthopaedic implants (Ti-6Al-4V and highly cross-linked polyethylene (HXLPE)). To assess the efficacy of biofilm dispersion, crystal violet staining biofilm assay and colony counting after sonification and culturing were performed. The results were further confirmed and visualized by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). We then investigated the efficacies of EDTA-NS irrigation in vivo in rat and pig models of biofilm-associated infection. Results. When 10 mM or higher EDTA-NS concentrations were used for ten minutes, over 99% of S. aureus biofilm formed on all three types of materials was eradicated in terms of absorbance measured at 595 nm and colony-forming units (CFUs) after culturing. Consistently, SEM and CSLM scanning demonstrated that less adherence of S. aureus could be observed on all three types of materials after 10 mM EDTA-NS irrigation for ten minutes. In the rat model, compared with NS irrigation combined with rifampin (Ti-6Al-4V wire-implanted rats: 60% bacteria survived; HXLPE particle-implanted rats: 63.3% bacteria survived), EDTA-NS irrigation combined with rifampin produced the highest removal rate (Ti-6Al-4V wire-implanted rats: 3.33% bacteria survived; HXLPE particle-implanted rats: 6.67% bacteria survived). In the pig model, compared with NS irrigation combined with rifampin (Ti-6Al-4V plates: 75% bacteria survived; HXLPE bearings: 87.5% bacteria survived), we observed a similar level of biofilm disruption on Ti-6Al-4V plates (25% bacteria survived) and HXLPE bearings (37.5% bacteria survived) after EDTA-NS irrigation combined with rifampin. The in vivo study revealed that the biomass of S. aureus biofilm was significantly reduced when treated with rifampin following irrigation and debridement, as indicated by both the biofilm bacterial burden and crystal violet staining. EDTA-NS irrigation (10 mM/10 min) combined with rifampin effectively removes S. aureus biofilm-associated infections both in vitro and in vivo. Conclusion. EDTA-NS irrigation with or without antibiotics is effective in eradicating S. aureus biofilm-associated infection both ex and in vivo. Cite this article: Bone Joint Res 2024;13(1):40–51


Bone & Joint Research
Vol. 13, Issue 7 | Pages 332 - 341
5 Jul 2024
Wang T Yang C Li G Wang Y Ji B Chen Y Zhou H Cao L

Aims. Although low-intensity pulsed ultrasound (LIPUS) combined with disinfectants has been shown to effectively eliminate portions of biofilm in vitro, its efficacy in vivo remains uncertain. Our objective was to assess the antibiofilm potential and safety of LIPUS combined with 0.35% povidone-iodine (PI) in a rat debridement, antibiotics, and implant retention (DAIR) model of periprosthetic joint infection (PJI). Methods. A total of 56 male Sprague-Dawley rats were established in acute PJI models by intra-articular injection of bacteria. The rats were divided into four groups: a Control group, a 0.35% PI group, a LIPUS and saline group, and a LIPUS and 0.35% PI group. All rats underwent DAIR, except for Control, which underwent a sham procedure. General status, serum biochemical markers, weightbearing analysis, radiographs, micro-CT analysis, scanning electron microscopy of the prostheses, microbiological analysis, macroscope, and histopathology evaluation were performed 14 days after DAIR. Results. The group with LIPUS and 0.35% PI exhibited decreased levels of serum biochemical markers, improved weightbearing scores, reduced reactive bone changes, absence of viable bacteria, and decreased inflammation compared to the Control group. Despite the greater antibiofilm activity observed in the PI group compared to the LIPUS and saline group, none of the monotherapies were successful in preventing reactive bone changes or eliminating the infection. Conclusion. In the rat model of PJI treated with DAIR, LIPUS combined with 0.35% PI demonstrated stronger antibiofilm potential than monotherapy, without impairing any local soft-tissue. Cite this article: Bone Joint Res 2024;13(7):332–341


