The aim of this study was to examine the results of revision
total knee arthroplasty (TKA) undertaken for stiffness in the absence
of sepsis or loosening. We present the results of revision surgery for stiff TKA in 48
cases (35 (72.9%) women and 13 (27.1%) men). The mean age at revision
surgery was 65.5 years (42 to 83). All surgeries were performed
by a single surgeon. Stiffness was defined as an arc of flexion
of <
70° or a flexion contracture of >
15°. The changes in the
range of movement (ROM) and the Western Ontario and McMasters Osteoarthritis
index scores (WOMAC) were recorded.Aims
Patients and Methods
The use of robotics in arthroplasty surgery is expanding rapidly as improvements in the technology evolve. This article examines current evidence to justify the usage of robotics, as well as the future potential in this emerging field.
We investigated whether the extension gap in total knee replacement (TKR) would be changed when the femoral component was inserted. The extension gap was measured with and without the femoral component in place in 80 patients with varus osteoarthritis undergoing posterior-stabilised TKR. The effect of a post-operative increase in the size of the femoral posterior condyles was also evaluated. The results showed that placement of the femoral component significantly reduced the medial and lateral extension gaps by means of 1.0 mm and 0.9 mm, respectively (p <
0.0001). The extension gap was reduced when a larger femoral component was selected relative to the thickness of the resected posterior condyle. When the post-operative posterior lateral condyle was larger than that pre-operatively, 17 of 41 knees (41%) showed a decrease in the extension gap of >
2.0 mm. When a specially made femoral trial component with a posterior condyle enlarged by 4 mm was tested, the medial and lateral extension gaps decreased further by means of 2.1 mm and 2.8 mm, respectively. If the thickness of the posterior condyle is expected to be larger than that pre-operatively, it should be recognised that the extension gap is likely to be altered. This should be taken into consideration when preparing the extension gap.
The optimal management of the tibial slope in
achieving a high flexion angle in posterior-stabilised (PS) total
knee replacement (TKR) is not well understood, and most studies
evaluating the posterior tibial slope have been conducted on cruciate-retaining
TKRs. We analysed pre- and post-operative tibial slope differences,
pre- and post-operative coronal knee alignment and post-operative
maximum flexion angle in 167 patients undergoing 209 TKRs. The mean
pre-operative posterior tibial slope was 8.6° (1.3° to 17°) and
post-operatively it was 8.0° (0.1° to 16.7°). Multiple linear regression
analysis showed that the absolute difference between pre- and post-operative
tibial slope (p <
0.001), post-operative coronal alignment (p
= 0.02) and pre-operative range of movement (p <
0.001) predicted post-operative
flexion. The variance of change in tibial slope became larger as
the post-operative maximum flexion angle decreased. The odds ratio
of having a post-operative flexion angle <
100° was 17.6 if the
slope change was >
2°. Our data suggest that recreation of the anatomical
tibial slope appears to improve maximum flexion after posterior-stabilised
TKR, provided coronal alignment has been restored. Cite this article:
Instability after arthroplasty of the shoulder
is difficult to correct surgically. Soft-tissue procedures and revision surgery
using unconstrained anatomical components are associated with a
high rate of failure. The purpose of this study was to determine
the results of revision of an unstable anatomical shoulder arthroplasty
to a reverse design prosthesis. Between 2004 and 2007, 33 unstable
anatomical shoulder arthroplasties were revised to a reverse design.
The mean age of the patients was 71 years (53 to 86) and their mean
follow-up was 42 months (25 to 71). The mean time to revision was
26 months (4 to 164). Pain scores improved significantly (pre-operative
visual analogue scale (VAS) of 7.2 ( Cite this article:
Mechanical failure because of wear or fracture of the polyethylene tibial post in posteriorly-stabilised total knee replacements has been extensively described. In this study of 12 patients with a clinically and radiologically successful NexGen LPS posteriorly-stabilised prosthesis impingement of the anterior tibial post was evaluated in vivo in three dimensions during gait using radiologically-based image-matching techniques. Impingement was observed in all images of the patients during the stance phase, although the NexGen LPS was designed to accommodate 14° of hyperextension of the component before impingement occurred. Impingement arises as a result of posterior translation of the femur during the stance phase. Further attention must therefore be given to the configuration of the anterior portion of the femoral component and the polyethylene post when designing posteriorly-stabilised total knee replacements.