header advert
Results 181 - 200 of 391
Results per page:
Bone & Joint Open
Vol. 1, Issue 4 | Pages 47 - 54
2 Apr 2020
Al-Mohrej OA Elshaer AK Al-Dakhil SS Sayed AI Aljohar S AlFattani AA Alhussainan TS

Introduction

Studies have addressed the issue of increasing prevalence of work-related musculoskeletal (MSK) pain among different occupations. However, contributing factors to MSK pain have not been fully investigated among orthopaedic surgeons. Thus, this study aimed to approximate the prevalence and predictors of MSK pain among Saudi orthopaedic surgeons working in Riyadh, Saudi Arabia.

Methods

A cross-sectional study using an electronic survey was conducted in Riyadh. The questionnaire was distributed through email among orthopaedic surgeons in Riyadh hospitals. Standardized Nordic questionnaires for the analysis of musculoskeletal symptoms were used. Descriptive measures for categorical and numerical variables were presented. Student’s t-test and Pearson’s χ2 test were used. The level of statistical significance was set at p ≤ 0.05.


The Journal of Bone & Joint Surgery British Volume
Vol. 39-B, Issue 1 | Pages 134 - 144
1 Feb 1957
Scott JH

1. Bones consist essentially of bundles of collagenous fibres united by a cementing substance in which the inorganic material lies in the form of minute plate-like crystals. 2. During weight bearing and muscle action bones as a whole are deformed to a variable extent. Periods of deformation are followed by periods of relaxed pressure during which the bones tend to return to their normal form. 3. These variations in deformation and elastic recoil set up alternating pressures and tensions within the bones along the bone cyrstal encrusted fibres which make up the trabeculae, lamellae and Haversian systems, and these alternating phases of compression and tension stimulate the activity of osteoblasts so that bone formation predominates over bone resorption. 4. These alterations of pressure and tension are intermittent and reciprocal in nature and do not, as postulated by the trajectorial theory, involve different trabeculae, nor is it necessary to consider whether tension or pressure is the more important phase in determining bone deposition. 5. The pressure exerted by cysts, tumours, erupting teeth, etc., is of a quite different nature, as is the response to trauma or callus formation in the healing of fractures. These processes are essentially vascular phenomena involving localised areas of bony tissue and not bones as mechanical units


The Bone & Joint Journal
Vol. 102-B, Issue 3 | Pages 345 - 351
1 Mar 2020
Pitts C Alexander B Washington J Barranco H Patel R McGwin G Shah AB

Aims

Tibiotalocalcaneal (TTC) fusion is used to treat a variety of conditions affecting the ankle and subtalar joint, including osteoarthritis (OA), Charcot arthropathy, avascular necrosis (AVN) of the talus, failed total ankle arthroplasty, and severe deformity. The prevalence of postoperative complications remains high due to the complexity of hindfoot disease seen in these patients. The aim of this study was to analyze the relationship between preoperative conditions and postoperative complications in order to predict the outcome following primary TTC fusion.

Methods

We retrospectively reviewed the medical records of 101 patients who underwent TTC fusion at the same institution between 2011 and 2019. Risk ratios (RRs) associated with age, sex, diabetes, cardiovascular disease, smoking, preoperative ankle deformity, and the use of bone graft during surgery were related to the postoperative complications. We determined from these data which pre- and perioperative factors significantly affected the outcome.


Bone & Joint Research
Vol. 8, Issue 3 | Pages 107 - 117
1 Mar 2019
Lim ZXH Rai B Tan TC Ramruttun AK Hui JH Nurcombe V Teoh SH Cool SM

Objectives

Long bone defects often require surgical intervention for functional restoration. The ‘gold standard’ treatment is autologous bone graft (ABG), usually from the patient’s iliac crest. However, autograft is plagued by complications including limited supply, donor site morbidity, and the need for an additional surgery. Thus, alternative therapies are being actively investigated. Autologous bone marrow (BM) is considered as a candidate due to the presence of both endogenous reparative cells and growth factors. We aimed to compare the therapeutic potentials of autologous bone marrow aspirate (BMA) and ABG, which has not previously been done.

Methods

We compared the efficacy of coagulated autologous BMA and ABG for the repair of ulnar defects in New Zealand White rabbits. Segmental defects (14 mm) were filled with autologous clotted BM or morcellized autograft, and healing was assessed four and 12 weeks postoperatively. Harvested ulnas were subjected to radiological, micro-CT, histological, and mechanical analyses.


