Advertisement for orthosearch.org.uk
Results 21 - 27 of 27
Results per page:
Bone & Joint 360
Vol. 8, Issue 3 | Pages 13 - 16
1 Jun 2019


The Bone & Joint Journal
Vol. 98-B, Issue 5 | Pages 622 - 627
1 May 2016
Donaldson JR Tudor F Gollish J

Aims

The aim of this study was to examine the results of revision total knee arthroplasty (TKA) undertaken for stiffness in the absence of sepsis or loosening.

Patients and Methods

We present the results of revision surgery for stiff TKA in 48 cases (35 (72.9%) women and 13 (27.1%) men). The mean age at revision surgery was 65.5 years (42 to 83). All surgeries were performed by a single surgeon. Stiffness was defined as an arc of flexion of < 70° or a flexion contracture of > 15°. The changes in the range of movement (ROM) and the Western Ontario and McMasters Osteoarthritis index scores (WOMAC) were recorded.


Bone & Joint 360
Vol. 4, Issue 5 | Pages 2 - 7
1 Oct 2015
Clark GW Wood DJ

The use of robotics in arthroplasty surgery is expanding rapidly as improvements in the technology evolve. This article examines current evidence to justify the usage of robotics, as well as the future potential in this emerging field.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 9 | Pages 1210 - 1216
1 Sep 2011
Mitsuyasu H Matsuda S Fukagawa S Okazaki K Tashiro Y Kawahara S Nakahara H Iwamoto Y

We investigated whether the extension gap in total knee replacement (TKR) would be changed when the femoral component was inserted. The extension gap was measured with and without the femoral component in place in 80 patients with varus osteoarthritis undergoing posterior-stabilised TKR. The effect of a post-operative increase in the size of the femoral posterior condyles was also evaluated. The results showed that placement of the femoral component significantly reduced the medial and lateral extension gaps by means of 1.0 mm and 0.9 mm, respectively (p < 0.0001). The extension gap was reduced when a larger femoral component was selected relative to the thickness of the resected posterior condyle. When the post-operative posterior lateral condyle was larger than that pre-operatively, 17 of 41 knees (41%) showed a decrease in the extension gap of > 2.0 mm. When a specially made femoral trial component with a posterior condyle enlarged by 4 mm was tested, the medial and lateral extension gaps decreased further by means of 2.1 mm and 2.8 mm, respectively.

If the thickness of the posterior condyle is expected to be larger than that pre-operatively, it should be recognised that the extension gap is likely to be altered. This should be taken into consideration when preparing the extension gap.


The Bone & Joint Journal
Vol. 95-B, Issue 10 | Pages 1354 - 1358
1 Oct 2013
Singh G Tan JH Sng BY Awiszus F Lohmann CH Nathan SS

The optimal management of the tibial slope in achieving a high flexion angle in posterior-stabilised (PS) total knee replacement (TKR) is not well understood, and most studies evaluating the posterior tibial slope have been conducted on cruciate-retaining TKRs. We analysed pre- and post-operative tibial slope differences, pre- and post-operative coronal knee alignment and post-operative maximum flexion angle in 167 patients undergoing 209 TKRs. The mean pre-operative posterior tibial slope was 8.6° (1.3° to 17°) and post-operatively it was 8.0° (0.1° to 16.7°). Multiple linear regression analysis showed that the absolute difference between pre- and post-operative tibial slope (p < 0.001), post-operative coronal alignment (p = 0.02) and pre-operative range of movement (p < 0.001) predicted post-operative flexion. The variance of change in tibial slope became larger as the post-operative maximum flexion angle decreased. The odds ratio of having a post-operative flexion angle < 100° was 17.6 if the slope change was > 2°. Our data suggest that recreation of the anatomical tibial slope appears to improve maximum flexion after posterior-stabilised TKR, provided coronal alignment has been restored.

Cite this article: Bone Joint J 2013;95-B:1354–8.


The Bone & Joint Journal
Vol. 95-B, Issue 5 | Pages 668 - 672
1 May 2013
Abdel MP Hattrup SJ Sperling JW Cofield RH Kreofsky CR Sanchez-Sotelo J

Instability after arthroplasty of the shoulder is difficult to correct surgically. Soft-tissue procedures and revision surgery using unconstrained anatomical components are associated with a high rate of failure. The purpose of this study was to determine the results of revision of an unstable anatomical shoulder arthroplasty to a reverse design prosthesis. Between 2004 and 2007, 33 unstable anatomical shoulder arthroplasties were revised to a reverse design. The mean age of the patients was 71 years (53 to 86) and their mean follow-up was 42 months (25 to 71). The mean time to revision was 26 months (4 to 164). Pain scores improved significantly (pre-operative visual analogue scale (VAS) of 7.2 (sd 1.6); most recent VAS 2.2 (sd 1.9); p = 0.001). There was a statistically significant increase in mean active forward elevation from 40.2° (sd 27.3) to 97.0° (sd 36.2) (p = 0.001). There was no significant difference in internal (p = 0.93) or external rotation (p = 0.40). Radiological findings included notching in five shoulders (15%) and heterotopic ossification of the inferior capsular region in three (9%). At the last follow-up 31 shoulders (94%) were stable. The remaining two shoulders dislocated at 2.5 weeks and three months post-operatively, respectively. According to the Neer rating system, there were 13 excellent (40%), ten satisfactory (30%) and ten unsatisfactory results (30%). Revision of hemiarthroplasty or anatomical total shoulder replacement for instability using a reverse design prosthesis gives good short-term results.

Cite this article: Bone Joint J 2013;95-B:668–72.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 9 | Pages 1180 - 1185
1 Sep 2008
Hamai S Miura H Higaki H Shimoto T Matsuda S Iwamoto Y

Mechanical failure because of wear or fracture of the polyethylene tibial post in posteriorly-stabilised total knee replacements has been extensively described. In this study of 12 patients with a clinically and radiologically successful NexGen LPS posteriorly-stabilised prosthesis impingement of the anterior tibial post was evaluated in vivo in three dimensions during gait using radiologically-based image-matching techniques.

Impingement was observed in all images of the patients during the stance phase, although the NexGen LPS was designed to accommodate 14° of hyperextension of the component before impingement occurred. Impingement arises as a result of posterior translation of the femur during the stance phase. Further attention must therefore be given to the configuration of the anterior portion of the femoral component and the polyethylene post when designing posteriorly-stabilised total knee replacements.