Advertisement for orthosearch.org.uk
Results 261 - 280 of 436
Results per page:
Bone & Joint Research
Vol. 6, Issue 12 | Pages 640 - 648
1 Dec 2017
Xia B Li Y Zhou J Tian B Feng L

Objectives

Osteoporosis is a chronic disease. The aim of this study was to identify key genes in osteoporosis.

Methods

Microarray data sets GSE56815 and GSE56814, comprising 67 osteoporosis blood samples and 62 control blood samples, were obtained from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified in osteoporosis using Limma package (3.2.1) and Meta-MA packages. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to identify biological functions. Furthermore, the transcriptional regulatory network was established between the top 20 DEGs and transcriptional factors using the UCSC ENCODE Genome Browser. Receiver operating characteristic (ROC) analysis was applied to investigate the diagnostic value of several DEGs.


Bone & Joint Research
Vol. 6, Issue 1 | Pages 57 - 65
1 Jan 2017
Gumucio JP Flood MD Bedi A Kramer HF Russell AJ Mendias CL

Objectives

Rotator cuff tears are among the most frequent upper extremity injuries. Current treatment strategies do not address the poor quality of the muscle and tendon following chronic rotator cuff tears. Hypoxia-inducible factor-1 alpha (HIF-1α) is a transcription factor that activates many genes that are important in skeletal muscle regeneration. HIF-1α is inhibited under normal physiological conditions by the HIF prolyl 4-hydroxylases (PHDs). In this study, we used a pharmacological PHD inhibitor, GSK1120360A, to enhance the activity of HIF-1α following the repair of a chronic cuff tear, and measured muscle fibre contractility, fibrosis, gene expression, and enthesis mechanics.

Methods

Chronic supraspinatus tears were induced in adult rats, and repaired 28 days later. Rats received 0 mg/kg, 3 mg/kg, or 10 mg/kg GSK1120360A daily. Collagen content, contractility, fibre type distribution and size, the expression of genes involved in fibrosis, lipid accumulation, atrophy and inflammation, and the mechanical properties of the enthesis were then assessed two weeks following surgical repair.


Bone & Joint 360
Vol. 5, Issue 5 | Pages 19 - 21
1 Oct 2016


Bone & Joint Research
Vol. 5, Issue 9 | Pages 412 - 418
1 Sep 2016
Ye S Ju B Wang H Lee K

Objectives

Interleukin 18 (IL-18) is a regulatory cytokine that degrades the disc matrix. Bone morphogenetic protein-2 (BMP-2) stimulates synthesis of the disc extracellular matrix. However, the combined effects of BMP-2 and IL-18 on human intervertebral disc degeneration have not previously been reported. The aim of this study was to investigate the effects of the anabolic cytokine BMP-2 and the catabolic cytokine IL-18 on human nucleus pulposus (NP) and annulus fibrosus (AF) cells and, therefore, to identify potential therapeutic and clinical benefits of recombinant human (rh)BMP-2 in intervertebral disc degeneration.

Methods

Levels of IL-18 were measured in the blood of patients with intervertebral disc degenerative disease and in control patients. Human NP and AF cells were cultured in a NP cell medium and treated with IL-18 or IL-18 plus BMP-2. mRNA levels of target genes were measured by real-time polymerase chain reaction, and protein levels of aggrecan, type II collagen, SOX6, and matrix metalloproteinase 13 (MMP13) were assessed by western blot analysis.


The Bone & Joint Journal
Vol. 98-B, Issue 6 | Pages 761 - 766
1 Jun 2016
Davis G Patel RP Tan TL Alijanipour P Naik TU Parvizi J

Aims

We aimed to assess the influence of ethnicity on the incidence of heterotopic ossification (HO) after total hip arthroplasty (THA).

Patients and Methods

We studied the six-month post-operative anteroposterior radiographs of 1449 consecutive primary THAs (1324 patients) and retrospectively graded them for the presence of HO, using the Brooker Classification.


Bone & Joint Research
Vol. 6, Issue 1 | Pages 14 - 21
1 Jan 2017
Osagie-Clouard L Sanghani A Coathup M Briggs T Bostrom M Blunn G

Intermittently administered parathyroid hormone (PTH 1-34) has been shown to promote bone formation in both human and animal studies. The hormone and its analogues stimulate both bone formation and resorption, and as such at low doses are now in clinical use for the treatment of severe osteoporosis. By varying the duration of exposure, parathyroid hormone can modulate genes leading to increased bone formation within a so-called ‘anabolic window’. The osteogenic mechanisms involved are multiple, affecting the stimulation of osteoprogenitor cells, osteoblasts, osteocytes and the stem cell niche, and ultimately leading to increased osteoblast activation, reduced osteoblast apoptosis, upregulation of Wnt/β-catenin signalling, increased stem cell mobilisation, and mediation of the RANKL/OPG pathway. Ongoing investigation into their effect on bone formation through ‘coupled’ and ‘uncoupled’ mechanisms further underlines the impact of intermittent PTH on both cortical and cancellous bone. Given the principally catabolic actions of continuous PTH, this article reviews the skeletal actions of intermittent PTH 1-34 and the mechanisms underlying its effect.

