Advertisement for orthosearch.org.uk
Results 21 - 40 of 1405
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 33-B, Issue 3 | Pages 392 - 398
1 Aug 1951
Newman PH Scales JT

In addition to its orthopaedic interest, this case illustrates the special behaviour of fine particles of a synthetic material when implanted in the human body. These results may interest those engaged in the control of dusts in the plastics industry, for the inhalation of such dusts may well result in "implantation" of the material in the lung, with consequent histological changes.


The Bone & Joint Journal
Vol. 99-B, Issue 7 | Pages 951 - 957
1 Jul 2017
Poole WEC Wilson DGG Guthrie HC Bellringer SF Freeman R Guryel E Nicol SG

Aims

Fractures of the distal femur can be challenging to manage and are on the increase in the elderly osteoporotic population. Management with casting or bracing can unacceptably limit a patient’s ability to bear weight, but historically, operative fixation has been associated with a high rate of re-operation. In this study, we describe the outcomes of fixation using modern implants within a strategy of early return to function.

Patients and Methods

All patients treated at our centre with lateral distal femoral locking plates (LDFLP) between 2009 and 2014 were identified. Fracture classification and operative information including weight-bearing status, rates of union, re-operation, failure of implants and mortality rate, were recorded.


The Bone & Joint Journal
Vol. 95-B, Issue 6 | Pages 782 - 787
1 Jun 2013
Niki Y Takeda Y Udagawa K Enomoto H Toyama Y Suda Y

We investigated the characteristics of patients who achieved Japanese-style deep flexion (seiza-sitting) after total knee replacement (TKR) and measured three-dimensional positioning and the contact positions of the femoral and tibial components. Seiza-sitting was achieved after surgery by 23 patients (29 knees) of a series of 463 TKRs in 341 patients. Pre-operatively most of these patients were capable of seiza-sitting, had a lower body mass index and a favourable attitude towards the Japanese lifestyle (27 of 29 knees). According to two-/three-dimensional image registration analysis in the seiza-sitting position, flexion, varus and internal rotation angles of the tibial component relative to the femoral component had means of 148° (sd 8.0), 1.9° (sd 3.2) and 13.4° (sd 5.9), respectively. Femoral surface contact positions tended to be close to the posterior edge of the tibial polyethylene insert, particularly in the lateral compartment, but only 8.3% (two of 24) of knees showed femoral subluxation over the posterior edge. The mean contact positions of the femoral cam on the tibial post were located 7.8 mm (sd 1.5) proximal to the lowest point of the polyethylene surface and 5.5 mm (sd 0.9) medial to the centre of the post, indicating that the post-cam contact position translated medially during seiza-sitting, but not proximally. Collectively, the seiza-sitting position seems safe against component dislocation, but the risks of posterior edge loading and breakage of the tibial polyethylene post remain.

Cite this article: Bone Joint J 2013;95-B:782–7.


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 2 | Pages 340 - 340
1 Mar 1997
KARAHAN M ESEMENLI T


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 1 | Pages 172 - 172
1 Jan 1997
KARAHAN M ESEMENLI T


The Journal of Bone & Joint Surgery British Volume
Vol. 76-B, Issue 1 | Pages 156 - 157
1 Jan 1994
Saleh M Milne A


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 294 - 298
1 Feb 2021
Hadeed MM Prakash H Yarboro SR Weiss DB

