Advertisement for orthosearch.org.uk
Results 401 - 420 of 657
Results per page:
Bone & Joint Research
Vol. 7, Issue 2 | Pages 157 - 165
1 Feb 2018
Sun Y Kiraly AJ Sun AR Cox M Mauerhan DR Hanley EN

Objectives

The objectives of this study were: 1) to examine osteophyte formation, subchondral bone advance, and bone marrow lesions (BMLs) in osteoarthritis (OA)-prone Hartley guinea pigs; and 2) to assess the disease-modifying activity of an orally administered phosphocitrate ‘analogue’, Carolinas Molecule-01 (CM-01).

Methods

Young Hartley guinea pigs were divided into two groups. The first group (n = 12) had drinking water and the second group (n = 9) had drinking water containing CM-01. Three guinea pigs in each group were euthanized at age six, 12, and 18 months, respectively. Three guinea pigs in the first group were euthanized aged three months as baseline control. Radiological, histological, and immunochemical examinations were performed to assess cartilage degeneration, osteophyte formation, subchondral bone advance, BMLs, and the levels of matrix metalloproteinse-13 (MMP13) protein expression in the knee joints of hind limbs.


The Bone & Joint Journal
Vol. 100-B, Issue 1_Supple_A | Pages 9 - 16
1 Jan 2018
Su EP Justin DF Pratt CR Sarin VK Nguyen VS Oh S Jin S

The development and pre-clinical evaluation of nano-texturised, biomimetic, surfaces of titanium (Ti) implants treated with titanium dioxide (TiO2) nanotube arrays is reviewed. In vitro and in vivo evaluations show that TiO2 nanotubes on Ti surfaces positively affect the osseointegration, cell differentiation, mineralisation, and anti-microbial properties. This surface treatment can be superimposed onto existing macro and micro porous Ti implants creating a surface texture that also interacts with cells at the nano level. Histology and mechanical pull-out testing of specimens in rabbits indicate that TiO2 nanotubes improves bone bonding nine-fold (p = 0.008). The rate of mineralisation associated with TiO2 nanotube surfaces is about three times that of non-treated Ti surfaces. In addition to improved osseointegration properties, TiO2 nanotubes reduce the initial adhesion and colonisation of Staphylococcus epidermidis. Collectively, the properties of Ti implant surfaces enhanced with TiO2 nanotubes show great promise.

Cite this article: Bone Joint J 2018;100-B(1 Supple A):9–16.


Bone & Joint Research
Vol. 6, Issue 11 | Pages 612 - 618
1 Nov 2017
Yin C Suen W Lin S Wu X Li G Pan X

Objectives

This study looked to analyse the expression levels of microRNA-140-3p and microRNA-140-5p in synovial fluid, and their correlations to the severity of disease regarding knee osteoarthritis (OA).

Methods

Knee joint synovial fluid samples were collected from 45 patients with OA of the knee (15 mild, 15 moderate and 15 severe), ten healthy volunteers, ten patients with gouty arthritis, and ten with rheumatoid arthritis. The Kellgren–Lawrence grading (KLG) was used to assess the radiological severity of knee OA, and the patients were stratified into mild (KLG < 2), moderate (KLG = 2), and severe (KLG > 2). The expression of miR-140-3p and miR-140-5p of individual samples was measured by SYBR Green quantitative polymerase chain reaction (PCR) analysis. The expression of miR-140-3p and miR-140-5p was normalised to U6 internal control using the 2-△△CT method. All data were processed using SPSS software.


The Bone & Joint Journal
Vol. 99-B, Issue 1 | Pages 139 - 144
1 Jan 2017
Maranho DA Leonardo FHL Herrero CF Engel EE Volpon JB Nogueira-Barbosa MH

Aims

Our aim was to describe the mid-term appearances of the repair process of the Achilles tendon after tenotomy in children with a clubfoot treated using the Ponseti method.

