Advertisement for orthosearch.org.uk
Results 21 - 40 of 124
Results per page:
Bone & Joint Research
Vol. 7, Issue 4 | Pages 263 - 273
1 Apr 2018
Ferreira E Porter RM

Large bone defects remain a tremendous clinical challenge. There is growing evidence in support of treatment strategies that direct defect repair through an endochondral route, involving a cartilage intermediate. While culture-expanded stem/progenitor cells are being evaluated for this purpose, these cells would compete with endogenous repair cells for limited oxygen and nutrients within ischaemic defects. Alternatively, it may be possible to employ extracellular vesicles (EVs) secreted by culture-expanded cells for overcoming key bottlenecks to endochondral repair, such as defect vascularization, chondrogenesis, and osseous remodelling. While mesenchymal stromal/stem cells are a promising source of therapeutic EVs, other donor cells should also be considered. The efficacy of an EV-based therapeutic will likely depend on the design of companion scaffolds for controlled delivery to specific target cells. Ultimately, the knowledge gained from studies of EVs could one day inform the long-term development of synthetic, engineered nanovesicles. In the meantime, EVs harnessed from in vitro cell culture have near-term promise for use in bone regenerative medicine. This narrative review presents a rationale for using EVs to improve the repair of large bone defects, highlights promising cell sources and likely therapeutic targets for directing repair through an endochondral pathway, and discusses current barriers to clinical translation. Cite this article: E. Ferreira, R. M. Porter. Harnessing extracellular vesicles to direct endochondral repair of large bone defects. Bone Joint Res 2018;7:263–273. DOI: 10.1302/2046-3758.74.BJR-2018-0006


Bone & Joint Research
Vol. 6, Issue 4 | Pages 208 - 215
1 Apr 2017
Decambron A Manassero M Bensidhoum M Lecuelle B Logeart-Avramoglou D Petite H Viateau V

Objectives. To compare the therapeutic potential of tissue-engineered constructs (TECs) combining mesenchymal stem cells (MSCs) and coral granules from either Acropora or Porites to repair large bone defects. Materials and Methods. Bone marrow-derived, autologous MSCs were seeded on Acropora or Porites coral granules in a perfusion bioreactor. Acropora-TECs (n = 7), Porites-TECs (n = 6) and bone autografts (n = 2) were then implanted into 25 mm long metatarsal diaphyseal defects in sheep. Bimonthly radiographic follow-up was completed until killing four months post-operatively. Explants were subsequently processed for microCT and histology to assess bone formation and coral bioresorption. Statistical analyses comprised Mann-Whitney, t-test and Kruskal–Wallis tests. Data were expressed as mean and standard deviation. Results. A two-fold increaseof newly formed bone volume was observed for Acropora-TECs when compared with Porites-TECs (14 . sd. 1089 mm. 3. versus 782 . sd. 507 mm. 3. ; p = 0.09). Bone union was consistent with autograft (1960 . sd. 518 mm. 3. ). The kinetics of bioresorption and bioresorption rates at four months were different for Acropora-TECs and Porites-TECs (81% . sd. 5% versus 94% . sd. 6%; p = 0.04). In comparing the defects that healed with those that did not, we observed that, when major bioresorption of coral at two months occurs and a scaffold material bioresorption rate superior to 90% at four months is achieved, bone nonunion consistently occurred using coral-based TECs. Discussion. Bone regeneration in critical-size defects could be obtained with full bioresorption of the scaffold using coral-based TECs in a large animal model. The superior performance of Acropora-TECs brings us closer to a clinical application, probably because of more suitable bioresorption kinetics. However, nonunion still occurred in nearly half of the bone defects. Cite this article: A. Decambron, M. Manassero, M. Bensidhoum, B. Lecuelle, D. Logeart-Avramoglou, H. Petite, V. Viateau. A comparative study of tissue-engineered constructs from Acropora and Porites coral in a large animal bone defect model. Bone Joint Res 2017;6:208–215. DOI: 10.1302/2046-3758.64.BJR-2016-0236.R1