Aims. The aim of this study was to determine the immediate post-fixation stability of a distal tibial fracture fixed with an intramedullary nail using a biomechanical model. This was used as a surrogate for immediate weight-bearing postoperatively. The goal was to help inform postoperative protocols. Methods. A biomechanical model of distal metaphyseal tibial fractures was created using a fourth-generation composite bone model. Three fracture patterns were tested: spiral, oblique, and multifragmented. Each fracture extended to within 4 cm to 5 cm of the plafond. The models were nearly-anatomically reduced and stabilized with an intramedullary nail and three distal locking screws. Cyclic loading was performed to simulate normal gait. Loading was completed in compression at 3,000 N at 1 Hz for a total of 70,000 cycles. Displacement (shortening, coronal and sagittal angulation) was measured at regular intervals. Results. The spiral and oblique fracture patterns withstood simulated weight-bearing with minimal displacement. The multifragmented model had early implant failure with breaking of the distal locking screws. The spiral fracture model shortened by a mean of 0.3 mm (SD 0.2), and developed a mean coronal angulation of 2.0° (SD 1.9°) and a mean sagittal angulation of 1.2° (SD 1.1°). On average, 88% of the shortening, 74% of the change in coronal alignment, and 75% of the change in sagittal alignment occurred in the first 2,500 cycles. No late acceleration of displacement was noted. The oblique fracture model shortened by a mean of 0.2 mm (SD 0.1) and developed a mean coronal angulation of 2.4° (SD 1.6°) and a mean sagittal angulation of 2.6° (SD 1.4°). On average, 44% of the shortening, 39% of the change in coronal alignment, and 79% of the change in sagittal alignment occurred in the first 2,500 cycles. No late acceleration of displacement was noted. Conclusion. For spiral and oblique fracture patterns, simulated weight-bearing resulted in a clinically acceptable degree of displacement. Most displacement occurred early in the test period, and the rate of displacement decreased over time. Based on this model, we offer evidence that early weight-bearing appears safe for well reduced oblique and spiral fractures, but not in multifragmented patterns that have poor bone contact. Cite this article: Bone Joint J 2021;103-B(2):294–298


Bone & Joint 360
Vol. 12, Issue 3 | Pages 18 - 22
1 Jun 2023

The June 2023 Foot & Ankle Roundup. 360. looks at: Nail versus plate fixation for ankle fractures; Outcomes of first ray amputation in diabetic patients; Vascular calcification on plain radiographs of the ankle to diagnose diabetes mellitus; Elderly patients with ankle fracture: the case for early weight-bearing; Active treatment for Frieberg’s disease: does it work?; Survival of ankle arthroplasty; Complications following ankle arthroscopy


The Bone & Joint Journal
Vol. 104-B, Issue 8 | Pages 972 - 979
1 Aug 2022
Richardson C Bretherton CP Raza M Zargaran A Eardley WGP Trompeter AJ

Aims. The purpose of this study was to determine the weightbearing practice of operatively managed fragility fractures in the setting of publically funded health services in the UK and Ireland. Methods. The Fragility Fracture Postoperative Mobilisation (FFPOM) multicentre audit included all patients aged 60 years and older undergoing surgery for a fragility fracture of the lower limb between 1 January 2019 and 30 June 2019, and 1 February 2021 and 14 March 2021. Fractures arising from high-energy transfer trauma, patients with multiple injuries, and those associated with metastatic deposits or infection were excluded. We analyzed this patient cohort to determine adherence to the British Orthopaedic Association Standard, “all surgery in the frail patient should be performed to allow full weight-bearing for activities required for daily living”. Results. A total of 19,557 patients (mean age 82 years (SD 9), 16,241 having a hip fracture) were included. Overall, 16,614 patients (85.0%) were instructed to perform weightbearing where required for daily living immediately postoperatively (15,543 (95.7%) hip fracture and 1,071 (32.3%) non-hip fracture patients). The median length of stay was 12.2 days (interquartile range (IQR) 7.9 to 20.0) (12.6 days (IQR 8.2 to 20.4) for hip fracture and 10.3 days (IQR 5.5 to 18.7) for non-hip fracture patients). Conclusion. Non-hip fracture patients experienced more postoperative weightbearing restrictions, although they had a shorter hospital stay. Patients sustaining fractures of the shaft and distal femur had a longer median length of stay than demographically similar patients who received hip fracture surgery. We have shown a significant disparity in weightbearing restrictions placed on patients with fragility fractures, despite the publication of a national guideline. Surgeons intentionally restrict postoperative weightbearing in the majority of non-hip fractures, yet are content with unrestricted weightbearing following operations for hip fractures. Cite this article: Bone Joint J 2022;104-B(8):972–979


The Bone & Joint Journal
Vol. 102-B, Issue 2 | Pages 155 - 161
1 Feb 2020
McMahon SE Diamond OJ Cusick LA