Patients and Methods

A total of 15 children (ten boys, five girls) with idiopathic clubfoot were evaluated at a mean of 6.8 years (5.4 to 8.1) after complete percutaneous division of the Achilles tendon. The contour and subjective thickness of the tendon were recorded, and superficial defects and its strength were assessed clinically. The echogenicity, texture, thickness, peritendinous irregularities and potential for deformation of the tendon were evaluated by ultrasonography.


The Bone & Joint Journal
Vol. 98-B, Issue 2 | Pages 160 - 165
1 Feb 2016
Farrier AJ C. Sanchez Franco L Shoaib A Gulati V Johnson N Uzoigwe CE Choudhury MZ

The ageing population and an increase in both the incidence and prevalence of cancer pose a healthcare challenge, some of which is borne by the orthopaedic community in the form of osteoporotic fractures and metastatic bone disease. In recent years there has been an increasing understanding of the pathways involved in bone metabolism relevant to osteoporosis and metastases in bone. Newer therapies may aid the management of these problems. One group of drugs, the antibody mediated anti-resorptive therapies (AMARTs) use antibodies to block bone resorption pathways. This review seeks to present a synopsis of the guidelines, pharmacology and potential pathophysiology of AMARTs and other new anti-resorptive drugs.

We evaluate the literature relating to AMARTs and new anti-resorptives with special attention on those approved for use in clinical practice.

Denosumab, a monoclonal antibody against Receptor Activator for Nuclear Factor Kappa-B Ligand. It is the first AMART approved by the National Institute for Health and Clinical Excellence and the US Food and Drug Administration. Other novel anti-resorptives awaiting approval for clinical use include Odanacatib.

Denosumab is indicated for the treatment of osteoporosis and prevention of the complications of bone metastases. Recent evidence suggests, however, that denosumab may have an adverse event profile similar to bisphosphonates, including atypical femoral fractures. It is, therefore, essential that orthopaedic surgeons are conversant with these medications and their safe usage.

Take home message: Denosumab has important orthopaedic indications and has been shown to significantly reduce patient morbidity in osteoporosis and metastatic bone disease.

Cite this article: Bone Joint J 2016;98-B:160–5.


The Bone & Joint Journal
Vol. 98-B, Issue 6 | Pages 730 - 735
1 Jun 2016
Bsat S Frei H Beaulé PE

The acetabular labrum is a soft-tissue structure which lines the acetabular rim of the hip joint. Its role in hip joint biomechanics and joint health has been of particular interest over the past decade. In normal hip joint biomechanics, the labrum is crucial in retaining a layer of pressurised intra-articular fluid for joint lubrication and load support/distribution. Its seal around the femoral head is further regarded as a contributing to hip stability through its suction effect. The labrum itself is also important in increasing contact area thereby reducing contact stress. Given the labrum’s role in normal hip joint biomechanics, surgical techniques for managing labral damage are continuously evolving as our understanding of its anatomy and function continue to progress. The current paper aims to review the anatomy and biomechanical function of the labrum and how they are affected by differing surgical techniques.

Take home message: The acetabular labrum plays a critical role in hip function and maintaining and restoring its function during surgical intervention remain an essential goal.

Cite this article: Bone Joint J 2016;98-B:730–5.


Bone & Joint 360
Vol. 6, Issue 4 | Pages 23 - 25
1 Aug 2017


Bone & Joint Research
Vol. 5, Issue 12 | Pages 602 - 609
1 Dec 2016
Muto T Kokubu T Mifune Y Inui A Sakata R Harada Y Takase F Kurosaka M

Objectives

Triamcinolone acetonide (TA) is widely used for the treatment of rotator cuff injury because of its anti-inflammatory properties. However, TA can also produce deleterious effects such as tendon degeneration or rupture. These harmful effects could be prevented by the addition of platelet-rich plasma (PRP), however, the anti-inflammatory and anti-degenerative effects of the combined use of TA and PRP have not yet been made clear. The objective of this study was to determine how the combination of TA and PRP might influence the inflammation and degeneration of the rotator cuff by examining rotator cuff-derived cells induced by interleukin (IL)-1ß.