Bone & Joint Open
Vol. 3, Issue 12 | Pages 991 - 997
23 Dec 2022
McPherson EJ Stavrakis AI Chowdhry M Curtin NL Dipane MV Crawford BM

Aims

Large acetabular bone defects encountered in revision total hip arthroplasty (THA) are challenging to restore. Metal constructs for structural support are combined with bone graft materials for restoration. Autograft is restricted due to limited volume, and allogenic grafts have downsides including cost, availability, and operative processing. Bone graft substitutes (BGS) are an attractive alternative if they can demonstrate positive remodelling. One potential product is a biphasic injectable mixture (Cerament) that combines a fast-resorbing material (calcium sulphate) with the highly osteoconductive material hydroxyapatite. This study reviews the application of this biomaterial in large acetabular defects.

Methods

We performed a retrospective review at a single institution of patients undergoing revision THA by a single surgeon. We identified 49 consecutive patients with large acetabular defects where the biphasic BGS was applied, with no other products added to the BGS. After placement of metallic acetabular implants, the BGS was injected into the remaining bone defects surrounding the new implants. Patients were followed and monitored for functional outcome scores, implant fixation, radiological graft site remodelling, and revision failures.


Bone & Joint Research
Vol. 13, Issue 5 | Pages 214 - 225
3 May 2024
Groven RVM Kuik C Greven J Mert Ü Bouwman FG Poeze M Blokhuis TJ Huber-Lang M Hildebrand F Cillero-Pastor B van Griensven M

Aims

The aim of this study was to determine the fracture haematoma (fxH) proteome after multiple trauma using label-free proteomics, comparing two different fracture treatment strategies.

Methods

A porcine multiple trauma model was used in which two fracture treatment strategies were compared: early total care (ETC) and damage control orthopaedics (DCO). fxH was harvested and analyzed using liquid chromatography-tandem mass spectrometry. Per group, discriminating proteins were identified and protein interaction analyses were performed to further elucidate key biomolecular pathways in the early fracture healing phase.


Bone & Joint 360
Vol. 1, Issue 2 | Pages 30 - 32
1 Apr 2012

The April 2012 Research Roundup. 360 . looks at who is capable of being an arthroscopist, bupivacaine, triamcinolone and chondrotoxicity, reducing scarring in injured skeletal muscle, horny Goat Weed and the repair of osseous defects, platelet-derived growth factor and fracture healing, the importance of the reserve zone in a child’s growth plate, coping with advanced arthritis, hydroxyapatite and platelet-rich plasma for bone defects, and calcium phosphate and bone regeneration


Bone & Joint Research
Vol. 11, Issue 10 | Pages 700 - 714
4 Oct 2022
Li J Cheung W Chow SK Ip M Leung SYS Wong RMY

Aims

Biofilm-related infection is a major complication that occurs in orthopaedic surgery. Various treatments are available but efficacy to eradicate infections varies significantly. A systematic review was performed to evaluate therapeutic interventions combating biofilm-related infections on in vivo animal models.

Methods

Literature research was performed on PubMed and Embase databases. Keywords used for search criteria were “bone AND biofilm”. Information on the species of the animal model, bacterial strain, evaluation of biofilm and bone infection, complications, key findings on observations, prevention, and treatment of biofilm were extracted.


Bone & Joint Research
Vol. 12, Issue 10 | Pages 615 - 623
3 Oct 2023
Helwa-Shalom O Saba F Spitzer E Hanhan S Goren K Markowitz SI Shilo D Khaimov N Gellman YN Deutsch D Blumenfeld A Nevo H Haze A

Aims

Cartilage injuries rarely heal spontaneously and often require surgical intervention, leading to the formation of biomechanically inferior fibrous tissue. This study aimed to evaluate the possible effect of amelogenin on the healing process of a large osteochondral injury (OCI) in a rat model.

Methods

A reproducible large OCI was created in the right leg femoral trochlea of 93 rats. The OCIs were treated with 0.1, 0.5, 1.0, 2.5, or 5.0 μg/μl recombinant human amelogenin protein (rHAM+) dissolved in propylene glycol alginate (PGA) carrier, or with PGA carrier alone. The degree of healing was evaluated 12 weeks after treatment by morphometric analysis and histological evaluation. Cell recruitment to the site of injury as well as the origin of the migrating cells were assessed four days after treatment with 0.5 μg/μl rHAM+ using immunohistochemistry and immunofluorescence.


