The increasing infection burden after total hip arthroplasty (THA) has seen a rise in the use of two-stage exchange arthroplasty and the use of increasingly powerful antibiotics at the time of this procedure. As a result, there has been an increase in the number of failed two-stage revisions during the past decade. The aim of this study was to clarify the outcome of repeat two-stage revision THA following a failed two-stage exchange due to recurrent prosthetic joint infection (PJI). We identified 42 patients who underwent a two-stage revision THA having already undergone at least one previous two stage procedure for infection, between 2000 and 2015. There were 23 women and 19 men. Their mean age was 69.3 years (48 to 81). The outcome was analyzed at a minimum follow-up of two years.Aims
Patients and Methods
Whether patient-reported pain differs among surgical approaches in total hip arthroplasty (THA) remains unclear. This study’s purposes were to determine differences in pain based on surgical approach (direct anterior (DA) This was a retrospective investigation from two centres and seven surgeons (three DA, three PL, one both) of primary THAs. PL patients were categorized for incision length (6 cm to 8 cm, 8 cm to 12 cm, 12 cm to 15 cm). All patients had cementless femoral and acetabular fixation, at least one year’s follow-up, and well-fixed components. Patients completed a pain-drawing questionnaire identifying the location and intensity of pain on an anatomical diagram. Power analysis indicated 800 patients in each cohort for adequate power to detect a 4% difference in pain (alpha = 0.05, beta = 0.80).Aims
Patients and Methods
The aims of this study were to evaluate the incidence of postoperatively restricted weight-bearing and its association with outcome in patients who undergo surgery for a fracture of the hip. Patient aged > 60 years undergoing surgery for a hip fracture were identified in the 2016 National Surgical Quality Improvement Program (NSQIP) Hip Fracture Targeted Procedure Dataset. Analysis of the effect of restricted weight-bearing on adverse events, delirium, infection, transfusion, length of stay, return to the operating theatre, readmission and mortality within 30 days postoperatively were assessed. Multivariate regression analysis was used to adjust for confounding demographic, comorbid and procedural characteristics.Aims
Patients and Methods
Aims
Patients and Methods
This study presents the long-term survivorship, risk factors for prosthesis survival, and an assessment of the long-term effects of changes in surgical technique in a large series of patients treated by metal-on-metal (MoM) hip resurfacing arthroplasty (HRA). Between November 1996 and January 2012, 1074 patients (1321 hips) underwent HRA using the Conserve Plus Hip Resurfacing System. There were 787 men (73%) and 287 women (27%) with a mean age of 51 years (14 to 83). The underlying pathology was osteoarthritis (OA) in 1003 (75.9%), developmental dysplasia of the hip (DDH) in 136 (10.3%), avascular necrosis in 98 (7.4%), and other conditions, including inflammatory arthritis, in 84 (6.4%).Aims
Patients and Methods
During the last decades, several research groups have used bisphosphonates for local application to counteract secondary bone resorption after bone grafting, to improve implant fixation or to control bone resorption caused by bone morphogenetic proteins (BMPs). We focused on zoledronate (a bisphosphonate) due to its greater antiresorptive potential over other bisphosphonates. Recently, it has become obvious that the carrier is of importance to modulate the concentration and elution profile of the zoledronic acid locally. Incorporating one fifth of the recommended systemic dose of zoledronate with different apatite matrices and types of bone defects has been shown to enhance bone regeneration significantly
The aim of this study was to determine the stability of a new
short femoral stem compared with a conventional femoral stem in
patients undergoing cementless total hip arthroplasty (THA), in
a prospective randomized controlled trial using radiostereometric
analysis (RSA). A total of 53 patients were randomized to receive cementless
THA with either a short femoral stem (MiniHip, 26 patients, mean
age: 52 years, nine male) or a conventional length femoral stem
(MetaFix, 23 patients, mean age: 53 years, 11 male). All patients
received the same cementless acetabular component. Two-year follow-up
was available on 38 patients. Stability was assessed through migration
and dynamically inducible micromotion. Radiographs for RSA were
taken postoperatively and at three, six, 12, 18, and 24 months.Aims
Patients and Methods
The classical longitudinal incision used for the direct anterior
approach (DAA) to the hip does not follow the tension lines of the
skin and can lead to impaired wound healing and poor cosmesis. The
purpose of this retrospective study was to determine the satisfaction
with the scar, and functional and radiographic outcomes comparing
the classic longitudinal incision with a modified skin crease ‘bikini’
when the DAA is used for total hip arthroplasty (THA). A total of 964 patients (51% female; 59% longitudinal, 41% ‘bikini’)
completed a follow-up questionnaire between two and four years postoperatively,
including the Oxford Hip Score (OHS), the University of North Carolina
‘4P’ scar scale (UNC4P) and two items for assessing the aesthetic
appearance of the scar and symptoms of numbness. The positioning
of the components, rates of heterotopic ossification (HO) and rates
of revision were assessed.Aims
Patients and Methods
The goal of this study is to investigate the relation between indicators of osteoporosis (i.e., bone mineral density (BMD), and Cortical Index (CI)) and the complexity of a fracture of the proximal humerus as a result of a low-energy trauma. A retrospective chart review of 168 patients (mean age 67.2 years, range 51 to 88.7) with a fracture of the proximal humerus between 2007 and 2011, whose BMD was assessed at the Fracture Liaison Service with Dual Energy X-ray Absorptiometry (DXA) measurements of the hip, femoral neck (FN) and/or lumbar spine (LS), and whose CI and complexity of fracture were assessed on plain anteroposterior radiographs of the proximal humerus.Objectives