Aims. Complex displaced osteoporotic acetabular fractures in the elderly are associated with high levels of morbidity and mortality. Surgical options include either open reduction and internal fixation alone, or combined with total hip arthroplasty (THA). There remains a cohort of severely comorbid patients who are deemed unfit for extensive surgical reconstruction and are treated conservatively. We describe the results of a coned hemipelvis reconstruction and THA inserted via a posterior approach to the hip as the primary treatment for this severely high-risk cohort. Methods. We have prospectively monitored a series of 22 cases (21 patients) with a mean follow-up of 32 months (13 to 59). Results. The mean patient age was 79 years (67 to 87), and the mean ASA score was 3.3 (3 to 5). Three patients had high-energy injuries and 18 had low-energy injuries. All cases were associated fractures (Letournel classification: anterior column posterior hemitransverse, n = 13; associated both column, n = 6; transverse posterior wall, n = 3) with medialization of the femoral head. Mean operative time was 93 minutes (61 to 135). There have been no revisions to date. Of the 21 patients, 20 were full weight-bearing on day 1 postoperatively. Mean length of hospital stay was 12 days (5 to 27). Preoperative mobility status was maintained in 13 patients. At one year, mean Merle d’Aubigné score was 13.1 (10 to 18), mean Oxford Hip Score was 38.5 (24 to 44), mean EuroQol five-dimension five-level (EQ-5D-5L) health score was 68 (30 to 92), and mean EQ-5D-5L index score was 0.68 (0.335 to 0.837); data from 14 patients. Mortality was 9.5% (2/21) at one year. There have been no thromboembolic events, deep infections, or revisions. Conclusion. The coned hemipelvis reconstruction bypasses the fracture, creating an immediately stable construct that allows immediate full weight-bearing. The posterior approach minimizes the operative time and physiological insult in this vulnerable patient population. Early results suggest this to be a safe addition to current surgical options, targeted at the most medically frail elderly patient with a complex displaced acetabular fracture. Cite this article: Bone Joint J 2020;102-B(2):155–161


Bone & Joint Research
Vol. 11, Issue 8 | Pages 518 - 527
17 Aug 2022
Hu W Lin J Wei J Yang Y Fu K Zhu T Zhu H Zheng X

Aims. To evaluate inducing osteoarthritis (OA) by surgical destabilization of the medial meniscus (DMM) in mice with and without a stereomicroscope. Methods. Based on sample size calculation, 70 male C57BL/6 mice were randomly assigned to three surgery groups: DMM aided by a stereomicroscope; DMM by naked eye; or sham surgery. The group information was blinded to researchers. Mice underwent static weightbearing, von Frey test, and gait analysis at two-week intervals from eight to 16 weeks after surgery. Histological grade of OA was determined with the Osteoarthritis Research Society International (OARSI) scoring system. Results. Surgical DMM with or without stereomicroscope led to decrease in the mean of weightbearing percentages (-20.64% vs -21.44%, p = 0.792) and paw withdrawal response thresholds (-21.35% vs -24.65%, p = 0.327) of the hind limbs. However, the coefficient of variation (CV) of weight-bearing percentages and paw withdrawal response thresholds in naked-eye group were significantly greater than that in the microscope group (19.82% vs 6.94%, p < 0.001; 21.85% vs 9.86%, p < 0.001). The gait analysis showed a similar pattern. Cartilage degeneration was observed in both DMM-surgery groups, evidenced by increased OARSI scores (summed score: 11.23 vs 11.43, p = 0.842), but the microscope group showed less variation in OARSI score than the naked-eye group (CV: 21.03% vs 32.44%; p = 0.032). Conclusion. Although surgical DMM aided by stereomicroscope is technically difficult, it produces a relatively more homogeneous OA model in terms of the discrete degree of pain behaviours and histopathological grading when compared with surgical DMM without stereomicroscope. Cite this article: Bone Joint Res 2022;11(8):518–527


Bone & Joint Research
Vol. 10, Issue 7 | Pages 401 - 410
13 Jul 2021
Liu Z Wang H Wang S Gao J Niu L

Aims. Poly (ADP-ribose) polymerase (PARP) inhibitor has been reported to attenuate inflammatory response in rat models of inflammation. This study was designed to investigate the effect of PARP signalling in osteoarthritis (OA) cartilage inflammatory response in an OA rat model. Methods. The OA model was established by anterior cruciate ligament transection with medial meniscectomy in Wistar rats. The poly (ADP-ribose) polymerase 1 (PARP-1) shRNA (short hairpin (sh)-PARP-1) and negative control shRNA (sh-NC) were delivered using a lentiviral vector and were intra-articularly injected into rats after surgery. The weight-bearing distribution of the hind limbs and the knee joint width were measured every two weeks. The expression levels of PARP-1, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) in cartilage were determined using real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blot. The serum concentrations of inflammatory cytokines were detected using enzyme-linked immunosorbent assay (ELISA). Results. PARP-1 expression level significantly increased in the cartilage of the established OA rat model. sh-PARP-1 treatment suppressed PARP-1 levels, decreased the Δ Force (the difference between the weight on ipsilateral limb and contralateral limb) and the knee joint width, inhibited cartilage matrix catabolic enzymes, and ameliorated OA cartilage degradation and attenuated inflammatory response. Conclusion. PARP-1 inhibition attenuates OA cartilage inflammatory response in the OA rat model. Cite this article: Bone Joint Res 2021;10(7):401–410