Aims. In this investigation, we administered oxidative stress to nucleus pulposus cells (NPCs), recognized DNA-damage-inducible transcript 4 (DDIT4) as a component in intervertebral disc degeneration (IVDD), and devised a hydrogel capable of conveying small interfering RNA (siRNA) to IVDD. Methods. An in vitro model for oxidative stress-induced injury in NPCs was developed to elucidate the mechanisms underlying the upregulation of DDIT4 expression, activation of the reactive oxygen species (ROS)-thioredoxin-interacting protein (TXNIP)-NLRP3 signalling pathway, and nucleus pulposus pyroptosis. Furthermore, the mechanism of action of small interfering DDIT4 (siDDIT4) on NPCs in vitro was validated. A triplex hydrogel named siDDIT4@G5-P-HA was created by adsorbing siDDIT4 onto fifth-generation polyamidoamine (PAMAM) dendrimer using van der Waals interactions, and then coating it with hyaluronic acid (HA). In addition, we established a rat puncture IVDD model to decipher the hydrogel’s mechanism in IVDD. Results. A correlation between DDIT4 expression levels and disc degeneration was shown with human nucleus pulposus and needle-punctured rat disc specimens. We confirmed that DDIT4 was responsible for activating the ROS-TXNIP-NLRP3 axis during oxidative stress-induced pyroptosis in rat nucleus pulposus in vitro. Mitochondria were damaged during oxidative stress, and DDIT4 contributed to mitochondrial damage and ROS production. In addition, siDDIT4@G5-P-HA hydrogels showed good delivery activity of siDDIT4 to NPCs. In vitro studies illustrated the potential of the siDDIT4@G5-P-HA hydrogel for alleviating IVDD in rats. Conclusion. DDIT4 is a key player in mediating pyroptosis and IVDD in NPCs through the ROS-TXNIP-NLRP3 axis. Additionally, siDDIT4@G5-P-HA hydrogel has been found to relieve IVDD in rats. Our research offers an innovative treatment option for IVDD. Cite this article: Bone Joint Res 2024;13(5):247–260


Aims. Treatment outcomes for methicillin-resistant Staphylococcus aureus (MRSA) periprosthetic joint infection (PJI) using systemic vancomycin and antibacterial cement spacers during two-stage revision arthroplasty remain unsatisfactory. This study explored the efficacy and safety of intra-articular vancomycin injections for PJI control after debridement and cement spacer implantation in a rat model. Methods. Total knee arthroplasty (TKA), MRSA inoculation, debridement, and vancomycin-spacer implantation were performed successively in rats to mimic first-stage PJI during the two-stage revision arthroplasty procedure. Vancomycin was administered intraperitoneally or intra-articularly for two weeks to control the infection after debridement and spacer implantation. Results. Rats receiving intra-articular vancomycin showed the best outcomes among the four treatment groups, with negative bacterial cultures, increased weight gain, increased capacity for weightbearing activities, increased residual bone volume preservation, and reduced inflammatory reactions in the joint tissues, indicating MRSA eradication in the knee. The vancomycin-spacer and/or systemic vancomycin failed to eliminate the MRSA infections following a two-week antibiotic course. Serum vancomycin levels did not reach nephrotoxic levels in any group. Mild renal histopathological changes, without changes in serum creatinine levels, were observed in the intraperitoneal vancomycin group compared with the intra-articular vancomycin group, but no changes in hepatic structure or serum alanine aminotransferase or aspartate aminotransferase levels were observed. No local complications were observed, such as sinus tract or non-healing surgical incisions. Conclusion. Intra-articular vancomycin injection was effective and safe for PJI control following debridement and spacer implantation in a rat model during two-stage revision arthroplasties, with better outcomes than systemic vancomycin administration. Cite this article: Bone Joint Res 2022;11(6):371–385


Bone & Joint Research
Vol. 11, Issue 7 | Pages 465 - 476
13 Jul 2022
Li MCM Chow SK Wong RMY Chen B Cheng JCY Qin L Cheung W

