Filling the empty holes in peri-articular locking
plates may improve the fatigue strength of the fixation. The purpose of
this A locking/compression plate was applied to 33 synthetic femurs
and then a 6 cm metaphyseal defect was created (AO Type 33-A3).
The specimens were then divided into three groups: unplugged, plugged
with locking screw only and fully plugged holes. They were then
tested using a stepwise or run-out fatigue protocol, each applying
cyclic physiological multiaxial loads. All specimens in the stepwise group failed at the 770 N load
level. The mean number of cycles to failure for the stepwise specimen
was 25 500 cycles ( In conclusion, filling the empty combination locking/compression
holes in peri-articular distal femur locking plates at the level
of supracondylar comminution does not increase the fatigue life
of the fixation in a comminuted supracondylar femoral fracture model
(AO 33-A3) with a 6 cm gap.
We identified 16 patients with a mean age of
56.5 years (31 to 86) from a large consecutive series of patients
with proximal humeral fractures over a 15-year period, who had sustained
a fracture with skin compromise after a blunt injury. The study
group represented 0.2% of 7825 proximal humeral fractures treated
during this period and all had a displaced Neer two-part fracture
pattern. Two patterns of skin injury were identified: in ten patients
there was skin penetration at the time of the original injury, and
the other six patients initially had closed injuries. These six patients
had fracture fragments penetrating the muscular envelope to lie
subcutaneously producing either early skin tethering (two patients)
or delayed skin penetration and sinus formation (four patients).
The pattern of injury to the soft-tissue envelope and the fracture
pattern were similar for all injuries. Treatment of these injuries
was determined by the initial severity of the soft-tissue injury
and the medical status of the patient. We currently favour open
reduction and internal fixation of these fractures wherever possible,
owing to the high rate of nonunion with non-operative management.
We randomly allocated 60 consecutive patients with fractures of the waist of the scaphoid to percutaneous fixation with a cannulated Acutrak screw or immobilisation in a cast. The range of movement, the grip and pinch strength, the modified Green/O’Brien functional score, return to work and sports, and radiological evidence of union were evaluated at each follow-up visit. Patients were followed sequentially for one year. Those undergoing percutaneous screw fixation showed a quicker time to union (9.2 weeks We recommend that all active patients should be offered percutaneous stabilisation for fractures of the waist of the scaphoid.
We describe a series of 20 patients with ununited fractures of the femoral neck following neglected trauma or failed primary internal fixation who were seen at a mean of 7.5 months (2 to 18) following injury. Open reduction and internal fixation of the fracture was performed in all patients, together with a myoperiosteal flap on the quadratus femoris muscle pedicle. Union occurred at a mean of 4.9 months (2 to 10) in all patients. The mean follow-up was for 70 months (14 to 144). There was no further progression in six of seven patients with pre-operative radiological evidence of osteonecrosis of the femoral head. One patient had delayed collapse and flattening of the femoral head ten years after union of the fracture, but remained asymptomatic. This study demonstrates the orthopaedic application of myoperiosteal grafting for inducing osteogenesis in a difficult clinical situation.
In light of the growing number of elderly osteopenic
patients with distal humeral fractures, we discuss the history of
their management and current trends. Under most circumstances operative
fixation and early mobilisation is the treatment of choice, as it
gives the best results. The relative indications for and results
of total elbow replacement
Limb-injury severity scores are designed to assess orthopaedic and vascular injuries. In Gustilo type-IIIA and type-IIIB injuries they have poor sensitivity and specificity to predict salvage or outcome. We have designed a trauma score to grade the severity of injury to the covering tissues, the bones and the functional tissues, grading the three components from one to five. Seven comorbid conditions known to influence the management and prognosis have been given a score of two each. The score was validated in 109 consecutive open injuries of the tibia, 42 type-IIIA and 67 type-IIIB. The total score was used to assess the possibilities of salvage and the outcome was measured by dividing the injuries into four groups according to their scores as follows: group I scored less than 5, group II 6 to 10, group III 11 to 15 and group IV 16 or more. A score of 14 to indicate amputation had the highest sensitivity and specificity. Our trauma score compared favourably with the Mangled Extremity Severity score in sensitivity (98% and 99%), specificity (100% and 17%), positive predictive value (100% and 97.5%) and negative predictive value (70% and 50%), respectively. A receiver-operating characteristic curve constructed for 67 type-IIIB injuries to assess the efficiency of the scores to predict salvage, showed that the area under the curve for this score was better (0.988 (± 0.013 The scoring system was found to be simple in application and reliable in prognosis for both limb-salvage and outcome measures in type-IIIA and type-IIIB open injuries of the tibia.
The literature on fracture repair has been reviewed. The traditional concepts of delayed and nonunion have been examined in terms of the phased and balanced anabolic and catabolic responses in bone repair. The role of medical manipulation of these inter-related responses in the fracture healing have been considered.