Bone & Joint Research
Vol. 9, Issue 11 | Pages 761 - 767
1 Nov 2020
Hada M Mizu-uchi H Okazaki K Murakami K Kaneko T Higaki H Nakashima Y

Aims. This study aims to investigate the effects of posterior tibial slope (PTS) on knee kinematics involved in the post-cam mechanism in bi-cruciate stabilized (BCS) total knee arthroplasty (TKA) using computer simulation. Methods. In total, 11 different PTS (0° to 10°) values were simulated to evaluate the effect of PTS on anterior post-cam contact conditions and knee kinematics in BCS TKA during weight-bearing stair climbing (from 86° to 6° of knee flexion). Knee kinematics were expressed as the lowest points of the medial and lateral femoral condyles on the surface of the tibial insert, and the anteroposterior translation of the femoral component relative to the tibial insert. Results. Anterior post-cam contact in BCS TKA was observed with the knee near full extension if PTS was 6° or more. BCS TKA showed a bicondylar roll forward movement from 86° to mid-flexion, and two different patterns from mid-flexion to knee extension: screw home movement without anterior post-cam contact and bicondylar roll forward movement after anterior post-cam contact. Knee kinematics in the simulation showed similar trends to the clinical in vivo data and were almost within the range of inter-specimen variability. Conclusion. Postoperative knee kinematics in BCS TKA differed according to PTS and anterior post-cam contact; in particular, anterior post-cam contact changed knee kinematics, which may affect the patient’s perception of the knee during activities. Cite this article: Bone Joint Res 2020;9(11):761–767


Bone & Joint Research
Vol. 8, Issue 2 | Pages 81 - 89
1 Feb 2019
Funk GA Menuey EM Cole KA Schuman TP Kilway KV McIff TE

Objectives. The objective of this study was to characterize the effect of rifampin incorporation into poly(methyl methacrylate) (PMMA) bone cement. While incompatibilities between the two materials have been previously noted, we sought to identify and quantify the cause of rifampin’s effects, including alterations in curing properties, mechanical strength, and residual monomer content. Methods. Four cement groups were prepared using commercial PMMA bone cement: a control; one with 1 g of rifampin; and one each with equimolar amounts of ascorbic acid or hydroquinone relative to the amount of rifampin added. The handling properties, setting time, exothermic output, and monomer loss were measured throughout curing. The mechanical strength of each group was tested over 14 days. A radical scavenging assay was used to assess the scavenging abilities of rifampin and its individual moieties. Results. Compared with control, the rifampin-incorporated cement had a prolonged setting time and a reduction in exothermic output during polymerization. The rifampin cement showed significantly reduced strength and was below the orthopaedic weight-bearing threshold of 70 MPa. Based on the radical scavenging assay and strength tests, the hydroquinone structure within rifampin was identified as the polymerization inhibitor. Conclusion. The incorporation of rifampin into PMMA bone cement interferes with the cement’s radical polymerization. This interference is due to the hydroquinone moiety within rifampin. This combination alters the cement’s handling and curing properties, and lowers the strength below the threshold for weight-bearing applications. Additionally, the incomplete polymerization leads to increased toxic monomer output, which discourages its use even in non-weight-bearing applications. Cite this article: G. A. Funk, E. M. Menuey, K. A. Cole, T. P. Schuman, K. V. Kilway, T. E. McIff. Radical scavenging of poly(methyl methacrylate) bone cement by rifampin and clinically relevant properties of the rifampin-loaded cement. Bone Joint Res 2019;8:81–89. DOI: 10.1302/2046-3758.82.BJR-2018-0170.R2


The Bone & Joint Journal
Vol. 102-B, Issue 9 | Pages 1248 - 1255
1 Sep 2020
Laufer A Frommer A Gosheger G Roedl R Broeking JN Toporowski G Rachbauer AM Vogt B