Methods

Rotator cuff-derived cells were seeded under inflammatory stimulation conditions (with serum-free medium with 1 ng/ml IL-1ß for three hours), and then cultured in different media: serum-free (control group), serum-free + TA (0.1mg/ml) (TA group), serum-free + 10% PRP (PRP group), and serum-free + TA (0.1mg/ml) + 10% PRP (TA+PRP group). Cell morphology, cell viability, and expression of inflammatory and degenerative mediators were assessed.


Bone & Joint Research
Vol. 4, Issue 7 | Pages 105 - 116
1 Jul 2015
Shea CA Rolfe RA Murphy P

Construction of a functional skeleton is accomplished through co-ordination of the developmental processes of chondrogenesis, osteogenesis, and synovial joint formation. Infants whose movement in utero is reduced or restricted and who subsequently suffer from joint dysplasia (including joint contractures) and thin hypo-mineralised bones, demonstrate that embryonic movement is crucial for appropriate skeletogenesis. This has been confirmed in mouse, chick, and zebrafish animal models, where reduced or eliminated movement consistently yields similar malformations and which provide the possibility of experimentation to uncover the precise disturbances and the mechanisms by which movement impacts molecular regulation. Molecular genetic studies have shown the important roles played by cell communication signalling pathways, namely Wnt, Hedgehog, and transforming growth factor-beta/bone morphogenetic protein. These pathways regulate cell behaviours such as proliferation and differentiation to control maturation of the skeletal elements, and are affected when movement is altered. Cell contacts to the extra-cellular matrix as well as the cytoskeleton offer a means of mechanotransduction which could integrate mechanical cues with genetic regulation. Indeed, expression of cytoskeletal genes has been shown to be affected by immobilisation. In addition to furthering our understanding of a fundamental aspect of cell control and differentiation during development, research in this area is applicable to the engineering of stable skeletal tissues from stem cells, which relies on an understanding of developmental mechanisms including genetic and physical criteria. A deeper understanding of how movement affects skeletogenesis therefore has broader implications for regenerative therapeutics for injury or disease, as well as for optimisation of physical therapy regimes for individuals affected by skeletal abnormalities.

Cite this article: Bone Joint Res 2015;4:105–116


The Bone & Joint Journal
Vol. 98-B, Issue 10 | Pages 1312 - 1319
1 Oct 2016
Spang C Alfredson H Docking SI Masci L Andersson G

In recent years, the plantaris tendon has been implicated in the development of chronic painful mid-portion Achilles tendinopathy. In some cases, a thickened plantaris tendon is closely associated with the Achilles tendon, and surgical excision of the plantaris tendon has been reported to be curative in patients who have not derived benefit following conservative treatment and surgical interventions.

The aim of this review is to outline the basic aspects of, and the recent research findings, related to the plantaris tendon, covering anatomical and clinical studies including those dealing with histology, imaging and treatment.

Cite this article: Bone Joint J 2016;98-B:1312–19.


Bone & Joint Research
Vol. 6, Issue 7 | Pages 439 - 445
1 Jul 2017
Sekimoto T Ishii M Emi M Kurogi S Funamoto T Yonezawa Y Tajima T Sakamoto T Hamada H Chosa E

Objectives

We have previously investigated an association between the genome copy number variation (CNV) and acetabular dysplasia (AD). Hip osteoarthritis is associated with a genetic polymorphism in the aspartic acid repeat in the N-terminal region of the asporin (ASPN) gene; therefore, the present study aimed to investigate whether the CNV of ASPN is involved in the pathogenesis of AD.

Methods

Acetabular coverage of all subjects was evaluated using radiological findings (Sharp angle, centre-edge (CE) angle, acetabular roof obliquity (ARO) angle, and minimum joint space width). Genomic DNA was extracted from peripheral blood leukocytes. Agilent’s region-targeted high-density oligonucleotide tiling microarray was used to analyse 64 female AD patients and 32 female control subjects. All statistical analyses were performed using EZR software (Fisher’s exact probability test, Pearson’s correlation test, and Student’s t-test).


