In a prospective study over 11 years we assessed the relationship between neonatal deformities of the foot and the presence of ultrasonographic developmental dysplasia of the hip (DDH). Between 1 January 1996 and 31 December 2006, 614 infants with deformities of the foot were referred for clinical and ultrasonographic evaluation. There were 436 cases of postural talipes equinovarus deformity (TEV), 60 of fixed congenital talipes equinovarus (CTEV), 93 of congenital talipes calcaneovalgus (CTCV) and 25 of metatarsus adductus. The overall risk of ultrasonographic dysplasia or instability was 1:27 in postural TEV, 1:8.6 in CTEV, 1:5.2 in CTCV and 1:25 in metatarsus adductus. The risk of type-IV instability of the hip or irreducible dislocation was 1:436 (0.2%) in postural TEV, 1:15.4 (6.5%) in CTCV and 1:25 (4%) in metatarsus adductus. There were no cases of hip instability (type IV) or of irreducible dislocation in the CTEV group. Routine screening for DDH in cases of postural TEV and CTEV is no longer advocated. The former is poorly defined, leading to the over-diagnosis of a possibly spurious condition. Ultrasonographic imaging and surveillance of hips in infants with CTCV and possibly those with metatarsus adductus should continue.
Guiding growth by harnessing the ability of growing bone to undergo plastic deformation is one of the oldest orthopaedic principles. Correction of deformity remains a major part of the workload for paediatric orthopaedic surgeons and recently, along with developments in limb reconstruction and computer-directed frame correction, there has been renewed interest in surgical methods of physeal manipulation or ‘guided growth’. Manipulating natural bone growth to correct a deformity is appealing, as it allows gradual correction by non- or minimally invasive methods. This paper reviews the techniques employed for guided growth in current orthopaedic practice, including the basic science and recent advances underlying mechanical physeal manipulation of both healthy and pathological physes.
Of the 34 723 infants born between 1 June 1992 and 31 May 2002, the hips of 2578 with clinical instability or at-risk factors for developmental dysplasia of the hip were imaged by ultrasound. Instability of the hip was present in 77 patients, of whom only 24 (31.2%) had an associated risk factor. From the ‘at-risk’ groups, the overall risk of type-III dysplasia, instability and irreducibility was 1:15 when family history, 1:27 when breech delivery and 1:33 when foot deformity were considered as risk factors. Of those hips which were ultrasonographically stable, 88 had type-III dysplasia. A national programme of selective ultrasound screening of at-risk factors for the diagnosis of hip dislocation or instability alone cannot be recommended because of its low predictive value (1:88). However, the incidence of type-III dysplasia and hip dislocation or dislocatability in the groups with clinical instability, family history, breech position and possibly postural foot deformity as risk factors could justify a programme of selective ultrasound imaging.
The outcome of one-stage bilateral open reduction through a medial approach for the treatment of developmental dysplasia of the hip in children under 18 months was studied in 23 children, 18 girls and five boys. Their mean age at operation was 10.1 months (6 to 17) and the mean follow-up was 5.4 years (3 to 8). Acceptable clinical and radiological results were achieved in 44 (95.7%) and 43 (93.5%) of 46 hips, respectively. Excellent results were significantly evident in patients younger than 12 months, those who did not require acetabuloplasty, those whose ossific nucleus had appeared, and in those who did not develop avascular necrosis. One-stage bilateral medial open reduction avoids the need for separate procedures on the hips and has the advantages of accelerated management and shorter immobilisation and rehabilitation than staged operations.
The practice of regular radiological follow-up of infants with a positive family history of developmental dysplasia of the hip is based on the widespread belief that primary acetabular dysplasia is a genetic disorder which can occur in the absence of frank subluxation or dislocation. We reviewed all infants who were involved in our screening programme for developmental dysplasia of the hip, between November 2002 and January 2004, and who had a normal clinical and ultrasound examination of the hip at six to eight weeks of age, but who, because of a family history of developmental dysplasia of the hip, had undergone further radiography after an interval of 6 to 12 months. The radiographs of 89 infants were analysed for signs of late dysplasia of the hip and assessed independently by three observers to allow for variability of measurement. There were 11 infants (11%) lost to follow-up. All the patients had normal radiographs at the final follow-up and none required any intervention. We therefore question the need for routine radiological follow-up of infants with a positive family history of developmental dysplasia of the hip, but who are normal on clinical examination and assessment by ultrasound screening when six to eight weeks old.