Aims. The treatment of tibial aplasia is controversial. Amputation represents the gold standard with good functional results, but is frequently refused by the families. In these patients, treatment with reconstructive limb salvage can be considered. Due to the complexity of the deformity, this remains challenging and should be staged. The present study evaluated the role of femoro-pedal distraction using a circular external fixator in reconstructive treatment of tibial aplasia. The purpose of femoro-pedal distraction is to realign the limb and achieve soft tissue lengthening to allow subsequent reconstructive surgery. Methods. This was a retrospective study involving ten patients (12 limbs) with tibial aplasia, who underwent staged reconstruction. During the first operation a circular hexapod external fixator was applied and femoro-pedal distraction was undertaken over several months. Subsequent surgery included reconstruction of the knee joint and alignment of the foot. Results. The mean follow-up was 7.1 years (2 to 10). The mean age of the patients at the time of the application of the fixator was 2.3 years (1.1 to 5.0). The mean time under distraction was 139.7 days (81.0 to 177.0). A mean fibular distalization of 38.7 mm (14.0 to 67.0) was achieved. Pin infections occurred in four limbs (33.3%) and osteitis in one. A femoral fracture occurred in one patient. Premature removal of the frame was not required in any patient. Sufficient realignment of the leg as well as soft tissue lengthening was achieved in all patients, allowing subsequent reconstruction. All patients were able to mobilize fully weight bearing after reconstruction. Functional outcome was limited in all limbs, and five patients (50.0%) required additional reconstructive operations. Conclusion. Regarding the functional results in the treatment of tibial aplasia, amputation remains superior to limb salvage. The latter procedure should only be performed in patients whose parents refuse amputation. Femoro-pedal distraction efficiently prepares the limb by realigning the leg and soft tissue lengthening. Minor complications are frequent, but usually do not hinder the continuation of distraction. Even though a fully weight-bearing limb is achieved, the functional outcome of reconstructive treatment remains limited. Recurrent deformities frequently occur and may require further operations. Cite this article: Bone Joint J 2020;102-B(9):1248–1255


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 8 | Pages 1090 - 1095
1 Aug 2010
Seon JK Park SJ Yoon TR Lee KB Moon ES Song EK

The amount of anteroposterior laxity required for a good range of movement and knee function in a cruciate-retaining total knee replacement (TKR) continues to be debated. We undertook a retrospective study to evaluate the effects of anteroposterior laxity on the range of movement and knee function in 55 patients following the e-motion cruciate-retaining TKR with a minimum follow-up of two years. The knees were divided into stable (anteroposterior translation, ≤ 10 mm, 38 patients) and unstable (anteroposterior translation, > 10 mm, 17) groups based on the anteroposterior laxity, measured using stress radiographs. We compared the Hospital for Special Surgery (HSS) scores, the Western Ontario MacMasters University Osteoarthritis (WOMAC) index, weight-bearing flexion, non-weight-bearing flexion and the reduction of flexion under weight-bearing versus non-weight-bearing conditions, which we referred to as delta flexion, between the two groups at the final follow-up. There were no differences between the stable and unstable groups with regard to the mean HHS and WOMAC total scores, as well as weight-bearing and non-weight-bearing flexion (p = 0.277, p = 0.082, p = 0.095 and p = 0.646, respectively). However, the stable group had a better WOMAC function score and less delta flexion than the unstable group (p = 0.011 and p = 0.005, respectively). Our results suggest that stable knees with laxity ≤ 10 mm have a good functional outcome and less reduction of flexion under weight-bearing conditions than unstable knees with laxity > 10 mm following an e-motion cruciate-retaining TKR


Bone & Joint Research
Vol. 9, Issue 6 | Pages 314 - 321
1 Jun 2020
Bliven E Sandriesser S Augat P von Rüden C Hackl S