The Bone & Joint Journal
Vol. 98-B, Issue 8 | Pages 1020 - 1026
1 Aug 2016
Śmigielski R Zdanowicz U Drwięga M Ciszek B Williams A

Anterior cruciate ligament (ACL) reconstruction is commonly performed and has been for many years. Despite this, the technical details related to ACL anatomy, such as tunnel placement, are still a topic for debate. In this paper, we introduce the flat ribbon concept of the anatomy of the ACL, and its relevance to clinical practice.

Cite this article: Bone Joint J 2016;98-B:1020–6.


The Bone & Joint Journal
Vol. 99-B, Issue 5 | Pages 680 - 685
1 May 2017
Morris R Hossain M Evans A Pallister I

Aims

This study describes the use of the Masquelet technique to treat segmental tibial bone loss in 12 patients.

Patients and Methods

This retrospective case series reviewed 12 patients treated between 2010 and 2015 to determine their clinical outcome. Patients were mostly male with a mean age of 36 years (16 to 62). The outcomes recorded included union, infection and amputation. The mean follow-up was 675 days (403 to 952).


Bone & Joint Research
Vol. 5, Issue 7 | Pages 301 - 306
1 Jul 2016
Madhuri V Santhanam M Rajagopal K Sugumar LK Balaji V

Objectives

To determine the pattern of mutations of the WISP3 gene in clinically identified progressive pseudorheumatoid dysplasia (PPD) in an Indian population.

Patients and Methods

A total of 15 patients with clinical features of PPD were enrolled in this study. Genomic DNA was isolated and polymerase chain reaction performed to amplify the WISP3 gene. Screening for mutations was done by conformation-sensitive gel electrophoresis, beginning with the fifth exon and subsequently proceeding to the remaining exons. Sanger sequencing was performed for both forward and reverse strands to confirm the mutations.


Bone & Joint Research
Vol. 6, Issue 5 | Pages 277 - 283
1 May 2017
Yoshikawa M Nakasa T Ishikawa M Adachi N Ochi M

Objectives

Regenerative medicine is an emerging field aimed at the repair and regeneration of various tissues. To this end, cytokines (CKs), growth factors (GFs), and stem/progenitor cells have been applied in this field. However, obtaining and preparing these candidates requires invasive, costly, and time-consuming procedures. We hypothesised that skeletal muscle could be a favorable candidate tissue for the concept of a point-of-care approach. The purpose of this study was to characterize and confirm the biological potential of skeletal muscle supernatant for use in regenerative medicine.

Methods

Semitendinosus muscle was used after harvesting tendon from patients who underwent anterior cruciate ligament reconstructions. A total of 500 milligrams of stripped muscle was minced and mixed with 1 mL of saline. The collected supernatant was analysed by enzyme-linked immunosorbent assay (ELISA) and flow cytometry. The biological effects of the supernatant on cell proliferation, osteogenesis, and angiogenesis in vitro were evaluated using human mesenchymal stem cells (hMSCs) and human umbilical cord vein endothelial cells (HUVECs).


Bone & Joint Research
Vol. 5, Issue 9 | Pages 427 - 435
1 Sep 2016
Stravinskas M Horstmann P Ferguson J Hettwer W Nilsson M Tarasevicius S Petersen MM McNally MA Lidgren L

Objectives

Deep bone and joint infections (DBJI) are directly intertwined with health, demographic change towards an elderly population, and wellbeing.

The elderly human population is more prone to acquire infections, and the consequences such as pain, reduced quality of life, morbidity, absence from work and premature retirement due to disability place significant burdens on already strained healthcare systems and societal budgets.

DBJIs are less responsive to systemic antibiotics because of poor vascular perfusion in necrotic bone, large bone defects and persistent biofilm-based infection. Emerging bacterial resistance poses a major threat and new innovative treatment modalities are urgently needed to curb its current trajectory.