Bone & Joint Research
Vol. 13, Issue 1 | Pages 28 - 39
10 Jan 2024
Toya M Kushioka J Shen H Utsunomiya T Hirata H Tsubosaka M Gao Q Chow SK Zhang N Goodman SB

Aims

Transcription factor nuclear factor kappa B (NF-κB) plays a major role in the pathogenesis of chronic inflammatory diseases in all organ systems. Despite its importance, NF-κB targeted drug therapy to mitigate chronic inflammation has had limited success in preclinical studies. We hypothesized that sex differences affect the response to NF-κB treatment during chronic inflammation in bone. This study investigated the therapeutic effects of NF-κB decoy oligodeoxynucleotides (ODN) during chronic inflammation in male and female mice.

Methods

We used a murine model of chronic inflammation induced by continuous intramedullary delivery of lipopolysaccharide-contaminated polyethylene particles (cPE) using an osmotic pump. Specimens were evaluated using micro-CT and histomorphometric analyses. Sex-specific osteogenic and osteoclastic differentiation potentials were also investigated in vitro, including alkaline phosphatase, Alizarin Red, tartrate-resistant acid phosphatase staining, and gene expression using reverse transcription polymerase chain reaction (RT-PCR).


Aims

This study examined whether systemic administration of melatonin would have different effects on osseointegration in ovariectomized (OVX) rats, depending on whether this was administered during the day or night.

Methods

In this study, a titanium rod was implanted in the medullary cavity of one femoral metaphysis in OVX rats, and then the rats were randomly divided into four groups: Sham group (Sham, n = 10), OVX rat group (OVX, n = 10), melatonin day treatment group (OVX + MD, n = 10), and melatonin night treatment group (OVX + MN, n = 10). The OVX + MD and OVX + MN rats were treated with 30 mg/kg/day melatonin at 9 am and 9 pm, respectively, for 12 weeks. At the end of the research, the rats were killed to obtain bilateral femora and blood samples for evaluation.


Aims

This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with iron overload, and also explore the role of VIT in osteoblast and osteoclast differentiation.

Methods

In this study, 60 rats were included in a titanium rod implantation model and underwent subsequent guanylate cyclase treatment. Imaging, histology, and biomechanics were used to evaluate the osseointegration of rats in each group. First, the impact of VIT on bone integration in aged rats with iron overload was investigated. Subsequently, VIT was employed to modulate the differentiation of MC3T3-E1 cells and RAW264.7 cells under conditions of iron overload.


Bone & Joint Research
Vol. 5, Issue 9 | Pages 427 - 435
1 Sep 2016
Stravinskas M Horstmann P Ferguson J Hettwer W Nilsson M Tarasevicius S Petersen MM McNally MA Lidgren L

Objectives. Deep bone and joint infections (DBJI) are directly intertwined with health, demographic change towards an elderly population, and wellbeing. The elderly human population is more prone to acquire infections, and the consequences such as pain, reduced quality of life, morbidity, absence from work and premature retirement due to disability place significant burdens on already strained healthcare systems and societal budgets. DBJIs are less responsive to systemic antibiotics because of poor vascular perfusion in necrotic bone, large bone defects and persistent biofilm-based infection. Emerging bacterial resistance poses a major threat and new innovative treatment modalities are urgently needed to curb its current trajectory. Materials and Methods. We present a new biphasic ceramic bone substitute consisting of hydroxyapatite and calcium sulphate for local antibiotic delivery in combination with bone regeneration. Gentamicin release was measured in four setups: 1) in vitro elution in Ringer’s solution; 2) local elution in patients treated for trochanteric hip fractures or uncemented hip revisions; 3) local elution in patients treated with a bone tumour resection; and 4) local elution in patients treated surgically for chronic corticomedullary osteomyelitis. Results. The release pattern in vitro was comparable with the obtained release in the patient studies. No recurrence was detected in the osteomyelitis group at latest follow-up (minimum 1.5 years). Conclusions. This new biphasic bone substitute containing antibiotics provides safe prevention of bone infections in a range of clinical situations. The in vitro test method predicts the in vivo performance and makes it a reliable tool in the development of future antibiotic-eluting bone-regenerating materials. Cite this article: M. Stravinskas, P. Horstmann, J. Ferguson, W. Hettwer, M. Nilsson, S. Tarasevicius, M. M. Petersen, M. A. McNally, L. Lidgren. Pharmacokinetics of gentamicin eluted from a regenerating bone graft substitute: In vitro and clinical release studies. Bone Joint Res 2016;5:427–435. DOI: 10.1302/2046-3758.59.BJR-2016-0108.R1


