Advertisement for orthosearch.org.uk
Results 21 - 40 of 71
Results per page:
The Bone & Joint Journal
Vol. 105-B, Issue 6 | Pages 702 - 710
1 Jun 2023
Yeramosu T Ahmad W Bashir A Wait J Bassett J Domson G

Aims. The aim of this study was to identify factors associated with five-year cancer-related mortality in patients with limb and trunk soft-tissue sarcoma (STS) and develop and validate machine learning algorithms in order to predict five-year cancer-related mortality in these patients. Methods. Demographic, clinicopathological, and treatment variables of limb and trunk STS patients in the Surveillance, Epidemiology, and End Results Program (SEER) database from 2004 to 2017 were analyzed. Multivariable logistic regression was used to determine factors significantly associated with five-year cancer-related mortality. Various machine learning models were developed and compared using area under the curve (AUC), calibration, and decision curve analysis. The model that performed best on the SEER testing data was further assessed to determine the variables most important in its predictive capacity. This model was externally validated using our institutional dataset. Results. A total of 13,646 patients with STS from the SEER database were included, of whom 35.9% experienced five-year cancer-related mortality. The random forest model performed the best overall and identified tumour size as the most important variable when predicting mortality in patients with STS, followed by M stage, histological subtype, age, and surgical excision. Each variable was significant in logistic regression. External validation yielded an AUC of 0.752. Conclusion. This study identified clinically important variables associated with five-year cancer-related mortality in patients with limb and trunk STS, and developed a predictive model that demonstrated good accuracy and predictability. Orthopaedic oncologists may use these findings to further risk-stratify their patients and recommend an optimal course of treatment. Cite this article: Bone Joint J 2023;105-B(6):702–710


Bone & Joint Open
Vol. 2, Issue 10 | Pages 879 - 885
20 Oct 2021
Oliveira e Carmo L van den Merkhof A Olczak J Gordon M Jutte PC Jaarsma RL IJpma FFA Doornberg JN Prijs J

Aims

The number of convolutional neural networks (CNN) available for fracture detection and classification is rapidly increasing. External validation of a CNN on a temporally separate (separated by time) or geographically separate (separated by location) dataset is crucial to assess generalizability of the CNN before application to clinical practice in other institutions. We aimed to answer the following questions: are current CNNs for fracture recognition externally valid?; which methods are applied for external validation (EV)?; and, what are reported performances of the EV sets compared to the internal validation (IV) sets of these CNNs?

Methods

The PubMed and Embase databases were systematically searched from January 2010 to October 2020 according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The type of EV, characteristics of the external dataset, and diagnostic performance characteristics on the IV and EV datasets were collected and compared. Quality assessment was conducted using a seven-item checklist based on a modified Methodologic Index for NOn-Randomized Studies instrument (MINORS).


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 99 - 104
1 Jul 2020
Shah RF Bini S Vail T

Aims

Natural Language Processing (NLP) offers an automated method to extract data from unstructured free text fields for arthroplasty registry participation. Our objective was to investigate how accurately NLP can be used to extract structured clinical data from unstructured clinical notes when compared with manual data extraction.

Methods

A group of 1,000 randomly selected clinical and hospital notes from eight different surgeons were collected for patients undergoing primary arthroplasty between 2012 and 2018. In all, 19 preoperative, 17 operative, and two postoperative variables of interest were manually extracted from these notes. A NLP algorithm was created to automatically extract these variables from a training sample of these notes, and the algorithm was tested on a random test sample of notes. Performance of the NLP algorithm was measured in Statistical Analysis System (SAS) by calculating the accuracy of the variables collected, the ability of the algorithm to collect the correct information when it was indeed in the note (sensitivity), and the ability of the algorithm to not collect a certain data element when it was not in the note (specificity).