Between 1996 and 2003 six institutions in the United States and France contributed a consecutive series of 234 fractures of the femur in 229 children which were treated by titanium elastic nailing. Minor or major complications occurred in 80 fractures. Full information was available concerning 230 fractures, of which the outcome was excellent in 150 (65%), satisfactory in 57 (25%), and poor in 23 (10%). Poor outcomes were due to leg-length discrepancy in five fractures, unacceptable angulation in 17, and failure of fixation in one. There was a statistically significant relationship (p = 0.003) between age and outcome, and the odds ratio for poor outcome was 3.86 for children aged 11 years and older compared with those below this age. The difference between the weight of children with a poor outcome and those with an excellent or satisfactory outcome was statistically significant (54 kg
Nonunion of the tibia associated with bone loss, previous infection, obliteration of the intramedullary canal or located in the distal metaphysis poses a challenge to the surgeon and significant morbidity to patients. We retrospectively reviewed the records of 24 patients who were treated by central bone grafting and compared them to those of 20 who were treated with a traditional posterolateral graft. Central bone grafting entails a lateral approach, anterior to the fibula and interosseous membrane which is used to create a central space filled with cancellous iliac crest autograft. Upon consolidation, a tibiofibular synostosis is formed that is strong enough for weight-bearing. This procedure has advantages over other methods of treatment for selected nonunions. Of the 24 patients with central bone grafting, 23 went on to radiographic and clinical union without further intervention. All healed within a mean of 20 weeks (10 to 48). No further bone grafts were required, and few complications were encountered. These results were comparable to those of the 20 patients who underwent posterolateral bone grafting who united at a mean of 31.3 weeks (16 to 60) but one of whom required below-knee amputation for intractable sepsis. Central bone grafting is a safe and effective treatment for difficult nonunions of the tibia.
We present the results of 90 consecutive children with displaced fractures of the forearm treated by elastic stable intramedullary nailing with a mean follow-up of 6.6 months (2.0 to 17.6). Eight (9%) had open fractures and 77 (86%) had sustained a fracture of both bones. The operations were performed by orthopaedic trainees in 78 patients (86%). All fractures healed at a mean of 2.9 months (1.1 to 8.7). There was one case of delayed union of an ulnar fracture. An excellent or good functional outcome was achieved in 76 patients (84%). There was no statistical difference detected when the grade of operating surgeon, age of the patient and the diaphyseal level of the fracture were correlated with the outcome. A limited open reduction was required in 40 fractures (44%). Complications included seven cases of problematic wounds, two transient palsies of the superficial radial nerve and one case each of malunion and a post-operative compartment syndrome. At final follow-up, all children were pain-free and without limitation of sport and play activities. Our findings indicate that the functional outcome following paediatric fractures of the forearm treated by elastic stable intramedullary nailing is good, without the need for anatomical restoration of the radial bow.
Failure of bone repair is a challenging problem in the management of fractures. There is a limited supply of autologous bone grafts for treating nonunions, with associated morbidity after harvesting. There is need for a better source of cells for repair. Mesenchymal stem cells (MSCs) hold promise for healing of bone because of their capacity to differentiate into osteoblasts and their availability from a wide variety of sources. Our review aims to evaluate the available clinical evidence and recent progress in strategies which attempt to use autologous and heterologous MSCs in clinical practice, including genetically-modified MSCs and those grown on scaffolds. We have compared various procedures for isolating and expanding a sufficient number of MSCs for use in a clinical setting. There are now a number of clinical studies which have shown that implantation of MSCs is an effective, safe and durable method for aiding the repair and regeneration of bone.
Sacral insufficiency fractures are traditionally treated with bed rest and analgesia. The importance of early rehabilitation is generally appreciated; but pain frequently delays this, resulting in prolonged hospital stay and the risk of complications related to immobility. We describe three women with sacral insufficiency fractures who were treated with percutaneous sacroiliac screws and followed up for a mean of 18 months (12 to 24). They had immediate pain relief, uncomplicated rehabilitation and uneventful healing.
We evaluated the effect of low-intensity pulsed ultrasound stimulation (LIPUS) on the remodelling of callus in a rabbit gap-healing model by bone morphometric analyses using three-dimensional quantitative micro-CT. A tibial osteotomy with a 2 mm gap was immobilised by rigid external fixation and LIPUS was applied using active translucent devices. A control group had sham inactive transducers applied. A region of interest of micro-CT was set at the centre of the osteotomy gap with a width of 1 mm. The morphometric parameters used for evaluation were the volume of mineralised callus (BV) and the volumetric bone mineral density of mineralised tissue (mBMD). The whole region of interest was measured and subdivided into three zones as follows: the periosteal callus zone (external), the medullary callus zone (endosteal) and the cortical gap zone (intercortical). The BV and mBMD were measured for each zone. In the endosteal area, there was a significant increase in the density of newly formed callus which was subsequently diminished by bone resorption that overwhelmed bone formation in this area as the intramedullary canal was restored. In the intercortical area, LIPUS was considered to enhance bone formation throughout the period of observation. These findings indicate that LIPUS could shorten the time required for remodelling and enhance the mineralisation of callus.