Bone & Joint 360
Vol. 2, Issue 1 | Pages 2 - 5
1 Feb 2013
Khan M Roberts S Richardson JB McCaskie A

Stem cells are a key component of regenerative medicine strategies. Particular areas of musculoskeletal application include cartilage and bone regeneration in arthritis and trauma. There are several types of stem cell and this article will focus on the adult derived cells. The review includes current issues and future developments


The Bone & Joint Journal
Vol. 96-B, Issue 7 | Pages 889 - 895
1 Jul 2014
Fink B Urbansky K Schuster P

We report our experience of revision total hip replacement (THR) using the Revitan curved modular titanium fluted revision stem in patients with a full spectrum of proximal femoral defects. A total of 112 patients (116 revisions) with a mean age of 73.4 years (39 to 90) were included in the study. The mean follow-up was 7.5 years (5.3 to 9.1). A total of 12 patients (12 hips) died but their data were included in the survival analysis, and four patients (4 hips) were lost to follow-up. The clinical outcome, proximal bone regeneration and subsidence were assessed for 101 hips. The mean Harris Hip Score was 88.2 (45.8 to 100) after five years and there was an increase of the mean Barnett and Nordin-Score, a measure of the proximal bone regeneration, of 20.8 (-3.1 to 52.7). Five stems had to be revised (4.3%), three (2.9%) showed subsidence, five (4.3%) a dislocation and two of 85 aseptic revisions (2.3%) a periprosthetic infection. . At the latest follow-up, the survival with revision of the stem as the endpoint was 95.7% (95% confidence interval 91.9% to 99.4%) and with aseptic loosening as the endpoint, was 100%. Peri-prosthetic fractures were not observed. We report excellent results with respect to subsidence, the risk of fracture, and loosening after femoral revision using a modular curved revision stem with distal cone-in-cone fixation. A successful outcome depends on careful pre-operative planning and the use of a transfemoral approach when the anatomy is distorted or a fracture is imminent, or residual cement or a partially-secured existing stem cannot be removed. The shortest appropriate stem should, in our opinion, be used and secured with > 3 cm fixation at the femoral isthmus, and distal interlocking screws should be used for additional stability when this goal cannot be realised. Cite this article: Bone Joint J 2014;96-B:889–95


Bone & Joint Research
Vol. 12, Issue 1 | Pages 5 - 8
1 Jan 2023
Im G

Cite this article: Bone Joint Res 2023;12(1):5–8.


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 112 - 117
1 May 2024
Hickie KL Neufeld ME Howard LC Greidanus NV Masri BA Garbuz DS

Aims

There are limited long-term studies reporting on outcomes of the Zimmer Modular Revision (ZMR) stem, and concerns remain regarding failure. Our primary aim was to determine long-term survival free from all-cause revision and stem-related failure for this modular revision stem in revision total hip arthroplasty (THA). Secondary aims included evaluating radiological and functional outcomes.

Methods

We retrospectively identified all patients in our institutional database who underwent revision THA using the ZMR system from January 2000 to December 2007. We included 106 patients (108 hips) with a mean follow-up of 14.5 years (2.3 to 22.3). Mean patient age was 69.2 years (37.0 to 89.4), and 51.9% were female (n = 55). Indications for index revision included aseptic loosening (73.1%), infection (16.7%), fracture (9.3%), and stem fracture (0.9%). Kaplan-Meier analysis was used to determine the all-cause and stem-related failure revision-free survival. At most recent follow-up, Oxford Hip Scores (OHS) were collected, and radiological stem stability was determined using the Engh classification.


