The purpose of this study was to determine whether
it would be feasible to use oblique lumbar interbody fixation for
patients with degenerative lumbar disease who required a fusion
but did not have a spondylolisthesis. A series of CT digital images from 60 patients with abdominal
disease were reconstructed in three dimensions (3D) using Mimics
v10.01: a digital cylinder was superimposed on the reconstructed
image to simulate the position of an interbody screw. The optimal
entry point of the screw and measurements of its trajectory were
recorded. Next, 26 cadaveric specimens were subjected to oblique
lumbar interbody fixation on the basis of the measurements derived
from the imaging studies. These were then compared with measurements
derived directly from the cadaveric vertebrae. Our study suggested that it is easy to insert the screws for
L1/2, L2/3 and L3/4 fixation: there was no significant difference
in measurements between those of the 3-D digital images and the
cadaveric specimens. For L4/5 fixation, part of L5 inferior articular
process had to be removed to achieve the optimal trajectory of the
screw. For L5/S1 fixation, the screw heads were blocked by iliac
bone: consequently, the interior oblique angle of the cadaveric specimens
was less than that seen in the 3D digital images. We suggest that CT scans should be carried out pre-operatively
if this procedure is to be adopted in clinical practice. This will
assist in determining the feasibility of the procedure and will
provide accurate information to assist introduction of the screws. Cite this article:
The aim of this study was to establish a classification system for the acromioclavicular joint using cadaveric dissection and radiological analyses of both reformatted computed tomographic scans and conventional radiographs centred on the joint. This classification should be useful for planning arthroscopic procedures or introducing a needle and in prospective studies of biomechanical stresses across the joint which may be associated with the development of joint pathology. We have demonstrated three main three-dimensional morphological groups namely flat, oblique and curved, on both cadaveric examination and radiological assessment. These groups were recognised in both the coronal and axial planes and were independent of age.
The June 2014 Wrist &
Hand Roundup360 looks at: aart throwing not quite as we thought; two-gear, four-bar linkage in the wrist?; assessing outcomes in distal radial fractures; gold standard Swanson’s?; multistrand repairs of unclear benefit in flexor tendon release; for goodness’ sake, leave the thumb alone in scaphoid fractures; horizons in carpal tunnel surgery; treading the Essex-Lopresti tightrope; wrist replacement in trauma? and radial shortening reliable in the long term for Kienbock’s disease
Acetabular retractors have been implicated in damage to the femoral
and obturator nerves during total hip replacement. The aim of this
study was to determine the anatomical relationship between retractor
placement and these nerves. A posterior approach to the hip was carried out in six fresh
cadaveric half pelves. Large Hohmann acetabular retractors were
placed anteriorly, over the acetabular lip, and inferiorly, and
their relationship to the femoral and obturator nerves was examined.Objectives
Methods
We investigated the detailed anatomy of the gluteus
maximus, gluteus medius and gluteus minimus and their neurovascular
supply in 22 hips in 11 embalmed adult Caucasian human cadavers.
This led to the development of a surgical technique for an extended
posterior approach to the hip and pelvis that exposes the supra-acetabular
ilium and preserves the glutei during revision hip surgery. Proximal
to distal mobilisation of the gluteus medius from the posterior
gluteal line permits exposure and mobilisation of the superior gluteal
neurovascular bundle between the sciatic notch and the entrance
to the gluteus medius, enabling a wider exposure of the supra-acetabular
ilium. This technique was subsequently used in nine patients undergoing
revision total hip replacement involving the reconstruction of nine
Paprosky 3B acetabular defects, five of which had pelvic discontinuity.
Intra-operative electromyography showed that the innervation of
the gluteal muscles was not affected by surgery. Clinical follow-up
demonstrated good hip abduction function in all patients. These
results were compared with those of a matched cohort treated through
a Kocher–Langenbeck approach. Our modified approach maximises the
exposure of the ilium above the sciatic notch while protecting the
gluteal muscles and their neurovascular bundle. Cite this article: Bone Joint J 2014;96-B:48–53.
The use of two implants to manage concomitant ipsilateral femoral
shaft and proximal femoral fractures has been indicated, but no
studies address the relationship of dynamic hip screw (DHS) side
plate screws and the intramedullary nail where failure might occur
after union. This study compares different implant configurations
in order to investigate bridging the gap between the distal DHS
and tip of the intramedullary nail. A total of 29 left synthetic femora were tested in three groups:
1) gapped short nail (GSN); 2) unicortical short nail (USN), differing
from GSN by the use of two unicortical bridging screws; and 3) bicortical
long nail (BLN), with two angled bicortical and one unicortical bridging
screws. With these findings, five matched-pairs of cadaveric femora
were tested in two groups: 1) unicortical long nail (ULN), with
a longer nail than USN and three bridging unicortical screws; and
2) BLN. Specimens were axially loaded to 22.7 kg (50 lb), and internally
rotated 90°/sec until failure.Objectives
Methods
Fractures and nonunions of the proximal humerus are increasingly treated by open reduction and internal fixation. The extended deltopectoral approach remains the most widely used for this purpose. However, it provides only limited exposure of the lateral and posterior aspects of the proximal humerus. We have previously described the alternative extended deltoid-splitting approach. In this paper we outline variations and extensions of this technique that we have developed in the management of further patients with these fractures.
This annotation considers the place of extra-articular
reconstruction in the treatment of anterior cruciate ligament (ACL)
deficiency. Extra-articular reconstruction has been employed over
the last century to address ACL deficiency. However, the technique
has not gained favour, primarily due to residual instability and
the subsequent development of degenerative changes in the lateral
compartment of the knee. Thus intra-articular reconstruction has
become the technique of choice. However, intra-articular reconstruction
does not restore normal knee kinematics. Some authors have recommended
extra-articular reconstruction in conjunction with an intra-articular
technique. The anatomy and biomechanics of the anterolateral structures
of the knee remain largely undetermined. Further studies to establish
the structure and function of the anterolateral structures may lead
to more anatomical extra-articular reconstruction techniques that
supplement intra-articular reconstruction. This might reduce residual
pivot shift after an intra-articular reconstruction and thus improve
the post-operative kinematics of the knee.