Bone & Joint Research
Vol. 13, Issue 9 | Pages 507 - 512
18 Sep 2024
Farrow L Meek D Leontidis G Campbell M Harrison E Anderson L

Despite the vast quantities of published artificial intelligence (AI) algorithms that target trauma and orthopaedic applications, very few progress to inform clinical practice. One key reason for this is the lack of a clear pathway from development to deployment. In order to assist with this process, we have developed the Clinical Practice Integration of Artificial Intelligence (CPI-AI) framework – a five-stage approach to the clinical practice adoption of AI in the setting of trauma and orthopaedics, based on the IDEAL principles (https://www.ideal-collaboration.net/). Adherence to the framework would provide a robust evidence-based mechanism for developing trust in AI applications, where the underlying algorithms are unlikely to be fully understood by clinical teams.

Cite this article: Bone Joint Res 2024;13(9):507–512.


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1111 - 1117
1 Oct 2024
Makaram NS Becher H Oag E Heinz NR McCann CJ Mackenzie SP Robinson CM

Aims

The risk factors for recurrent instability (RI) following a primary traumatic anterior shoulder dislocation (PTASD) remain unclear. In this study, we aimed to determine the rate of RI in a large cohort of patients managed nonoperatively after PTASD and to develop a clinical prediction model.

Methods

A total of 1,293 patients with PTASD managed nonoperatively were identified from a trauma database (mean age 23.3 years (15 to 35); 14.3% female). We assessed the prevalence of RI, and used multivariate regression modelling to evaluate which demographic- and injury-related factors were independently predictive for its occurrence.


Bone & Joint Research
Vol. 12, Issue 3 | Pages 165 - 177
1 Mar 2023
Boyer P Burns D Whyne C

Aims

An objective technological solution for tracking adherence to at-home shoulder physiotherapy is important for improving patient engagement and rehabilitation outcomes, but remains a significant challenge. The aim of this research was to evaluate performance of machine-learning (ML) methodologies for detecting and classifying inertial data collected during in-clinic and at-home shoulder physiotherapy exercise.

Methods

A smartwatch was used to collect inertial data from 42 patients performing shoulder physiotherapy exercises for rotator cuff injuries in both in-clinic and at-home settings. A two-stage ML approach was used to detect out-of-distribution (OOD) data (to remove non-exercise data) and subsequently for classification of exercises. We evaluated the performance impact of grouping exercises by motion type, inclusion of non-exercise data for algorithm training, and a patient-specific approach to exercise classification. Algorithm performance was evaluated using both in-clinic and at-home data.


The Bone & Joint Journal
Vol. 106-B, Issue 2 | Pages 203 - 211
1 Feb 2024
Park JH Won J Kim H Kim Y Kim S Han I

Aims

This study aimed to compare the performance of survival prediction models for bone metastases of the extremities (BM-E) with pathological fractures in an Asian cohort, and investigate patient characteristics associated with survival.

Methods

This retrospective cohort study included 469 patients, who underwent surgery for BM-E between January 2009 and March 2022 at a tertiary hospital in South Korea. Postoperative survival was calculated using the PATHFx3.0, SPRING13, OPTIModel, SORG, and IOR models. Model performance was assessed with area under the curve (AUC), calibration curve, Brier score, and decision curve analysis. Cox regression analyses were performed to evaluate the factors contributing to survival.


Bone & Joint Open
Vol. 3, Issue 10 | Pages 767 - 776
5 Oct 2022
Jang SJ Kunze KN Brilliant ZR Henson M Mayman DJ Jerabek SA Vigdorchik JM Sculco PK

Aims

Accurate identification of the ankle joint centre is critical for estimating tibial coronal alignment in total knee arthroplasty (TKA). The purpose of the current study was to leverage artificial intelligence (AI) to determine the accuracy and effect of using different radiological anatomical landmarks to quantify mechanical alignment in relation to a traditionally defined radiological ankle centre.

Methods

Patients with full-limb radiographs from the Osteoarthritis Initiative were included. A sub-cohort of 250 radiographs were annotated for landmarks relevant to knee alignment and used to train a deep learning (U-Net) workflow for angle calculation on the entire database. The radiological ankle centre was defined as the midpoint of the superior talus edge/tibial plafond. Knee alignment (hip-knee-ankle angle) was compared against 1) midpoint of the most prominent malleoli points, 2) midpoint of the soft-tissue overlying malleoli, and 3) midpoint of the soft-tissue sulcus above the malleoli.