Aims. Evaluate if treating an unstable femoral neck fracture with a locking plate and spring-loaded telescoping screw system would improve construct stability compared to gold standard treatment methods. Methods. A 31B2 Pauwels’ type III osteotomy with additional posterior wedge was cut into 30 fresh-frozen femur cadavers implanted with either: three cannulated screws in an inverted triangle configuration (CS), a sliding hip screw and anti-rotation screw (SHS), or a locking plate system with spring-loaded telescoping screws (LP). Dynamic cyclic compressive testing representative of walking with increasing weight-bearing was applied until failure was observed. Loss of fracture reduction was recorded using a high-resolution optical motion tracking system. Results. LP constructs demonstrated the highest mean values for initial stiffness and failure load. LP and SHS constructs survived on mean over 50% more cycles and to loads 450 N higher than CS. During the early stages of cyclic loading, mean varus collapse of the femoral head was 0.5° (SD 0.8°) for LP, 0.7° (SD 0.7°) for SHS, and 1.9° (SD 2.3°) for CS (p = 0.071). At 30,000 cycles (1,050 N) mean femoral neck shortening was 1.8 mm (SD 1.9) for LP, 2.0 mm (SD 0.9) for SHS, and 3.2 mm (SD 2.5) for CS (p = 0.262). Mean leg shortening at construct failure was 4.9 mm (SD 2.7) for LP, 8.9 mm (SD 3.2) for SHS, and 7.0 mm (SD 4.3) for CS (p = 0.046). Conclusion. Use of the LP system provided similar (hip screw) or better (cannulated screws) biomechanical performance as the current gold standard methods suggesting that the LP system could be a promising alternative for the treatment of unstable fractures of the femoral neck. Cite this article: Bone Joint Res 2020;9(6):314–321


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 6 | Pages 817 - 823
1 Jun 2011
Solomon LB Callary SA Stevenson AW McGee MA Chehade MJ Howie DW

We investigated the stability of seven Schatzker type II fractures of the lateral tibial plateau treated by subchondral screws and a buttress plate followed by immediate partial weight-bearing. In order to assess the stability of the fracture, weight-bearing inducible displacements of the fracture fragments and their migration over a one-year period were measured by differentially loaded radiostereometric analysis and standard radiostereometric analysis, respectively. The mean inducible craniocaudal fracture fragment displacements measured −0.30 mm (−0.73 to 0.02) at two weeks and 0.00 mm (−0.12 to 0.15) at 52 weeks. All inducible displacements were elastic in nature under all loads at each examination during follow-up. At one year, the mean craniocaudal migration of the fracture fragments was −0.34 mm (−1.64 to 1.51). Using radiostereometric methods, this case series has shown that in the Schatzker type II fractures investigated, internal fixation with subchondral screws and a buttress plate provided adequate stability to allow immediate post-operative partial weight-bearing, without harmful consequences


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 12 | Pages 1670 - 1674
1 Dec 2006
Rogers BA Murphy CL Cannon SR Briggs TWR

The weight-bearing status of articular cartilage has been shown to affect its biochemical composition. We have investigated the topographical variation of sulphated glycosaminoglycan (GAG) relative to the DNA content of the chondrocyte in human distal femoral articular cartilage. Paired specimens of distal femoral articular cartilage, from weight-bearing and non-weight-bearing regions, were obtained from 13 patients undergoing above-knee amputation. After papain enzyme digestion, spectrophotometric GAG and fluorometric DNA assays assessed the biochemical composition of the samples. The results were analysed using a paired t-test. Although there were no significant differences in cell density between the regions, the weight-bearing areas showed a significantly higher concentration of GAG relative to DNA when compared with non-weight-bearing areas (p = 0.02). We conclude that chondrocytes are sensitive to their mechanical environment, and that local loading conditions influence the metabolism of the cells and hence the biochemical structure of the tissue


The Bone & Joint Journal
Vol. 97-B, Issue 4 | Pages 498 - 502
1 Apr 2015
Deep K Eachempati KK Apsingi S

The restoration of knee alignment is an important goal during total knee arthroplasty (TKA). In the past surgeons aimed to restore neutral limb alignment during surgery. However, previous studies have demonstrated alignment to be dynamic, varying depending on the position of the limb and the degree of weight-bearing, and between patients. We used a validated computer navigation system to measure the femorotibial mechanical angle (FTMA) in 264 knees in 77 male and 55 female healthy volunteers aged 18 to 35 years (mean 26.2). We found the mean supine alignment to be a varus angle of 1.2° (standard deviation (. sd. ) 4), with few patients having neutral alignment. FTMA differs significantly between males and females (with a mean varus of 1.7° (. sd. 4) and 0.4° (. sd. 3.9), respectively; p = 0.008). It changes significantly with posture, the knee hyperextending by a mean of 5.6°, and coronal plane alignment becoming more varus by 2.2° (. sd. 3.6) on standing compared with supine. Knee alignment is different in different individuals and is dynamic in nature, changing with different postures. This may have implications for the assessment of alignment in TKA, which is achieved in non-weight-bearing conditions and which may not represent the situation observed during weight-bearing. Cite this article: Bone Joint J 2015; 97-B:498–502