Highly active anti-retroviral therapy has transformed HIV into a chronic disease with a long-term asymptomatic phase. As a result, emphasis is shifting to other effects of the virus, aside from immunosuppression and mortality. We have reviewed the current evidence for an association between HIV infection and poor fracture healing. The increased prevalence of osteoporosis and fragility fractures in HIV patients is well recognised. The suggestion that this may be purely as a result of highly active anti-retroviral therapy has been largely rejected. Apart from directly impeding cellular function in bone remodelling, HIV infection is known to cause derangement in the levels of those cytokines involved in fracture healing (particularly tumour necrosis factor-α) and appears to impair the blood supply of bone. Many other factors complicate this issue, including a reduced body mass index, suboptimal nutrition, the effects of anti-retroviral drugs and the avoidance of operative intervention because of high rates of wound infection. However, there are sound molecular and biochemical hypotheses for a direct relationship between HIV infection and impaired fracture healing, and the rewards for further knowledge in this area are extensive in terms of optimised fracture management, reduced patient morbidity and educated resource allocation. Further investigation in this area is overdue.
Successful healing of a nine-year tibial nonunion resistant to six previous surgical procedures was achieved by tissue engineering. We used autologous bone marrow stromal cells (BMSCs) expanded to 5 × 106 cells after three weeks’ tissue culture. Calcium sulphate (CaSO4) in pellet form was combined with these cells at operation. The nonunion was clinically and radiologically healed two months after implantation. This is the description of on healing of a long-standing tibial nonunion by tissue engineering. The successful combination of BMSCs and CaSO4 has not to our knowledge been reported in a clinical setting.
Fluoronavigation is an image-guided technology which uses intra-operative fluoroscopic images taken under a real-time tracking system and registration to guide surgical procedures. With the skeleton and the instrument registered, guidance under an optical tracking system is possible, allowing fixation of the fracture and insertion of an implant. This technology helps to minimise exposure to x-rays, providing multiplanar views for monitoring and accurate positioning of implants. It allows real-time interactive quantitative data for decision-making and expands the application of minimally invasive surgery. In orthopaedic trauma its use can be further enhanced by combining newer imaging technologies such as intra-operative three-dimensional fluoroscopy and optical image guidance, new advances in software for fracture reduction, and new tracking mechanisms using electromagnetic technology. The major obstacles for general and wider applications are the inability to track individual fracture fragments, no navigated real-time fracture reduction, and the lack of an objective assessment method for cost-effectiveness. We believe that its application will go beyond the operating theatre and cover all aspects of patient management, from pre-operative planning to intra-operative guidance and postoperative rehabilitation.
This paper outlines the history of advances made in the treatment of open fractures that have occurred during wartime.
The purpose of this study was to assess the stability of a developmental pelvic reconstruction system which extends the concept of triangular osteosynthesis with fixation anterior to the lumbosacral pivot point. An unstable Tile type-C fracture, associated with a sacral transforaminal fracture, was created in synthetic pelves. The new concept was compared with three other constructs, including bilateral iliosacral screws, a tension band plate and a combined plate with screws. The pubic symphysis was plated in all cases. The pelvic ring was loaded to simulate single-stance posture in a cyclical manner until failure, defined as a displacement of 2 mm or 2°. The screws were the weakest construct, failing with a load of 50 N after 400 cycles, with maximal translation in the craniocaudal axis of 12 mm. A tension band plate resisted greater load but failure occurred at 100 N, with maximal rotational displacement around the mediolateral axis of 2.3°. The combination of a plate and screws led to an improvement in stability at the 100 N load level, but rotational failure still occurred around the mediolateral axis. The pelvic reconstruction system was the most stable construct, with a maximal displacement of 2.1° of rotation around the mediolateral axis at a load of 500 N.
Patients infected with HIV presenting with an open fracture of a long bone are difficult to manage. There is an unacceptably high rate of post-operative infection after internal fixation. There are no published data on the use of external fixation in such patients. We compared the rates of pin-track infection in HIV-positive and HIV-negative patients presenting with an open fracture. There were 47 patients with 50 external fixators, 13 of whom were HIV-positive (15 fixators). There were significantly more pin-track infections requiring pharmaceutical or surgical intervention (Checketts grade 2 or greater) in the HIV-positive group ( We recommend the use of external fixation for the treatment of open fractures in HIV-positive patients.