Methods
Plating displaced proximal humeral fractures is associated with a high rate of screw perforation. Dynamization of the proximal screws might prevent these complications. The aim of this study was to develop and evaluate a new gliding screw concept for plating proximal humeral fractures biomechanically. Eight pairs of three-part humeral fractures were randomly assigned for pairwise instrumentation using either a prototype gliding plate or a standard PHILOS plate, and four pairs were fixed using the gliding plate with bone cement augmentation of its proximal screws. The specimens were cyclically tested under progressively increasing loading until perforation of a screw. Telescoping of a screw, varus tilting and screw migration were recorded using optical motion tracking.Aims
Methods
Charcot neuroarthropathy is a rare but serious complication of diabetes, causing progressive destruction of the bones and joints of the foot leading to deformity, altered biomechanics and an increased risk of ulceration. Management is complicated by a lack of consensus on diagnostic criteria and an incomplete understanding of the pathogenesis. In this review, we consider recent insights into the development of Charcot neuroarthropathy. It is likely to be dependent on several interrelated factors which may include a genetic pre-disposition in combination with diabetic neuropathy. This leads to decreased neuropeptides (nitric oxide and calcitonin gene-related peptide), which may affect the normal coupling of bone formation and resorption, and increased levels of Receptor activator of nuclear factor kappa-B ligand, potentiating osteoclastogenesis. Repetitive unrecognized trauma due to neuropathy increases levels of pro-inflammatory cytokines (interleukin-1β, interleukin-6, tumour necrosis factor α) which could also contribute to increased bone resorption, in combination with a pre-inflammatory state, with increased autoimmune reactivity and a profile of monocytes primed to transform into osteoclasts - cluster of differentiation 14 (CD14). Increased blood glucose and loss of circulating Receptor for Advanced Glycation End-Products (AGLEPs), leading to increased non-enzymatic glycation of collagen and accumulation of AGLEPs in the tissues of the foot, may also contribute to the pathological process. An understanding of the relative contributions of each of these mechanisms and a final common pathway for the development of Charcot neuroarthropathy are still lacking.
In this prospective cohort study, we investigated whether patient-specific finite element (FE) models can identify patients at risk of a pathological femoral fracture resulting from metastatic bone disease, and compared these FE predictions with clinical assessments by experienced clinicians. A total of 39 patients with non-fractured femoral metastatic lesions who were irradiated for pain were included from three radiotherapy institutes. During follow-up, nine pathological fractures occurred in seven patients. Quantitative CT-based FE models were generated for all patients. Femoral failure load was calculated and compared between the fractured and non-fractured femurs. Due to inter-scanner differences, patients were analyzed separately for the three institutes. In addition, the FE-based predictions were compared with fracture risk assessments by experienced clinicians.Objectives
Methods
Increasing innovation in rapid prototyping (RP)
and additive manufacturing (AM), also known as 3D printing, is bringing
about major changes in translational surgical research. This review describes the current position in the use of additive
manufacturing in orthopaedic surgery. Cite this article:
Bisphosphonates (BP) are the first-line treatment for preventing fragility fractures. However, concern regarding their efficacy is growing because bisphosphonate is associated with over-suppression of remodelling and accumulation of microcracks. While dual-energy X-ray absorptiometry (DXA) scanning may show a gain in bone density, the impact of this class of drug on mechanical properties remains unclear. We therefore sought to quantify the mechanical strength of bone treated with BP (oral alendronate), and correlate data with the microarchitecture and density of microcracks in comparison with untreated controls. Trabecular bone from hip fracture patients treated with BP (n = 10) was compared with naïve fractured (n = 14) and non-fractured controls (n = 6). Trabecular cores were synchrotron scanned and micro-CT scanned for microstructural analysis, including quantification of bone volume fraction, microarchitecture and microcracks. The specimens were then mechanically tested in compression.Objectives
Methods
As one of the heat-stable enterotoxins, Rat MSCs were used to test the effects of SEC2 on their proliferation and osteogenic differentiation potentials. A rat femoral fracture model was used to examine the effect of local administration of SEC2 on fracture healing using radiographic analyses, micro-CT analyses, biomechanical testing, and histological analyses.Objectives
Materials and Methods
Despite its intrinsic ability to regenerate form and function after injury, bone tissue can be challenged by a multitude of pathological conditions. While innovative approaches have helped to unravel the cascades of bone healing, this knowledge has so far not improved the clinical outcomes of bone defect treatment. Recent findings have allowed us to gain in-depth knowledge about the physiological conditions and biological principles of bone regeneration. Now it is time to transfer the lessons learned from bone healing to the challenging scenarios in defects and employ innovative technologies to enable biomaterial-based strategies for bone defect healing. This review aims to provide an overview on endogenous cascades of bone material formation and how these are transferred to new perspectives in biomaterial-driven approaches in bone regeneration. Cite this article: T. Winkler, F. A. Sass, G. N. Duda, K. Schmidt-Bleek. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: The unsolved challenge.