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 11 - 19
1 Jul 2020
Shohat N Goswami K Tan TL Yayac M Soriano A Sousa R Wouthuyzen-Bakker M Parvizi J

Aims. Failure of irrigation and debridement (I&D) for prosthetic joint infection (PJI) is influenced by numerous host, surgical, and pathogen-related factors. We aimed to develop and validate a practical, easy-to-use tool based on machine learning that may accurately predict outcome following I&D surgery taking into account the influence of numerous factors. Methods. This was an international, multicentre retrospective study of 1,174 revision total hip (THA) and knee arthroplasties (TKA) undergoing I&D for PJI between January 2005 and December 2017. PJI was defined using the Musculoskeletal Infection Society (MSIS) criteria. A total of 52 variables including demographics, comorbidities, and clinical and laboratory findings were evaluated using random forest machine learning analysis. The algorithm was then verified through cross-validation. Results. Of the 1,174 patients that were included in the study, 405 patients (34.5%) failed treatment. Using random forest analysis, an algorithm that provides the probability for failure for each specific patient was created. By order of importance, the ten most important variables associated with failure of I&D were serum CRP levels, positive blood cultures, indication for index arthroplasty other than osteoarthritis, not exchanging the modular components, use of immunosuppressive medication, late acute (haematogenous) infections, methicillin-resistant Staphylococcus aureus infection, overlying skin infection, polymicrobial infection, and older age. The algorithm had good discriminatory capability (area under the curve = 0.74). Cross-validation showed similar probabilities comparing predicted and observed failures indicating high accuracy of the model. Conclusion. This is the first study in the orthopaedic literature to use machine learning as a tool for predicting outcomes following I&D surgery. The developed algorithm provides the medical profession with a tool that can be employed in clinical decision-making and improve patient care. Future studies should aid in further validating this tool on additional cohorts. Cite this article: Bone Joint J 2020;102-B(7 Supple B):11–19


Bone & Joint 360
Vol. 12, Issue 6 | Pages 46 - 47
1 Dec 2023

The December 2023 Research Roundup. 360. looks at: Tissue integration and chondroprotective potential of acetabular labral augmentation with autograft tendon: study of a porcine model; The Irish National Orthopaedic Register under cyberattack: what happened, and what were the consequences?; An overview of machine learning in orthopaedic surgery: an educational paper; Beware of the fungus…; New evidence for COVID-19 in patients undergoing joint replacement surgery


Bone & Joint 360
Vol. 12, Issue 3 | Pages 13 - 15
1 Jun 2023

The June 2023 Hip & Pelvis Roundup. 360. looks at: Machine learning to identify surgical candidates for hip and knee arthroplasty: a viable option?; Poor outcome after debridement and implant retention; Can you cement polyethylene liners into well-fixed acetabular shells in hip revision?; Revision stem in primary arthroplasties: the Exeter 44/0 125 mm stem; Depression and anxiety: could they be linked to infection?; Does where you live affect your outcomes after hip and knee arthroplasties?; Racial disparities in outcomes after total hip arthroplasty and total knee arthroplasty are substantially mediated by socioeconomic disadvantage both in black and white patients


Bone & Joint 360
Vol. 12, Issue 4 | Pages 13 - 16
1 Aug 2023

The August 2023 Hip & Pelvis Roundup. 360. looks at: Using machine learning to predict venous thromboembolism and major bleeding events following total joint arthroplasty; Antibiotic length in revision total hip arthroplasty; Preoperative colonization and worse outcomes; Short stem cemented total hip arthroplasty; What are the outcomes of one- versus two-stage revisions in the UK?; To cement or not to cement? The best approach in hemiarthroplasty; Similar re-revisions in cemented and cementless femoral revisions for periprosthetic femoral fractures in total hip arthroplasty; Are hip precautions still needed?


