Using a new, non-invasive method, we measured the patellofemoral force (PFF) in cadaver knees mounted in a rig to simulate weight-bearing. The PFF was measured from 20° to 120° of flexion before and after implanting three designs of knee prosthesis. Medial unicompartmental arthroplasty with a meniscal-bearing prosthesis and with retention of both cruciate ligaments caused no significant change in the PFF. After arthroplasty with a posterior-cruciate-retaining prosthesis and division of the anterior cruciate ligament, the PFF decreased in extension and increased by 20% in flexion. Implantation of a posterior stabilised prosthesis and division of both cruciate ligaments produced a decrease in the PFF in extension but maintained normal load in flexion. There was a direct relationship between the PFF and the angle made with the patellar tendon and the long axis of the tibia. The abnormalities of the patellar tendon angle which resulted from implantation of the two total prostheses explain the observed changes in the PFF and show how the mechanics of the patellofemoral joint depend upon the kinematics of the tibiofemoral articulation.
This is part of a larger study designed to investigate the action of particulate metals of orthopaedic interest on tissues. Damaging effects were determined by cytological examination and the assay of two enzymes. Lactic dehydrogenase (LDH) if released into the supernatant indicates a damaged cell membrane; decreased intracellular levels of glucose-6-phosphate dehydrogenase (G6PD) indicates a lowered phagocytic capacity of the cells. Soluble and wear products around implanted prostheses could facilitate late infections by impairing local reactions to bacteria. Particulate cobalt, nickel and cobalt-chromium alloy were found to damage the cells and to cause LDH release. G6PD was found to have a lower activity in the cells exposed to these materials. In contrast, titanium, chromium and molybdenum were well tolerated by macrophages and had no effect on the distribution and activity of either enzyme. The solubility of these metals in the culture medium was also measured.
Sterilisation by gamma irradiation in the presence of air causes free radicals generated in polyethylene (PE) to react with oxygen, which could lead to loss of physical properties and reduction in fatigue strength. Tissue retrieved from failed total hip replacements often has large quantities of particulate PE and most particles associated with peri-implant osteolysis are oxidised. Consequently, an understanding of the cellular responses of oxidised PE particles may lead to clarification of the pathogenesis of osteolysis and aseptic loosening. We have used the agarose system to demonstrate the differential effects of oxidised and non-oxidised PE particles on the release of proinflammatory products such as interleukin-1β (IL-1β), IL-6, and tumour necrosis factor-α (TNF-α) from monocytes/ macrophages (M/M). Oxidised PE particles were shown to stimulate human M/M to phagocytose and to release cytokines. Oxidation may alter the surface chemistry of the particles and enhance the response to specific membrane receptors on macrophages, such as scavenger-type receptors.
We exposed human macrophages isolated from the peripheral blood of healthy donors to metal and bone-cement particles from 0.2 to 10 μm in size. Zymography showed that macrophages exposed to titanium alloy and polymethylmethacrylate (PMMA) particles released a 92- and 72-kDa gelatinase in a dose- and time-dependent manner. Western immunoblotting confirmed that the 92- and 72-kDa gelatinolytic activities corresponded to matrix metalloproteinase-9 and matrix metalloproteinase-2 (MMP-9, MMP-2), respectively. Western immunoblotting also indicated that titanium alloy and PMMA particles increased the release of MMP-1. Northern blotting showed elevated mRNA signal levels for MMP-1, MMP-2, and MMP-9 after exposure to both types of particle. Collagenolytic activity also increased in the macrophage culture medium in response to both types of particle. Our findings support the hypothesis that macrophages release MMPs in proportion to the amount of particulate debris within periprosthetic tissues.
1. Methods for culturing cells isolated from slices of arthritic human or normal mammalian cancellous bone are described. 2. The capacity of the cultured cells to take up and hydroxylate labelled proline has been investigated. 3. Sections of the partially decalcified bone and of the isolated cells have been examined by transmission electron microscopy. 4. The possible significance of the results and observations are discussed. We are deeply grateful to Dame Janet Vaughan, who very kindly read this manuscript and made several valuable suggestions and criticisms. We are much obliged to Dr Sylvia Fitton-Jackson for her advice on the techniques of tissue culture and for giving us the composition of her chemically defined medium. Dr Palfrey kindly allowed one of us, M. J. Dickens, to learn transmission electron microscopy in his department at St Thomas's Hospital Medical School under the expert tuition of Mr G. Maxwell. Mr R. Hockhan and Mr M. Hepburn of the University of Surrey Structural Studies Unit helpfully instructed in the operation of the transmission electron microscope. Our special thanks are due to Mr E. P. Morris for his competent and enthusiastic technical assistance.
It is well recognised that meniscal tears situated within the inner, avascular region do not heal. We investigated the potential effect of insulin-like growth factor-I (IGF-I) in promoting regeneration of meniscal tissue in the inner, middle and outer zones of the meniscus. Sheep menisci were harvested and monolayer cell cultures prepared. Various concentrations of IGF-I were used in the presence or absence of 10% fetal calf serum (FCS). We measured the uptake of radioactive thymidine, sulphur, and proline to assess cell proliferation and formation of extracellular matrix (ECM). IGF-I, in the presence or absence of FCS, increased the formation of DNA and ECM in all meniscal zones. However, the response of the cells from the avascular zone was greater than that from the vascular zone. Our findings indicate that fibrochondrocytes cultured from avascular meniscal tissue have the ability to regenerate when exposed to anabolic cytokines such as IGF-I.