Materials and Methods

We present a new biphasic ceramic bone substitute consisting of hydroxyapatite and calcium sulphate for local antibiotic delivery in combination with bone regeneration. Gentamicin release was measured in four setups: 1) in vitro elution in Ringer’s solution; 2) local elution in patients treated for trochanteric hip fractures or uncemented hip revisions; 3) local elution in patients treated with a bone tumour resection; and 4) local elution in patients treated surgically for chronic corticomedullary osteomyelitis.


Bone & Joint Research
Vol. 5, Issue 10 | Pages 500 - 511
1 Oct 2016
Raina DB Gupta A Petersen MM Hettwer W McNally M Tägil M Zheng M Kumar A Lidgren L

Objectives

We have observed clinical cases where bone is formed in the overlaying muscle covering surgically created bone defects treated with a hydroxyapatite/calcium sulphate biomaterial. Our objective was to investigate the osteoinductive potential of the biomaterial and to determine if growth factors secreted from local bone cells induce osteoblastic differentiation of muscle cells.

Materials and Methods

We seeded mouse skeletal muscle cells C2C12 on the hydroxyapatite/calcium sulphate biomaterial and the phenotype of the cells was analysed. To mimic surgical conditions with leakage of extra cellular matrix (ECM) proteins and growth factors, we cultured rat bone cells ROS 17/2.8 in a bioreactor and harvested the secreted proteins. The secretome was added to rat muscle cells L6. The phenotype of the muscle cells after treatment with the media was assessed using immunostaining and light microscopy.


Bone & Joint Research
Vol. 6, Issue 7 | Pages 423 - 432
1 Jul 2017
van der Stok J Hartholt KA Schoenmakers DAL Arts JJC

Objectives

The aim of this systematic literature review was to assess the clinical level of evidence of commercially available demineralised bone matrix (DBM) products for their use in trauma and orthopaedic related surgery.

Methods

A total of 17 DBM products were used as search terms in two available databases: Embase and PubMed according to the Preferred Reporting Items for Systematic Reviews and Meta Analyses statement. All articles that reported the clinical use of a DBM-product in trauma and orthopaedic related surgery were included.


Bone & Joint Research
Vol. 3, Issue 6 | Pages 193 - 202
1 Jun 2014
Hast MW Zuskov A Soslowsky LJ

Tendinopathy is a debilitating musculoskeletal condition which can cause significant pain and lead to complete rupture of the tendon, which often requires surgical repair. Due in part to the large spectrum of tendon pathologies, these disorders continue to be a clinical challenge. Animal models are often used in this field of research as they offer an attractive framework to examine the cascade of processes that occur throughout both tendon pathology and repair. This review discusses the structural, mechanical, and biological changes that occur throughout tendon pathology in animal models, as well as strategies for the improvement of tendon healing.

Cite this article: Bone Joint Res 2014;3:193–202.


The Bone & Joint Journal
Vol. 97-B, Issue 8 | Pages 1152 - 1156
1 Aug 2015
Gupta S Cafferky D Cowie F Riches P Mahendra A

Extracorporeal irradiation of an excised tumour-bearing segment of bone followed by its re-implantation is a technique used in bone sarcoma surgery for limb salvage when the bone is of reasonable quality. There is no agreement among previous studies about the dose of irradiation to be given: up to 300 Gy have been used.

We investigated the influence of extracorporeal irradiation on the elastic and viscoelastic properties of bone. Bone was harvested from mature cattle and subdivided into 13 groups: 12 were exposed to increasing levels of irradiation: one was not and was used as a control. The specimens, once irradiated, underwent mechanical testing in saline at 37°C.

The mechanical properties of each group, including Young’s modulus, storage modulus and loss modulus, were determined experimentally and compared with the control group.

There were insignificant changes in all of these mechanical properties with an increasing level of irradiation.

We conclude that the overall mechanical effect of high levels of extracorporeal irradiation (300 Gy) on bone is negligible. Consequently the dose can be maximised to reduce the risk of local tumour recurrence.

Cite this article: Bone Joint J 2015;97-B:1152–6.