Bone & Joint 360
Vol. 13, Issue 3 | Pages 18 - 20
3 Jun 2024

The June 2024 Hip & Pelvis Roundup. 360. looks at: Machine learning did not outperform conventional competing risk modelling to predict revision arthroplasty; Unravelling the risks: incidence and reoperation rates for femoral fractures post-total hip arthroplasty; Spinal versus general anaesthesia for hip arthroscopy: a COVID-19 pandemic- and opioid epidemic-driven study; Development and validation of a deep-learning model to predict total hip arthroplasty on radiographs; Ambulatory centres lead in same-day hip and knee arthroplasty success; Exploring the impact of smokeless tobacco on total hip arthroplasty outcomes: a deeper dive into postoperative complications


Bone & Joint Research
Vol. 13, Issue 8 | Pages 411 - 426
28 Aug 2024
Liu D Wang K Wang J Cao F Tao L

Aims. This study explored the shared genetic traits and molecular interactions between postmenopausal osteoporosis (POMP) and sarcopenia, both of which substantially degrade elderly health and quality of life. We hypothesized that these motor system diseases overlap in pathophysiology and regulatory mechanisms. Methods. We analyzed microarray data from the Gene Expression Omnibus (GEO) database using weighted gene co-expression network analysis (WGCNA), machine learning, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to identify common genetic factors between POMP and sarcopenia. Further validation was done via differential gene expression in a new cohort. Single-cell analysis identified high expression cell subsets, with mononuclear macrophages in osteoporosis and muscle stem cells in sarcopenia, among others. A competitive endogenous RNA network suggested regulatory elements for these genes. Results. Signal transducer and activator of transcription 3 (STAT3) was notably expressed in both conditions. Single-cell analysis pinpointed specific cells with high STAT3 expression, and microRNA (miRNA)-125a-5p emerged as a potential regulator. Experiments confirmed the crucial role of STAT3 in osteoclast differentiation and muscle proliferation. Conclusion. STAT3 has emerged as a key gene in both POMP and sarcopenia. This insight positions STAT3 as a potential common therapeutic target, possibly improving management strategies for these age-related diseases. Cite this article: Bone Joint Res 2024;13(8):411–426


Bone & Joint 360
Vol. 12, Issue 4 | Pages 16 - 20
1 Aug 2023

The August 2023 Knee Roundup. 360. looks at: Curettage and cementation of giant cell tumour of bone: is arthritis a given?; Anterior knee pain following total knee arthroplasty: does the patellar cement-bone interface affect postoperative anterior knee pain?; Nickel allergy and total knee arthroplasty; The use of artificial intelligence for the prediction of periprosthetic joint infection following aseptic revision total knee arthroplasty; Ambulatory unicompartmental knee arthroplasty: development of a patient selection tool using machine learning; Femoral asymmetry: a missing piece in knee alignment; Needle arthroscopy – a benefit to patients in the outpatient setting; Can lateral unicompartmental knees be done in a day-case setting?


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 101 - 106
1 Jun 2020
Shah RF Bini SA Martinez AM Pedoia V Vail TP

Aims. The aim of this study was to evaluate the ability of a machine-learning algorithm to diagnose prosthetic loosening from preoperative radiographs and to investigate the inputs that might improve its performance. Methods. A group of 697 patients underwent a first-time revision of a total hip (THA) or total knee arthroplasty (TKA) at our institution between 2012 and 2018. Preoperative anteroposterior (AP) and lateral radiographs, and historical and comorbidity information were collected from their electronic records. Each patient was defined as having loose or fixed components based on the operation notes. We trained a series of convolutional neural network (CNN) models to predict a diagnosis of loosening at the time of surgery from the preoperative radiographs. We then added historical data about the patients to the best performing model to create a final model and tested it on an independent dataset. Results. The convolutional neural network we built performed well when detecting loosening from radiographs alone. The first model built de novo with only the radiological image as input had an accuracy of 70%. The final model, which was built by fine-tuning a publicly available model named DenseNet, combining the AP and lateral radiographs, and incorporating information from the patient’s history, had an accuracy, sensitivity, and specificity of 88.3%, 70.2%, and 95.6% on the independent test dataset. It performed better for cases of revision THA with an accuracy of 90.1%, than for cases of revision TKA with an accuracy of 85.8%. Conclusion. This study showed that machine learning can detect prosthetic loosening from radiographs. Its accuracy is enhanced when using highly trained public algorithms, and when adding clinical data to the algorithm. While this algorithm may not be sufficient in its present state of development as a standalone metric of loosening, it is currently a useful augment for clinical decision making. Cite this article: Bone Joint J 2020;102-B(6 Supple A):101–106