Cite this article: L. Osagie-Clouard, A. Sanghani, M. Coathup, T. Briggs, M. Bostrom, G. Blunn. Parathyroid hormone 1-34 and skeletal anabolic action: The use of parathyroid hormone in bone formation. Bone Joint Res 2017;6:14–21. DOI: 10.1302/2046-3758.61.BJR-2016-0085.R1.


Bone & Joint Research
Vol. 5, Issue 12 | Pages 594 - 601
1 Dec 2016
Li JJ Wang BQ Fei Q Yang Y Li D

Objectives

In order to screen the altered gene expression profile in peripheral blood mononuclear cells of patients with osteoporosis, we performed an integrated analysis of the online microarray studies of osteoporosis.

Methods

We searched the Gene Expression Omnibus (GEO) database for microarray studies of peripheral blood mononuclear cells in patients with osteoporosis. Subsequently, we integrated gene expression data sets from multiple microarray studies to obtain differentially expressed genes (DEGs) between patients with osteoporosis and normal controls. Gene function analysis was performed to uncover the functions of identified DEGs.


Bone & Joint Research
Vol. 5, Issue 7 | Pages 301 - 306
1 Jul 2016
Madhuri V Santhanam M Rajagopal K Sugumar LK Balaji V

Objectives

To determine the pattern of mutations of the WISP3 gene in clinically identified progressive pseudorheumatoid dysplasia (PPD) in an Indian population.

Patients and Methods

A total of 15 patients with clinical features of PPD were enrolled in this study. Genomic DNA was isolated and polymerase chain reaction performed to amplify the WISP3 gene. Screening for mutations was done by conformation-sensitive gel electrophoresis, beginning with the fifth exon and subsequently proceeding to the remaining exons. Sanger sequencing was performed for both forward and reverse strands to confirm the mutations.


Bone & Joint 360
Vol. 5, Issue 3 | Pages 2 - 6
1 Jun 2016
Raglan M Scammell B


The Bone & Joint Journal
Vol. 98-B, Issue 8 | Pages 1011 - 1013
1 Aug 2016
Masters JPM Nanchahal J Costa ML


Bone & Joint Research
Vol. 6, Issue 6 | Pages 358 - 365
1 Jun 2017
Sanghani-Kerai A Coathup M Samazideh S Kalia P Silvio LD Idowu B Blunn G

Objectives

Cellular movement and relocalisation are important for many physiologic properties. Local mesenchymal stem cells (MSCs) from injured tissues and circulating MSCs aid in fracture healing. Cytokines and chemokines such as Stromal cell-derived factor 1(SDF-1) and its receptor chemokine receptor type 4 (CXCR4) play important roles in maintaining mobilisation, trafficking and homing of stem cells from bone marrow to the site of injury. We investigated the differences in migration of MSCs from the femurs of young, adult and ovariectomised (OVX) rats and the effect of CXCR4 over-expression on their migration.

Methods

MSCs from young, adult and OVX rats were put in a Boyden chamber to establish their migration towards SDF-1. This was compared with MSCs transfected with CXCR4, as well as MSCs differentiated to osteoblasts.


Bone & Joint Research
Vol. 5, Issue 9 | Pages 403 - 411
1 Sep 2016
Mrosek EH Chung H Fitzsimmons JS O’Driscoll SW Reinholz GG Schagemann JC

Objectives

We sought to determine if a durable bilayer implant composed of trabecular metal with autologous periosteum on top would be suitable to reconstitute large osteochondral defects. This design would allow for secure implant fixation, subsequent integration and remodeling.

Materials and Methods

Adult sheep were randomly assigned to one of three groups (n = 8/group): 1. trabecular metal/periosteal graft (TMPG), 2. trabecular metal (TM), 3. empty defect (ED). Cartilage and bone healing were assessed macroscopically, biochemically (type II collagen, sulfated glycosaminoglycan (sGAG) and double-stranded DNA (dsDNA) content) and histologically.