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 1000 - 1007
1 Sep 2024
Gong T Lu M Sheng H Li Z Zhou Y Luo Y Min L Tu C

Aims

Endoprosthetic reconstruction following distal femur tumour resection has been widely advocated. In this paper, we present the design of an uncemented endoprosthesis system featuring a short, curved stem, with the goal of enhancing long-term survivorship and functional outcomes.

Methods

This study involved patients who underwent implantation of an uncemented distal femoral endoprosthesis with a short and curved stem between 2014 and 2019. Functional outcomes were assessed using the 1993 version of the Musculoskeletal Tumour Society (MSTS-93) score. Additionally, we quantified five types of complications and assessed osseointegration radiologically. The survivorship of the endoprosthesis was evaluated according to two endpoints. A total of 134 patients with a median age of 26 years (IQR 16 to 41) were included in our study. The median follow-up time was 61 months (IQR 56 to 76), and the median functional MSTS-93 was 83% (IQR 73 to 91) postoperatively.


The Bone & Joint Journal
Vol. 105-B, Issue 1 | Pages 88 - 96
1 Jan 2023
Vogt B Rupp C Gosheger G Eveslage M Laufer A Toporowski G Roedl R Frommer A

Aims

Distraction osteogenesis with intramedullary lengthening devices has undergone rapid development in the past decade with implant enhancement. In this first single-centre matched-pair analysis we focus on the comparison of treatment with the PRECICE and STRYDE intramedullary lengthening devices and aim to clarify any clinical and radiological differences.

Methods

A single-centre 2:1 matched-pair retrospective analysis of 42 patients treated with the STRYDE and 82 patients treated with the PRECICE nail between May 2013 and November 2020 was conducted. Clinical and lengthening parameters were compared while focusing radiological assessment on osseous alterations related to the nail’s telescopic junction and locking bolts at four different stages.


Bone & Joint Research
Vol. 12, Issue 3 | Pages 179 - 188
7 Mar 2023
Itoh M Itou J Imai S Okazaki K Iwasaki K

Aims

Orthopaedic surgery requires grafts with sufficient mechanical strength. For this purpose, decellularized tissue is an available option that lacks the complications of autologous tissue. However, it is not widely used in orthopaedic surgeries. This study investigated clinical trials of the use of decellularized tissue grafts in orthopaedic surgery.

Methods

Using the ClinicalTrials.gov (CTG) and the International Clinical Trials Registry Platform (ICTRP) databases, we comprehensively surveyed clinical trials of decellularized tissue use in orthopaedic surgeries registered before 1 September 2022. We evaluated the clinical results, tissue processing methods, and commercial availability of the identified products using academic literature databases and manufacturers’ websites.


Bone & Joint Research
Vol. 11, Issue 6 | Pages 386 - 397
22 Jun 2022
Zhu D Fang H Yu H Liu P Yang Q Luo P Zhang C Gao Y Chen Y

Aims

Alcoholism is a well-known detrimental factor in fracture healing. However, the underlying mechanism of alcohol-inhibited fracture healing remains poorly understood.

Methods

MicroRNA (miR) sequencing was performed on bone mesenchymal stem cells (BMSCs). The effects of alcohol and miR-19a-3p on vascularization and osteogenic differentiation were analyzed in vitro using BMSCs and human umbilical vein endothelial cells (HUVECs). An in vivo alcohol-fed mouse model of femur fracture healing was also established, and radiological and histomorphometric analyses were used to evaluate the role of miR-19a-3p. The binding of miR-19a-3p to forkhead box F2 (FOXF2) was analyzed using a luciferase reporter assay.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 6 | Pages 806 - 809
1 Jun 2008
Burkhart KJ Rommens PM

We describe a patient with insufficient bone regeneration of the tibia after bone transport over an intramedullary nail, in whom union was ultimately achieved after exchange nailing and intramedullary application of rh-bone morphogenetic protein-7 at the site of distraction