Bone & Joint Research
Vol. 9, Issue 3 | Pages 130 - 138
1 Mar 2020
Qi X Yu F Wen Y Li P Cheng B Ma M Cheng S Zhang L Liang C Liu L Zhang F

Aims

Osteoarthritis (OA) is the most prevalent joint disease. However, the specific and definitive genetic mechanisms of OA are still unclear.

Methods

Tissue-related transcriptome-wide association studies (TWAS) of hip OA and knee OA were performed utilizing the genome-wide association study (GWAS) data of hip OA and knee OA (including 2,396 hospital-diagnosed hip OA patients versus 9,593 controls, and 4,462 hospital-diagnosed knee OA patients versus 17,885 controls) and gene expression reference to skeletal muscle and blood. The OA-associated genes identified by TWAS were further compared with the differentially expressed genes detected by the messenger RNA (mRNA) expression profiles of hip OA and knee OA. Functional enrichment and annotation analysis of identified genes was performed by the DAVID and FUMAGWAS tools.


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 6 | Pages 912 - 915
1 Aug 2001
Salai M Segal E Cohen I Dudkiewicz I Farzame N Pitaru S Savion N

Colchicine is often used in the treatment of diseases such as familial Mediterranean fever (FMF) and gout. We have previously reported that patients with FMF who had colchicine on a daily basis and who had a total hip arthroplasty showed no heterotopic ossification after surgery. The mechanism by which colchicine causes this clinical phenomenon has never been elucidated. We therefore evaluated the effect of various concentrations of colchicine on cell proliferation and mineralisation in tissue culture, using rat and human cells with and without osteogenic potential. Cell proliferation was assessed by direct cell counts and uptake of (. 3. H)thymidine, and mineralisation by measuring the amount of staining by Alizarin Red. Our findings indicate that concentrations of colchicine of up to 3 ng/ml did not affect cell proliferation but inhibition was observed at 10 to 30 ng/ml. Mineralisation decreased to almost 50%, which was the maximum inhibition observed, at concentrations of colchicine of 2.5 ng/ml. These results indicate that colchicine at low concentrations, of up to 3 ng/ml, has the capacity to inhibit selectively bone-like cell mineralisation in culture, without affecting cell proliferation. Further clinical and laboratory studies are necessary to evaluate the effects of colchicine on biological processes involving the proliferation of osteoblasts and tissue mineralisation in vivo, such as the healing of fractures, the formation of heterotopic bone and neoplastic bone growth


The Journal of Bone & Joint Surgery British Volume
Vol. 36-B, Issue 3 | Pages 474 - 489
1 Aug 1954
Schajowicz F Cabrini RL

1. Histochemical studies have been made of the distribution of alkaline phosphatase, glycogen and acid mucopolysaccharides in normal growing bones (mice, rats and men) and also in forty cases of pathological bone processes (neoplastic and dystrophic). 2. The study of normal material confirmed that alkaline phosphatase is plentiful in calcification of cartilage and even more plentiful in bone formation (whether enchondral or direct). 3. It was observed that glycogen increased in the cartilage areas about to be calcified, and that it disappeared in those calcified. It seemed that osteoblasts did not always contain glycogen. 4. In the pathological material (tumours and dystrophic processes) there was great phosphatase activity in the osteogenic areas and also in the cartilage about to be calcified. Whereas glycogen was plentiful in some cases of neoplastic or reactive osteogenesis, it was absent from others. 5. In every area of normal or pathological ossification, the presence of phosphatase seems to be a rule; glycogen is often but not always present. 6. It appears that alkaline phosphatase plays an important role in the formation of the protein matrix of bone, but is not associated with the elaboration of the mucoprotein cartilage matrix. We believe it is premature to draw any definite conclusion on the behaviour and role of the metachromatic substances in the processes of calcification and ossification. The histochemical study of alkaline phosphatase has shown that this is a valuable method in the detection of reactionary or pathological osteogenic processes which in some cases are difficult to demonstrate with the usual histological methods


Bone & Joint Research
Vol. 8, Issue 8 | Pages 405 - 413
1 Aug 2019
Huang J Bao X Xia W Zhu L Zhang J Ma J Jiang N Yang J Chen Q Jing T Liu J Ma D Xu G