Bone & Joint Research
Vol. 12, Issue 8 | Pages 494 - 496
9 Aug 2023
Clement ND Simpson AHRW

Cite this article: Bone Joint Res 2023;12(8):494–496.


Bone & Joint 360
Vol. 12, Issue 1 | Pages 20 - 22
1 Feb 2023

The February 2023 Knee Roundup360 looks at: Machine-learning models: are all complications predictable?; Positive cultures can be safely ignored in revision arthroplasty patients that do not meet the 2018 International Consensus Meeting Criteria; Spinal versus general anaesthesia in contemporary primary total knee arthroplasty; Preoperative pain and early arthritis are associated with poor outcomes in total knee arthroplasty; Risk factors for infection and revision surgery following patellar tendon and quadriceps tendon repairs; Supervised versus unsupervised rehabilitation following total knee arthroplasty; Kinematic alignment has similar outcomes to mechanical alignment: a systematic review and meta-analysis; Lifetime risk of revision after knee arthroplasty influenced by age, sex, and indication; Risk factors for knee osteoarthritis after traumatic knee injury.


The Bone & Joint Journal
Vol. 105-B, Issue 7 | Pages 808 - 814
1 Jul 2023
Gundavda MK Lazarides AL Burke ZDC Focaccia M Griffin AM Tsoi KM Ferguson PC Wunder JS

Aims

The preoperative grading of chondrosarcomas of bone that accurately predicts surgical management is difficult for surgeons, radiologists, and pathologists. There are often discrepancies in grade between the initial biopsy and the final histology. Recent advances in the use of imaging methods have shown promise in the ability to predict the final grade. The most important clinical distinction is between grade 1 chondrosarcomas, which are amenable to curettage, and resection-grade chondrosarcomas (grade 2 and 3) which require en bloc resection. The aim of this study was to evaluate the use of a Radiological Aggressiveness Score (RAS) to predict the grade of primary chondrosarcomas in long bones and thus to guide management.

Methods

A total of 113 patients with a primary chondrosarcoma of a long bone presenting between January 2001 and December 2021 were identified on retrospective review of a single oncology centre’s prospectively collected database. The nine-parameter RAS included variables from radiographs and MRI scans. The best cut-off of parameters to predict the final grade of chondrosarcoma after resection was determined using a receiver operating characteristic curve (ROC), and this was correlated with the biopsy grade.


Bone & Joint Open
Vol. 5, Issue 3 | Pages 243 - 251
25 Mar 2024
Wan HS Wong DLL To CS Meng N Zhang T Cheung JPY

Aims

This systematic review aims to identify 3D predictors derived from biplanar reconstruction, and to describe current methods for improving curve prediction in patients with mild adolescent idiopathic scoliosis.

Methods

A comprehensive search was conducted by three independent investigators on MEDLINE, PubMed, Web of Science, and Cochrane Library. Search terms included “adolescent idiopathic scoliosis”,“3D”, and “progression”. The inclusion and exclusion criteria were carefully defined to include clinical studies. Risk of bias was assessed with the Quality in Prognostic Studies tool (QUIPS) and Appraisal tool for Cross-Sectional Studies (AXIS), and level of evidence for each predictor was rated with the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) approach. In all, 915 publications were identified, with 377 articles subjected to full-text screening; overall, 31 articles were included.