Aims. In this investigation, we administered oxidative stress to nucleus pulposus cells (NPCs), recognized DNA-damage-inducible transcript 4 (DDIT4) as a component in intervertebral disc degeneration (IVDD), and devised a hydrogel capable of conveying small interfering RNA (siRNA) to IVDD. Methods. An in
Aims. Transcription factor nuclear factor kappa B (NF-κB) plays a major role in the pathogenesis of chronic inflammatory diseases in all organ systems. Despite its importance, NF-κB targeted drug therapy to mitigate chronic inflammation has had limited success in preclinical studies. We hypothesized that sex differences affect the response to NF-κB treatment during chronic inflammation in bone. This study investigated the therapeutic effects of NF-κB decoy oligodeoxynucleotides (ODN) during chronic inflammation in male and female mice. Methods. We used a murine model of chronic inflammation induced by continuous intramedullary delivery of lipopolysaccharide-contaminated polyethylene particles (cPE) using an osmotic pump. Specimens were evaluated using micro-CT and histomorphometric analyses. Sex-specific osteogenic and osteoclastic differentiation potentials were also investigated in
Aims. The antidiabetic agent metformin inhibits fibrosis in various organs. This study aims to elucidate the effects of hyperglycaemia and metformin on knee joint capsule fibrosis in mice. Methods. Eight-week-old wild-type (WT) and type 2 diabetic (db/db) mice were divided into four groups without or with metformin treatment (WT met(-/+), Db met(-/+)). Mice received daily intraperitoneal administration of metformin and were killed at 12 and 14 weeks of age. Fibrosis morphology and its related genes and proteins were evaluated. Fibroblasts were extracted from the capsules of 14-week-old mice, and the expression of fibrosis-related genes in response to glucose and metformin was evaluated in
Aims. After a few passages of in
Aims. The goal was to evaluate tibiofemoral knee joint kinematics during stair descent, by simulating the full stair descent motion in
Aims. There is a lack of biomaterial-based carriers for the local delivery of rifampicin (RIF), one of the cornerstone second defence antibiotics for bone infections. RIF is also known for causing rapid development of antibiotic resistance when given as monotherapy. This in
Aims. This study aimed to demonstrate the promoting effect of elastic fixation on fracture, and further explore its mechanism at the gene and protein expression levels. Methods. A closed tibial fracture model was established using 12 male Japanese white rabbits, and divided into elastic and stiff fixation groups based on different fixation methods. Two weeks after the operation, a radiograph and pathological examination of callus tissue were used to evaluate fracture healing. Then, the differentially expressed proteins (DEPs) were examined in the callus using proteomics. Finally, in
Aims. There is a considerable challenge in treating bone infections and orthopaedic device-associated infection (ODAI), partly due to impaired penetration of systemically administrated antibiotics at the site of infection. This may be circumvented by local drug administration. Knowledge of the release kinetics from any carrier material is essential for proper application. Ceftriaxone shows a particular constant release from calcium sulphate (CaSO. 4. ) in
Aims. Bacterial infection activates neutrophils to release neutrophil extracellular traps (NETs) in bacterial biofilms of periprosthetic joint infections (PJIs). The aim of this study was to evaluate the increase in NET activation and release (NETosis) and haemostasis markers in the plasma of patients with PJI, to evaluate whether such plasma induces the activation of neutrophils, to ascertain whether increased NETosis is also mediated by reduced DNaseI activity, to explore novel therapeutic interventions for NETosis in PJI in
Aims. It has been established that mechanical stimulation benefits tendon-bone (T-B) healing, and macrophage phenotype can be regulated by mechanical cues; moreover, the interaction between macrophages and mesenchymal stem cells (MSCs) plays a fundamental role in tissue repair. This study aimed to investigate the role of macrophage-mediated MSC chondrogenesis in load-induced T-B healing in depth. Methods. C57BL/6 mice rotator cuff (RC) repair model was established to explore the effects of mechanical stimulation on macrophage polarization, transforming growth factor (TGF)-β1 generation, and MSC chondrogenesis within T-B enthesis by immunofluorescence and enzyme-linked immunosorbent assay (ELISA). Macrophage depletion was performed by clodronate liposomes, and T-B healing quality was evaluated by histology and biomechanics. In
Aims. To explore the novel molecular mechanisms of histone deacetylase 4 (HDAC4) in chondrocytes via RNA sequencing (RNA-seq) analysis. Methods. Empty adenovirus (EP) and a HDAC4 overexpression adenovirus were transfected into cultured human chondrocytes. The cell survival rate was examined by real-time cell analysis (RTCA) and EdU and flow cytometry assays. Cell biofunction was detected by Western blotting. The expression profiles of messenger RNAs (mRNAs) in the EP and HDAC4 transfection groups were assessed using whole-transcriptome sequencing (RNA-seq). Volcano plot, Gene Ontology, and pathway analyses were performed to identify differentially expressed genes (DEGs). For verification of the results, the A289E/S246/467/632 A sites of HDAC4 were mutated to enhance the function of HDAC4 by increasing HDAC4 expression in the nucleus. RNA-seq was performed to identify the molecular mechanism of HDAC4 in chondrocytes. Finally, the top ten DEGs associated with ribosomes were verified by quantitative polymerase chain reaction (QPCR) in chondrocytes, and the top gene was verified both in
Aims. To verify whether secretory leucocyte protease inhibitor (SLPI) can promote early tendon-to-bone healing after anterior cruciate ligament (ACL) reconstruction. Methods. In
Aims. Alcoholism is a well-known detrimental factor in fracture healing. However, the underlying mechanism of alcohol-inhibited fracture healing remains poorly understood. Methods. MicroRNA (miR) sequencing was performed on bone mesenchymal stem cells (BMSCs). The effects of alcohol and miR-19a-3p on vascularization and osteogenic differentiation were analyzed in