Objectives

X-linked hypophosphataemic rickets (XLHR) is a disease of impaired bone mineralization characterized by hypophosphataemia caused by renal phosphate wasting. The main clinical manifestations of the disorder are O-shaped legs, X-shaped legs, delayed growth, and bone pain. XLHR is the most common inheritable form of rickets, with an incidence of 1/20 000 in humans. It accounts for approximately 80% of familial cases of hypophosphataemia and serves as the prototype of defective tubular phosphate (PO43+) transport, due to extra renal defects resulting in unregulated FGF23 activity. XLHR is caused by loss-of-function mutations in the PHEX gene. The aim of this research was to identify the genetic defect responsible for familial hypophosphataemic rickets in a four-generation Chinese Han pedigree and to analyze the function of this mutation.

Methods

The genome DNA samples of all members in the pedigree were extracted from whole blood. We sequenced all exons of the PHEX and FGF23 genes, as well as the adjacent splice site sequence with Sanger sequencing. Next, we analyzed the de novo mutation c.1692 del A of the PHEX gene with an online digital service and investigated the mutant PHEX with SWISS-MODEL, immunofluorescence, and protein stability detection.


Bone & Joint 360
Vol. 7, Issue 6 | Pages 2 - 8
1 Dec 2018
Murray IR Safran MR LaPrade RF


The Journal of Bone & Joint Surgery British Volume
Vol. 49-B, Issue 1 | Pages 146 - 153
1 Feb 1967
Lee WR

1 . Normal and diseased bone was obtained by biopsy from five patients suffering from Paget's disease. The tissue was studied by histology, microradiography and quantitative fluorescence microscopy using tetracycline markers. Study of the morphological changes showed that two of the biopsies could be regarded as normal, while one was osteoporotic; two biopsy specimens were in the porotic phase of Paget's disease and the remaining five were in the sclerotic phase. 2. The tetracycline markers were used to measure the linear rate at which bone was deposited on individual surfaces (appositional growth rate) in µ per day and the percentage volume of new bone added to the total volume of bone per day (bone formation rate). The values obtained for appositional growth rate in all the biopsies were of the order of 1 µ per day, but slightly higher values were obtained in the diseased tissue of each individual. The bone formation rate in normal bone from the proximal femur was about 0·04 per cent per day, about 0·13 per cent per day in the porotic phase, and about 0·4 per cent per day in the sclerotic phase of Paget's disease. 3. Although these values must be accepted with some reservation, there seems to be no doubt that there is an upper limit of about 1 µ per day to the rate of deposition of bone on an individual bone surface; this suggests that in Paget's disease the osteoblast behaves as a normal cell


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 3 | Pages 531 - 537
1 May 1999
Corbett SA Hukkanen M Batten J McCarthy ID Polak JM Hughes SPF

Our aim was to investigate whether nitric oxide synthase (NOS) isoforms, responsible for the generation of NO, are expressed during the healing of fractures. To localise the sites of expression compared with those in normal bone we made standardised, stabilised, unilateral tibial fractures in male Wistar rats. Immunostaining was used to determine the precise tissue localisation of the different NOS isoforms. Western blotting was used to assess expression of NOS isoform protein and L-citrulline assays for studies on NOS activity. Control tissue was obtained from both the contralateral uninjured limb and limbs of normal rats. Immunohistochemistry showed increased expression of endothelial NOS (eNOS) to be strongest in the cortical blood vessels and in osteocytes in the early phase of fracture repair. Western blot and image analysis confirmed this initial increase. Significantly elevated calcium-dependent NOS activity was observed at day 1 after fracture. Inducible NOS (iNOS) was localised principally in endosteal osteoblasts and was also seen in chondroblasts especially in the second week of fracture healing. Western blotting showed a reduction in iNOS during the early healing period. Significantly reduced calcium-independent NOS activity was also seen. No neuronal NOS was seen in either fracture or normal tissue. Increased eNOS in bone blood vessels is likely to mediate the increased blood flow recognised during fracture healing. eNOS expression in osteocytes may occur in response to changes in either mechanical or local fluid shear stress. The finding that eNOS is increased and iNOS reduced in early healing of fractures may be important in their successful repair


The Journal of Bone & Joint Surgery British Volume
Vol. 65-B, Issue 3 | Pages 299 - 307
1 May 1983
Schajowicz F Santini Araujo E Berenstein M