The Bone & Joint Journal
Vol. 97-B, Issue 7 | Pages 924 - 932
1 Jul 2015
Lee MC Ha C Elmallah RK Cherian JJ Cho JJ Kim TW Bin S Mont MA

The aim of this study was to assess the effect of injecting genetically engineered chondrocytes expressing transforming growth factor beta 1 (TGF-β1) into the knees of patients with osteoarthritis. We assessed the resultant function, pain and quality of life.

A total of 54 patients (20 men, 34 women) who had a mean age of 58 years (50 to 66) were blinded and randomised (1:1) to receive a single injection of the active treatment or a placebo. We assessed post-treatment function, pain severity, physical function, quality of life and the incidence of treatment-associated adverse events. Patients were followed at four, 12 and 24 weeks after injection.

At final follow-up the treatment group had a significantly greater improvement in the mean International Knee Documentation Committee score than the placebo group (16 points; -18 to 49, vs 8 points; -4 to 37, respectively; p = 0.03). The treatment group also had a significantly improved mean visual analogue score at final follow-up (-25; -85 to 34, vs -11 points; -51 to 25, respectively; p = 0.032). Both cohorts showed an improvement in Western Ontario and McMaster Osteoarthritis Index and Knee Injury and Osteoarthritis Outcome Scores, but these differences were not statistically significant. One patient had an anaphylactic reaction to the preservation medium, but recovered within 24 hours. All other adverse events were localised and resolved without further action.

This technique may result in improved clinical outcomes, with the aim of slowing the degenerative process, leading to improvements in pain and function. However, imaging and direct observational studies are needed to verify cartilage regeneration. Nevertheless, this study provided a sufficient basis to proceed to further clinical testing.

Cite this article: Bone Joint J 2015;97-B:924–32.


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 6 - 9
1 Jan 2016
Fillingham Y Jacobs J

The continual cycle of bone formation and resorption is carried out by osteoblasts, osteocytes, and osteoclasts under the direction of the bone-signaling pathway. In certain situations the host cycle of bone repair is insufficient and requires the assistance of bone grafts and their substitutes. The fundamental properties of a bone graft are osteoconduction, osteoinduction, osteogenesis, and structural support. Options for bone grafting include autogenous and allograft bone and the various isolated or combined substitutes of calcium sulphate, calcium phosphate, tricalcium phosphate, and coralline hydroxyapatite. Not all bone grafts will have the same properties. As a result, understanding the requirements of the clinical situation and specific properties of the various types of bone grafts is necessary to identify the ideal graft. We present a review of the bone repair process and properties of bone grafts and their substitutes to help guide the clinician in the decision making process.

Cite this article: Bone Joint J 2016;98-B(1 Suppl A):6–9.


Bone & Joint Research
Vol. 6, Issue 4 | Pages 208 - 215
1 Apr 2017
Decambron A Manassero M Bensidhoum M Lecuelle B Logeart-Avramoglou D Petite H Viateau V

Objectives

To compare the therapeutic potential of tissue-engineered constructs (TECs) combining mesenchymal stem cells (MSCs) and coral granules from either Acropora or Porites to repair large bone defects.

Materials and Methods

Bone marrow-derived, autologous MSCs were seeded on Acropora or Porites coral granules in a perfusion bioreactor. Acropora-TECs (n = 7), Porites-TECs (n = 6) and bone autografts (n = 2) were then implanted into 25 mm long metatarsal diaphyseal defects in sheep. Bimonthly radiographic follow-up was completed until killing four months post-operatively. Explants were subsequently processed for microCT and histology to assess bone formation and coral bioresorption. Statistical analyses comprised Mann-Whitney, t-test and Kruskal–Wallis tests. Data were expressed as mean and standard deviation.


Bone & Joint Research
Vol. 6, Issue 3 | Pages 123 - 131
1 Mar 2017
Sasaki T Akagi R Akatsu Y Fukawa T Hoshi H Yamamoto Y Enomoto T Sato Y Nakagawa R Takahashi K Yamaguchi S Sasho T

Objectives

The aim of this study was to investigate the effect of granulocyte-colony stimulating factor (G-CSF) on mesenchymal stem cell (MSC) proliferation in vitro and to determine whether pre-microfracture systemic administration of G-CSF (a bone marrow stimulant) could improve the quality of repaired tissue of a full-thickness cartilage defect in a rabbit model.

Methods

MSCs from rabbits were cultured in a control medium and medium with G-CSF (low-dose: 4 μg, high-dose: 40 μg). At one, three, and five days after culturing, cells were counted. Differential potential of cultured cells were examined by stimulating them with a osteogenic, adipogenic and chondrogenic medium.