Club foot was diagnosed by ultrasonography in 91 feet (52 fetuses) at a mean gestational age of 22.1 weeks (14 to 35.6). Outcome was obtained by chart review in 26 women or telephone interview in 26. Feet were classified as normal, positional deformity, isolated club foot or complex club foot. At initial diagnosis, 69 feet (40 fetuses) were classified as isolated club foot and 22 feet (12 fetuses) as complex club foot. The diagnosis was changed after follow-up ultrasound scan in 13 fetuses (25%), and the final ultrasound diagnosis was normal in one fetus, isolated club foot in 31 fetuses, and complex club foot in 20 fetuses. At birth, club foot was found in 79 feet in 43 infants for a positive predictive value of 83%. Accuracy of the specific diagnosis of isolated club foot or complex club foot was lower; 63% at the initial ultrasound scan and 73% at the final scan. The difference in diagnostic accuracy between isolated and complex club foot was not statistically significant. In no case was postnatal complex club foot undiagnosed on fetal ultrasound and all inaccuracies were overdiagnoses. Karyotyping was performed in 25 cases. Abnormalities were noted in three fetuses, all with complex club foot and with additional findings on ultrasound.
We studied 24 children (40 feet) to demonstrate that a physiotherapist-delivered Ponseti service is as successful as a medically-led programme in obtaining correction of an idiopathic congenital talipes equinovarus deformity. The median Pirani score at the start of treatment was 5.5 (mean 4.75; 2 to 6). A Pirani score of ≥5 predicted the need for tenotomy (p <
0.01). Of the 40 feet studied, 39 (97.5%) achieved correction of deformity. The remaining foot required surgical correction. A total of 25 (62.5%) of the feet underwent an Achilles tenotomy, which was performed by a surgeon in the physiotherapy clinic. There was full compliance with the foot abduction orthoses in 36 (90%) feet. Continuity of care was assured, as one practitioner was responsible for all patient contact. This was rated highly by the patient satisfaction survey. We believe that the Ponseti technique is suitable for use by non-medical personnel, but a holistic approach and good continuity of care are essential to the success of the programme.
We examined the rates of infection and colonisation by methicillin-resistant In 2004, we screened 1795 of 1796 elective admissions and MRSA was found in 23 (1.3%). We also screened 1122 of 1447 trauma admissions and 43 (3.8%) were carrying MRSA. All ten ward transfers were screened and four (40%) were carriers (all p <
0.001). The incidence of MRSA in trauma patients increased by 2.6% per week of inpatient stay (r = 0.97, p <
0.001). MRSA developed in 2.9% of trauma and 0.2% of elective patients during that admission (p <
0.001). The implementation of the MRSA policy reduced the incidence of MRSA infection by 56% in trauma patients (1.57% in 2003 (17 of 1084) to 0.69% in 2004 (10 of 1447), p = 0.035). Infection with MRSA in elective patients was reduced by 70% (0.56% in 2003 (7 of 1257) to 0.17% in 2004 (3 of 1806), p = 0.06). The cost of preventing one MRSA infection was £3200. Although colonisation by MRSA did not affect the mortality rate, infection by MRSA more than doubled it. Patients with proximal fractures of the femur infected with MRSA remained in hospital for 50 extra days, had 19 more days of vancomycin treatment and 26 more days of vacuum-assisted closure therapy than the matched controls. These additional costs equated to £13 972 per patient. From this experience we have been able to describe the epidemiology of MRSA, assess the impact of infection-control measures on MRSA infection rates and determine the morbidity, mortality and economic cost of MRSA carriage on trauma and elective orthopaedic wards.
There is no unified national training system for orthopaedic surgeons in China. With such rapid progress in many aspects of life in China, there is an imminent need for improvement in the training of orthopaedic specialists. Since 2003 the orthopaedic community in Hong Kong has been working in collaboration with their colleagues in mainland China to develop a training system for orthopaedic surgery. We adopted the system from the Royal College of Surgeons of Edinburgh (RCSEd), setting up a trial centre in the Beijing Jishuitan hospital in 2006, with trainers and trainees attaining the standards set by RCSEd and the Hong Kong College of Orthopaedic Surgeons (HKCOS). This trial is ongoing, with the success of two trainees who passed the exit examination in 2010 and became the first Chinese orthopaedic surgeons with a joint fellowship of both the RCSEd and the HKCOS. Following this inaugural success, we are confident that China will develop a training system for orthopaedic surgeons to a consistently high international standard.
This prospective study of 136 children with progressive infantile scoliosis treated under the age of four years, and followed up for nine years, shows that the scoliosis can be reversed by harnessing the vigorous growth of the infant to early treatment by serial corrective plaster jackets. In 94 children (group 1), who were referred and treated in the early stages of progression, at a mean age of one year seven months (6 to 48 months) and with a mean Cobb angle of 32° (11° to 65°), the scoliosis resolved by a mean age of three years and six months. They needed no further treatment and went on to lead a normal life. At the last follow-up, their mean age was 11 years and two months (1 year 10 months to 25 years 2 months), 23 (24.5%) were at Risser stages 4 and 5 and 13 girls were post-menarchal. In 42 children (group 2), who were referred late at a mean age of two years and six months (11 to 48 months) and with a mean Cobb angle of 52° (23° to 92°), treatment could only reduce but not reverse the deformity. At the last follow-up, at a mean age of ten years and four months (1 year 9 months to 22 years 1 month), eight children (19%) were at Risser stages 4 and 5 and five girls were post-menarchal. Fifteen children (35.7%) had undergone spinal fusion, as may all the rest eventually.