Out of 21 900 cases filed at the Latin-American Registry of Bone Pathology between April 1940 and July 1981, there were 987 with Paget's disease (4.51 per cent); 62 of these (6.28 per cent) were complicated by sarcoma and two were associated with giant-cell tumours of bone (osteoclastoma) without signs of malignancy. There was a slight predominance of men and the ages ranged from 45 to 87 years, with an average of 66 years. The most frequent sites were the femur (23 cases), the humerus (nine), the pelvis (10), and the tibia (nine). The low incidence of vertebral involvement (five cases) is noteworthy and is in sharp contrast to uncomplicated Paget's disease. The most common tumour type was osteosarcoma (39 cases), followed by fibrosarcoma (15 cases); other varieties (chondrosarcoma, malignant fibrous histiocytoma and reticulum-cell sarcoma) were much rarer. Most of the sarcomata occurred when the Paget's disease was polyostotic. Tumours often developed simultaneously, or at short time intervals, in the same or different bones; these bones had, in all cases, been affected by Paget's disease. The histological features of the osteosarcomata were characteristic, with large numbers of osteoclast giant cells, alternating with atypical osteoblasts, thus exaggerating the anarchic remodelling process of Paget's disease. The neighbouring areas of the pagetic bone showed an increased number of osteoclasts. These facts suggest a possible pathogenetic relationship between sarcoma and Paget's disease; the possibility of both processes having a viral aetiology is discussed


The Journal of Bone & Joint Surgery British Volume
Vol. 37-B, Issue 2 | Pages 266 - 303
1 May 1955
Thomson AD Turner-Warwick RT

1. One hundred and seventy-nine cases of primary malignant bone tumour and giant-cell tumour seen at the Middlesex Hospital since 1925 are reviewed. Tumours arising from non-skeletal tissues in bone have been excluded. 2. The following histological classification is used. Osteosarcoma (osteoblast sarcoma): This tumour is not synonymous with osteogenic (bone-forming) sarcoma. The essential feature is the formation of osteoid tissue by malignant osteoblasts, with no intermediate matrix of cartilage or fibrous tissue. It is the most malignant bone tumour and only four of the thirty-two patients survived three years. Chondrosarcoma: These tumours are composed of cartilage, and some show secondary ossification. The behaviour of this group is related to the degree of cartilaginous differentiation. In general, compared with the osteosarcoma, it is of low-grade malignancy. More than half of the sixty-eight patients survived four years. Fibrosarcoma: The essential feature of this tumour is the production of collagen by malignant fibroblastic tumour cells. Tumours of this type invading the medullary cavity have an average prognosis between that of an osteosarcoma and a chondrosarcoma. Nine of the thirty-four patients survived three years. Spindle-cell sarcoma: These tumours are composed of spindle cells which produce no diagnostic matrix. In spite of the lack of differentiation the outlook is not hopeless. Six of the eleven patients survived for five years or more. Giant-cell tumour: This tumour is composed of a cellular stroma with diagnostic giant cells resembling osteoclasts. It is by no means a benign lesion, for half the tumours recurred after treatment and a quarter of the patients died with metastases. 3. The subdivision of primary malignant skeletal tumours into groups according to the histological pattern appears to be reflected in the behaviour of the individual tumours after treatment. The prognosis of each group has been stated in the appropriate sections


Bone & Joint Research
Vol. 8, Issue 7 | Pages 349 - 356
1 Jul 2019
Starlinger J Kaiser G Thomas A Sarahrudi K

Objectives

The osteoprotegerin (OPG) and receptor activator of nuclear factor kappa-B ligand (RANKL) balance is of the utmost importance in fracture healing. The aim of this study was therefore to investigate the impact of nonosteogenic factors on OPG and RANKL levels.

Methods

Serum obtained from 51 patients with long bone fractures was collected over 48 weeks. The OPG and serum sRANKL (soluble RANKL) concentrations were measured using enzyme-linked immunosorbent assay (ELISA). Smoking habit, diabetes, and alcohol consumption were recorded.


Bone & Joint Research
Vol. 7, Issue 6 | Pages 397 - 405
1 Jun 2018
Morcos MW Al-Jallad H Li J Farquharson C Millán JL Hamdy RC Murshed M

Objectives

Bone fracture healing is regulated by a series of complex physicochemical and biochemical processes. One of these processes is bone mineralization, which is vital for normal bone development. Phosphatase, orphan 1 (PHOSPHO1), a skeletal tissue-specific phosphatase, has been shown to be involved in the mineralization of the extracellular matrix and to maintain the structural integrity of bone. In this study, we examined how PHOSPHO1 deficiency might affect the healing and quality of fracture callus in mice.