Aims. There is an increasing concern of osteoporotic fractures in the ageing population. Low-magnitude high-frequency vibration (LMHFV) was shown to significantly enhance osteoporotic fracture healing through alteration of osteocyte lacuno-canalicular network (LCN). Dentin matrix protein 1 (DMP1) in osteocytes is known to be responsible for maintaining the LCN and mineralization. This study aimed to investigate the role of osteocyte-specific DMP1 during osteoporotic fracture healing augmented by LMHFV. Methods. A metaphyseal fracture was created in the distal femur of ovariectomy-induced osteoporotic Sprague Dawley rats. Rats were randomized to five different groups: 1) DMP1 knockdown (KD), 2) DMP1 KD + vibration (VT), 3) Scramble + VT, 4) VT, and 5) control (CT), where KD was performed by injection of short hairpin RNA (shRNA) into marrow cavity; vibration treatment was conducted at 35 Hz, 0.3 g; 20 minutes/day, five days/week). Assessments included radiography, micro-CT, dynamic histomorphometry and immunohistochemistry on DMP1, sclerostin, E11, and fibroblast growth factor 23 (FGF23). In vitro, murine long bone osteocyte-Y4 (MLO-Y4) osteocyte-like cells were randomized as in vivo groupings. DMP1 KD was performed by transfecting cells with shRNA plasmid. Assessments included immunocytochemistry on osteocyte-specific markers as above, and mineralized nodule staining. Results. Healing capacities in DMP1 KD groups were impaired. Results showed that DMP1 KD significantly abolished vibration-enhanced fracture healing at week 6. DMP1 KD significantly altered the expression of osteocyte-specific markers. The lower mineralization rate in DMP1 KD groups indicated that DMP1 knockdown was associated with poor fracture healing process. Conclusion. The blockage of DMP1 would impair healing outcomes and negate LMHFV-induced enhancement on fracture healing. These findings reveal the importance of DMP1 in response to the mechanical signal during osteoporotic fracture healing. Cite this article: Bone Joint Res 2022;11(7):465–476


Aims. Methicillin-resistant Staphylococcus aureus (MRSA) can cause wound infections via a ‘Trojan Horse’ mechanism, in which neutrophils engulf intestinal MRSA and travel to the wound, releasing MRSA after apoptosis. The possible role of intestinal MRSA in prosthetic joint infection (PJI) is unknown. Methods. Rats underwent intestinal colonization with green fluorescent protein (GFP)-tagged MRSA by gavage and an intra-articular wire was then surgically implanted. After ten days, the presence of PJI was determined by bacterial cultures of the distal femur, joint capsule, and implant. We excluded several other possibilities for PJI development. Intraoperative contamination was excluded by culturing the specimen obtained from surgical site. Extracellular bacteraemia-associated PJI was excluded by comparing with the infection rate after intravenous injection of MRSA or MRSA-carrying neutrophils. To further support this theory, we tested the efficacy of prophylactic membrane-permeable and non-membrane-permeable antibiotics in this model. Results. After undergoing knee surgery eight or 72 hours after colonization, five out of 20 rats (25.0%) and two out of 20 rats (10.0%) developed PJI, respectively. Strikingly, 11 out of 20 rats (55.0%) developed PJI after intravenous injection of MRSA-carrying neutrophils that were isolated from rats with intestinal MRSA colonization. None of the rats receiving intravenous injections of MRSA developed PJI. These results suggest that intestinal MRSA carried by neutrophils could cause PJI in our rat model. Ten out of 20 (50.0%) rats treated with non-membrane-permeable gentamicin developed PJI, whereas only one out of 20 (5.0%) rats treated with membrane-permeable linezolid developed PJI. Conclusion. Neutrophils as carriers of intestinal MRSA may play an important role in PJI development. Cite this article:Bone Joint Res. 2020;9(4):152–161


Bone & Joint Research
Vol. 9, Issue 10 | Pages 731 - 741
28 Oct 2020
He Z Nie P Lu J Ling Y Guo J Zhang B Hu J Liao J Gu J Dai B Feng Z

Aims. Osteoarthritis (OA) is a disabling joint disorder and mechanical loading is an important pathogenesis. This study aims to investigate the benefits of less mechanical loading created by intermittent tail suspension for knee OA. Methods. A post-traumatic OA model was established in 20 rats (12 weeks old, male). Ten rats were treated with less mechanical loading through intermittent tail suspension, while another ten rats were treated with normal mechanical loading. Cartilage damage was determined by gross appearance, Safranin O/Fast Green staining, and immunohistochemistry examinations. Subchondral bone changes were analyzed by micro-CT and tartrate-resistant acid phosphatase (TRAP) staining, and serum inflammatory cytokines were evaluated by enzyme-linked immunosorbent assay (ELISA). Results. Our radiographs showed that joint space was significantly enlarged in rats with less mechanical loading. Moreover, cartilage destruction was attenuated in the less mechanical loading group with lower histological damage scores, and lower expression of a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-5, matrix metalloproteinase (MMP)-3, and MMP-13. In addition, subchondral bone abnormal changes were ameliorated in OA rats with less mechanical loading, as reduced bone mineral density (BMD), bone volume/tissue volume (BV/TV), and number of osteophytes and osteoclasts in the subchondral bone were observed. Finally, the level of serum inflammatory cytokines was significantly downregulated in the less mechanical loading group compared with the normal mechanical loading group, as well as the expression of NACHT, LRR, and PYD domains-containing protein 3 (NLRP3), caspase-1, and interleukin 1β (IL-1β) in the cartilage. Conclusion. Less mechanical loading alleviates cartilage destruction, subchondral bone changes, and secondary inflammation in OA joints. This study provides fundamental insights into the benefit of non-weight loading rest for patients with OA. Cite this article: Bone Joint Res 2020;9(10):731–741