A total of 30 rabbits were divided into three groups. The low-dose group (n = 10) received 10 μg/kg of G-CSF daily, the high-dose group (n = 10) received 50 μg/kg daily by subcutaneous injection for three days prior to creating cartilage defects. The control group (n = 10) was administered saline for three days. At 48 hours after the first injection, a 5.2 mm diameter cylindrical osteochondral defect was created in the femoral trochlea. At four and 12 weeks post-operatively, repaired tissue was evaluated macroscopically and microscopically.


Bone & Joint Research
Vol. 5, Issue 7 | Pages 287 - 293
1 Jul 2016
Ismail H Phedy P Kholinne E Djaja YP Kusnadi Y Merlina M Yulisa ND

Objectives

To explore the therapeutic potential of combining bone marrow-derived mesenchymal stem cells (BM-MSCs) and hydroxyapatite (HA) granules to treat nonunion of the long bone.

Methods

Ten patients with an atrophic nonunion of a long bone fracture were selectively divided into two groups. Five subjects in the treatment group were treated with the combination of 15 million autologous BM-MSCs, 5g/cm3 (HA) granules and internal fixation. Control subjects were treated with iliac crest autograft, 5g/cm3 HA granules and internal fixation. The outcomes measured were post-operative pain (visual analogue scale), level of functionality (LEFS and DASH), and radiograph assessment.


Bone & Joint Research
Vol. 6, Issue 3 | Pages 162 - 171
1 Mar 2017
Walker JA Ewald TJ Lewallen E Van Wijnen A Hanssen AD Morrey BF Morrey ME Abdel MP Sanchez-Sotelo J

Objectives

Sustained intra-articular delivery of pharmacological agents is an attractive modality but requires use of a safe carrier that would not induce cartilage damage or fibrosis. Collagen scaffolds are widely available and could be used intra-articularly, but no investigation has looked at the safety of collagen scaffolds within synovial joints. The aim of this study was to determine the safety of collagen scaffold implantation in a validated in vivo animal model of knee arthrofibrosis.

Materials and Methods

A total of 96 rabbits were randomly and equally assigned to four different groups: arthrotomy alone; arthrotomy and collagen scaffold placement; contracture surgery; and contracture surgery and collagen scaffold placement. Animals were killed in equal numbers at 72 hours, two weeks, eight weeks, and 24 weeks. Joint contracture was measured, and cartilage and synovial samples underwent histological analysis.


The Bone & Joint Journal
Vol. 96-B, Issue 11_Supple_A | Pages 70 - 72
1 Nov 2014
Callaghan JJ Liu SS Phruetthiphat O

A common situation presenting to the orthopaedic surgeon today is a worn acetabular liner with substantial acetabular and pelvic osteolysis. The surgeon has many options for dealing with osteolytic defects. These include allograft, calcium based substitutes, demineralised bone matrix, or combinations of these options with or without addition of platelet rich plasma. To date there are no clinical studies to determine the efficacy of using bone-stimulating materials in osteolytic defects at the time of revision surgery and there are surprisingly few studies demonstrating the clinical efficacy of these treatment options. Even when radiographs appear to demonstrate incorporation of graft material CT studies have shown that incorporation is incomplete. The surgeon, in choosing a graft material for a surgical procedure must take into account the efficacy, safety, cost and convenience of that material.

Cite this article: Bone Joint J 2014;96-B (11 Suppl A):70–2.


The Bone & Joint Journal
Vol. 98-B, Issue 9 | Pages 1155 - 1159
1 Sep 2016
Trieb K

Neuropathic changes in the foot are common with a prevalence of approximately 1%. The diagnosis of neuropathic arthropathy is often delayed in diabetic patients with harmful consequences including amputation. The appropriate diagnosis and treatment can avoid an extensive programme of treatment with significant morbidity for the patient, high costs and delayed surgery. The pathogenesis of a Charcot foot involves repetitive micro-trauma in a foot with impaired sensation and neurovascular changes caused by pathological innervation of the blood vessels. In most cases, changes are due to a combination of both pathophysiological factors. The Charcot foot is triggered by a combination of mechanical, vascular and biological factors which can lead to late diagnosis and incorrect treatment and eventually to destruction of the foot.

This review aims to raise awareness of the diagnosis of the Charcot foot (diabetic neuropathic osteoarthropathy and the differential diagnosis, erysipelas, peripheral arterial occlusive disease) and describe the ways in which the diagnosis may be made. The clinical diagnostic pathways based on different classifications are presented.

Cite this article: Bone Joint J 2016;98-B:1155–9.