Methods

Tibial fractures were created and then stabilized in control wild-type (WT) and Phospho1-/- mice (n = 16 for each group; mixed gender, each group carrying equal number of male and female mice) at eight weeks of age. Fractures were allowed to heal for four weeks and then the mice were euthanized and their tibias analyzed using radiographs, micro-CT (μCT), histology, histomorphometry and three-point bending tests.


The Journal of Bone & Joint Surgery British Volume
Vol. 50-B, Issue 4 | Pages 866 - 873
1 Nov 1968
Bohr H Ravn HO Werner H

1. Transplantations of autografts and of Kiel bone to the iliac bone and to muscle tissue were performed in rabbits. Through labelling with two tetracycline compounds which have different fluorescent colours in ultraviolet light, bone formation between the labelling periods could be followed. 2. It was shown that bone formation between the fifth and the tenth day after transplantation to bone took place in about 50 per cent of the fresh autografts. Storage of the transplants in saline for one hour before replacement had little adverse effect, whereas exposure to air for one hour seemed to reduce the osteogenic effect of the grafts. Bone formation was not observed in grafts of Kiel bone during this period. 3. The fact that new bone formation in fresh autografts could be demonstrated even during the first four days after transplantation to bone indicates that osteogenic cells from the fresh autografts continue their activity under favourable conditions. This is supported by microradiographic and histological evidence. 4. The amount of callus which developed in close contact with the grafts during the first ten days after transplantation to bone was more pronounced both in fresh autografts and in autografts kept in saline than in autografts exposed to air for one hour. Callus developing at a later stage showed no significant difference between the various grafts, including those of Kiel bone. 5. In fresh autografts transplanted to muscle tissue callus formation could be demonstrated in most cases by the tenth day, indicating either survival of osteoblasts or the transformation of more primitive cells from the graft or from the host bone into osteogenic cells. No bone formation was observed when Kiel bone was embedded in muscle tissue


The Journal of Bone & Joint Surgery British Volume
Vol. 47-B, Issue 1 | Pages 120 - 136
1 Feb 1965
Jeffree GM Price CHG

1. Alkaline and acid phosphatase, non-specific esterase and beta-glucuronidase have been estimated and demonstrated histochemically in a series of bone tumours and allied lesions, of which ten were osteogenic sarcomata, ten were giant-cell lesions, eleven were fibroblastic lesions and seven were tumours of cartilage. 2. Osteogenic sarcoma was found to be characterised by high levels of alkaline phosphatase, with rich staining for this enzyme in the tumour cells. Similar high levels of alkaline phosphatase were found in other bone-forming lesions, such as fibrous dysplasia, a giant-cell sarcoma with osteogenic matrix, and fracture callus. 3. Giant-cell lesions were characterised by high levels of acid phosphatase, and intense staining for this enzyme in the osteoclasts. These cells were also found to be rich in non-specific esterase (as shown by the alpha-naphthyl acetate method) and in beta-glucuronidase, but almost or entirely lacking in alkaline phosphatase. High levels of alkaline phosphatase were not found in giant-cell lesions except in relation to osteogenic matrix. 4. Fibroblastic tumours were characterised by moderate levels of all four enzymes, with little or no staining for phosphatases in the tumour cells; non-specific esterase was generally present in a proportion of the cells. 5. In certain lesions intermediate stages in the differentiation of fibroblasts to osteoblasts were found, notably in fibrous dysplasia, in which the biochemical change preceded the histological. In such lesions high total levels of alkaline phosphatase were found. 6. Cartilaginous tumours were characterised by low levels of all four enzymes, and little histochemical staining except in hypertrophied cells in areas of ossification. 7. It was found in general that the enzyme distributions in these neoplasms and other lesions reflected the findings in comparable reactive and growing normal tissues


Bone & Joint Research
Vol. 9, Issue 1 | Pages 36 - 48
1 Jan 2020
González-Chávez SA Pacheco-Tena C Quiñonez-Flores CM Espino-Solis GP Burrola-De Anda JI Muñoz-Morales PM

Aims

To assess the effect of physical exercise (PE) on the histological and transcriptional characteristics of proteoglycan-induced arthritis (PGIA) in BALB/c mice.

