header advert
Results 41 - 60 of 3983
Results per page:

The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 11 | Pages 1537 - 1540
1 Nov 2009
Khan WS Dunne NJ Huntley JS Joyce T Reichert ILH Snelling S Scammell BE

This paper outlines the recent development of an exchange Travelling Fellowship scheme between the British and American Orthopaedic Research Societies


The Bone & Joint Journal
Vol. 100-B, Issue 8 | Pages 989 - 990
1 Aug 2018
Murray AD Murray IR Barton CJ Vodden EJ Haddad FS


Bone & Joint Open
Vol. 2, Issue 5 | Pages 344 - 350
31 May 2021
Ahmad SS Hoos L Perka C Stöckle U Braun KF Konrads C

Aims. The follow-up interval of a study represents an important aspect that is frequently mentioned in the title of the manuscript. Authors arbitrarily define whether the follow-up of their study is short-, mid-, or long-term. There is no clear consensus in that regard and definitions show a large range of variation. It was therefore the aim of this study to systematically identify clinical research published in high-impact orthopaedic journals in the last five years and extract follow-up information to deduce corresponding evidence-based definitions of short-, mid-, and long-term follow-up. Methods. A systematic literature search was performed to identify papers published in the six highest ranked orthopaedic journals during the years 2015 to 2019. Follow-up intervals were analyzed. Each article was assigned to a corresponding subspecialty field: sports traumatology, knee arthroplasty and reconstruction, hip-preserving surgery, hip arthroplasty, shoulder and elbow arthroplasty, hand and wrist, foot and ankle, paediatric orthopaedics, orthopaedic trauma, spine, and tumour. Mean follow-up data were tabulated for the corresponding subspecialty fields. Comparison between means was conducted using analysis of variance. Results. Of 16,161 published articles, 590 met the inclusion criteria. Of these, 321 were of level IV evidence, 176 level III, 53 level II, and 40 level I. Considering all included articles, a long-term study published in the included high impact journals had a mean follow-up of 151.6 months, a mid-term study of 63.5 months, and a short-term study of 30.0 months. Conclusion. The results of this study provide evidence-based definitions for orthopaedic follow-up intervals that should provide a citable standard for the planning of clinical studies. A minimum mean follow-up of a short-term study should be 30 months (2.5 years), while a mid-term study should aim for a mean follow-up of 60 months (five years), and a long-term study should aim for a mean of 150 months (12.5 years). Level of Evidence: Level I. Cite this article: Bone Jt Open 2021;2(5):344–350


Bone & Joint 360
Vol. 11, Issue 4 | Pages 41 - 42
1 Aug 2022


Bone & Joint 360
Vol. 11, Issue 5 | Pages 42 - 44
1 Oct 2022


Bone & Joint Research
Vol. 9, Issue 7 | Pages 351 - 359
1 Jul 2020
Fitzgerald J

The ability to edit DNA at the nucleotide level using clustered regularly interspaced short palindromic repeats (CRISPR) systems is a relatively new investigative tool that is revolutionizing the analysis of many aspects of human health and disease, including orthopaedic disease. CRISPR, adapted for mammalian cell genome editing from a bacterial defence system, has been shown to be a flexible, programmable, scalable, and easy-to-use gene editing tool. Recent improvements increase the functionality of CRISPR through the engineering of specific elements of CRISPR systems, the discovery of new, naturally occurring CRISPR molecules, and modifications that take CRISPR beyond gene editing to the regulation of gene transcription and the manipulation of RNA. Here, the basics of CRISPR genome editing will be reviewed, including a description of how it has transformed some aspects of molecular musculoskeletal research, and will conclude by speculating what the future holds for the use of CRISPR-related treatments and therapies in clinical orthopaedic practice. Cite this article: Bone Joint Res 2020;9(7):351–359


Bone & Joint 360
Vol. 11, Issue 3 | Pages 43 - 45
1 Jun 2022


Bone & Joint Research
Vol. 12, Issue 4 | Pages 256 - 258
3 Apr 2023
Farrow L Evans J

Cite this article: Bone Joint Res 2023;12(4):256–258.


Bone & Joint 360
Vol. 12, Issue 4 | Pages 44 - 46
1 Aug 2023
Burden EG Whitehouse MR Evans JT


Bone & Joint 360
Vol. 2, Issue 1 | Pages 37 - 39
1 Feb 2013

The February 2013 Children’s orthopaedics Roundup360 looks at: the human genome; new RNA; cells, matrix and gene enhancement; the histology of x-rays; THR and VTE in the Danish population; potential therapeutic targets for GCT; optimising vancomycin elution from cement; and how much sleep is enough.


Bone & Joint 360
Vol. 11, Issue 4 | Pages 44 - 46
1 Aug 2022
Evans JT Walton TJ Whitehouse MR


Bone & Joint 360
Vol. 12, Issue 6 | Pages 49 - 51
1 Dec 2023
Burden EG Whitehouse MR Evans JT


Bone & Joint 360
Vol. 11, Issue 2 | Pages 47 - 49
1 Apr 2022


Bone & Joint 360
Vol. 11, Issue 6 | Pages 49 - 50
1 Dec 2022
Evans JT Whitehouse MR


Bone & Joint 360
Vol. 13, Issue 4 | Pages 43 - 45
2 Aug 2024
Evans JT Evans JP Whitehouse MR


The Bone & Joint Journal
Vol. 106-B, Issue 7 | Pages 640 - 641
1 Jul 2024
Ashby E Haddad FS


The Bone & Joint Journal
Vol. 104-B, Issue 8 | Pages 909 - 910
1 Aug 2022
Vigdorchik JM Jang SJ Taunton MJ Haddad FS


Bone & Joint 360
Vol. 11, Issue 1 | Pages 47 - 49
1 Feb 2022


Bone & Joint 360
Vol. 12, Issue 2 | Pages 45 - 46
1 Apr 2023
Evans JT Whitehouse MR