Bone & Joint Research
Vol. 11, Issue 2 | Pages 49 - 60
1 Feb 2022
Li J Wong RMY Chung YL Leung SSY Chow SK Ip M Cheung W

Aims. With the ageing population, fragility fractures have become one of the most common conditions. The objective of this study was to investigate whether microbiological outcomes and fracture-healing in osteoporotic bone is worse than normal bone with fracture-related infection (FRI). Methods. A total of 120 six-month-old Sprague-Dawley (SD) rats were randomized to six groups: Sham, sham + infection (Sham-Inf), sham with infection + antibiotics (Sham-Inf-A), ovariectomized (OVX), OVX + infection (OVX-Inf), and OVX + infection + antibiotics (OVX-Inf-A). Open femoral diaphysis fractures with Kirschner wire fixation were performed. Staphylococcus aureus at 4 × 10. 4. colony-forming units (CFU)/ml was inoculated. Rats were euthanized at four and eight weeks post-surgery. Radiography, micro-CT, haematoxylin-eosin, mechanical testing, immunohistochemistry (IHC), gram staining, agar plating, crystal violet staining, and scanning electron microscopy were performed. Results. Agar plating analysis revealed a higher bacterial load in bone (p = 0.002), and gram staining showed higher cortical bone colonization (p = 0.039) in OVX-Inf compared to Sham-Inf. OVX-Inf showed significantly increased callus area (p = 0.013), but decreased high-density bone volume (p = 0.023) compared to Sham-Inf. IHC staining showed a significantly increased expression of TNF-α in OVX-Inf compared to OVX (p = 0.049). Significantly reduced bacterial load on bone (p = 0.001), enhanced ultimate load (p = 0.001), and energy to failure were observed in Sham-Inf-A compared to Sham-Inf (p = 0.028), but not in OVX-Inf-A compared to OVX-Inf. Conclusion. In osteoporotic bone with FRI, infection was more severe with more bone lysis and higher bacterial load, and fracture-healing was further delayed. Systemic antibiotics significantly reduced bacterial load and enhanced callus quality and strength in normal bone with FRI, but not in osteoporotic bone. Cite this article: Bone Joint Res 2022;11(2):49–60


Bone & Joint Research
Vol. 10, Issue 12 | Pages 767 - 779
8 Dec 2021
Li Y Yang Y Wang M Zhang X Bai S Lu X Li Y Waldorff EI Zhang N Lee WY Li G

Aims. Distraction osteogenesis (DO) is a useful orthopaedic procedure employed to lengthen and reshape bones by stimulating bone formation through controlled slow stretching force. Despite its promising applications, difficulties are still encountered. Our previous study demonstrated that pulsed electromagnetic field (PEMF) treatment significantly enhances bone mineralization and neovascularization, suggesting its potential application. The current study compared a new, high slew rate (HSR) PEMF signal, with different treatment durations, with the standard Food and Drug Administration (FDA)-approved signal, to determine if HSR PEMF is a better alternative for bone formation augmentation. Methods. The effects of a HSR PEMF signal with three daily treatment durations (0.5, one, and three hours/day) were investigated in an established rat DO model with comparison of an FDA-approved classic signal (three hrs/day). PEMF treatments were applied to the rats daily for 35 days, starting from the distraction phase until termination. Radiography, micro-CT (μCT), biomechanical tests, and histological examinations were employed to evaluate the quality of bone formation. Results. All rats tolerated the treatment well and no obvious adverse effects were found. By comparison, the HSR signal (three hrs/day) treatment group achieved the best healing outcome, in that endochondral ossification and bone consolidation were enhanced. In addition, HSR signal treatment (one one hr/day) had similar effects to treatment using the classic signal (three three hrs/day), indicating that treatment duration could be significantly shortened with the HSR signal. Conclusion. HSR signal may significantly enhance bone formation and shorten daily treatment duration in DO, making it a potential candidate for a new clinical protocol for patients undergoing DO treatments. Cite this article: Bone Joint Res 2021;10(12):767–779