Methods

Following PGIA, mice were subjected to treadmill PE for ten weeks. The tarsal joints were used for histological and genetic analysis through microarray technology. The genes differentially expressed by PE in the arthritic mice were obtained from the microarray experiments. Bioinformatic analysis in the DAVID, STRING, and Cytoscape bioinformatic resources allowed the association of these genes in biological processes and signalling pathways.


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 1 | Pages 120 - 127
1 Jan 2002
Musgrave DS Pruchnic R Bosch P Ziran BH Whalen J Huard J

We have examined whether primary human muscle-derived cells can be used in ex vivo gene therapy to deliver BMP-2 and to produce bone in vivo. Two in vitro experiments and one in vivo experiment were used to determine the osteocompetence and BMP-2 secretion capacity of cells isolated from human skeletal muscle. We isolated five different populations of primary muscle cells from human skeletal muscle in three patients. In the first in vitro experiment, production of alkaline phosphatase by the cells in response to stimulation by rhBMP-2 was measured and used as an indicator of cellular osteocompetence. In the second, secretion of BMP-2 was measured after the cell populations had been transduced by an adenovirus encoding for BMP-2. In the in vivo experiment, the cells were cotransduced with a retrovirus encoding for a nuclear localised β-galactosidase gene and an adenovirus encoding for BMP-2. The cotransduced cells were then injected into the hind limbs of severe combined immune-deficient (SCID) mice and analysed radiographically and histologically. The nuclear localised β-galactosidase gene allowed identification of the injected cells in histological specimens. In the first in vitro experiment, the five different cell populations all responded to in vitro stimulation of rhBMP-2 by producing higher levels of alkaline phosphatase when compared with non-stimulated cells. In the second, the five different cell populations were all successfully transduced by an adenovirus to express and secrete BMP-2. The cells secreted between 444 and 2551 ng of BMP-2 over three days. In the in vivo experiment, injection of the transduced cells into the hind-limb musculature of SCID mice resulted in the formation of ectopic bone at 1, 2, 3 and 4 weeks after injection. Retroviral labelling of the cell nuclei showed labelled human muscle-derived cells occupying locations of osteoblasts in the ectopic bone, further supporting their osteocompetence. Cells from human skeletal muscle, because of their availability to orthopaedic surgeons, their osteocompetence, and their ability to express BMP-2 after genetic engineering, are an attractive cell population for use in BMP-2 gene therapy approaches


The Journal of Bone & Joint Surgery British Volume
Vol. 45-B, Issue 2 | Pages 402 - 418
1 May 1963
Trueta J

We have attempted to summarise in a short space investigations that have occupied several years, and we realise that whatever the merits of such an effort the results can only be modest. Many important aspects of the osteogenetic process still remain a mystery and thus are subjected to theory and controversy. Such is the case with this constant attendant at osteogenesis which is alkaline phosphatase. But of one thing we are certain, namely that bone is an organised "soft" tissue of which only part has been made rigid by the deposit of calcium salts. The organiser is the osteogenetic vessel from which springs the syncytial frame of cells and their connections on which the bone architecture is established. Endothelial cell, intermediate cell, osteoblast, osteocyte, osteoclast; these constitute the normal sequence of cellular phylogeny in the constant elaboration and removal of the bone substance. The initial cells on which the whole process rests are those of the capillary-sinusoid vessel which is responsible for providing the transudates on which the life and health of the whole syncytium depends. If our findings were confirmed, a better understanding of the nature and characteristics of primitive malignant bone tumours would be possible. Each type of tumour from endothelioma to malignant osteoclastoma, including reticulum-cell sarcoma and osteogenic sarcoma, would be initiated by a different cell of the syncytium, but in its monstrous deviation from the normal would still preserve most of the characteristics of its healthy ancestor. Thus the endothelioma causes bone expansion, bone reaction and even bone necrosis, but not proper bone formation, whereas the osteogenic sarcoma or osteoblastoma forms bone; and with the same fidelity to their origin osteoclasts are seen in the malignant osteolytic tumour. Over thirty years ago the late Sir Arthur Keith (1927) expressed his suspicion that the cells which assume a bone-forming role are derived from the endothelium of the capillary system. We hope we have contributed to show that his suspicion was right