header advert
Results 1 - 6 of 6
Results per page:
The Bone & Joint Journal
Vol. 95-B, Issue 5 | Pages 683 - 688
1 May 2013
Chen Y Tai BC Nayak D Kumar N Chua KH Lim JW Goy RWL Wong HK

There is currently no consensus about the mean volume of blood lost during spinal tumour surgery and surgery for metastatic spinal disease. We conducted a systematic review of papers published in the English language between 31 January 1992 and 31 January 2012. Only papers that clearly presented blood loss data in spinal surgery for metastatic disease were included. The random effects model was used to obtain the pooled estimate of mean blood loss. We selected 18 papers, including six case series, ten retrospective reviews and two prospective studies. Altogether, there were 760 patients who had undergone spinal tumour surgery and surgery for metastatic spinal disease. The pooled estimate of peri-operative blood loss was 2180 ml (95% confidence interval 1805 to 2554) with catastrophic blood loss as high as 5000 ml, which is rare. Aside from two studies that reported large amounts of mean blood loss (> 5500 ml), the resulting funnel plot suggested an absence of publication bias. This was confirmed by Egger’s test, which did not show any small-study effects (p = 0.119). However, there was strong evidence of heterogeneity between studies (I. 2. = 90%; p < 0.001). Spinal surgery for metastatic disease is associated with significant blood loss and the possibility of catastrophic blood loss. There is a need to establish standardised methods of calculating and reporting this blood loss. Analysis should include assessment by area of the spine, primary pathology and nature of surgery so that the amount of blood loss can be predicted. Consideration should be given to autotransfusion in these patients. Cite this article: Bone Joint J 2013;95-B:683–8


The Bone & Joint Journal
Vol. 101-B, Issue 7 | Pages 880 - 888
1 Jul 2019
Wei R Guo W Yang R Tang X Yang Y Ji T Liang H

Aims

The aim of this study was to describe the use of 3D-printed sacral endoprostheses to reconstruct the pelvic ring and re-establish spinopelvic stability after total en bloc sacrectomy (TES) and to review its outcome.

Patients and Methods

We retrospectively reviewed 32 patients who underwent TES in our hospital between January 2015 and December 2017. We divided the patients into three groups on the basis of the method of reconstruction: an endoprosthesis group (n = 10); a combined reconstruction group (n = 14), who underwent non-endoprosthetic combined reconstruction, including anterior spinal column fixation; and a spinopelvic fixation (SPF) group (n = 8), who underwent only SPF. Spinopelvic stability, implant survival (IS), intraoperative haemorrhage rate, and perioperative complication rate in the endoprosthesis group were documented and compared with those of other two groups.


The Bone & Joint Journal
Vol. 97-B, Issue 2 | Pages 258 - 264
1 Feb 2015
Young PS Bell SW Mahendra A

We report our experience of using a computer navigation system to aid resection of malignant musculoskeletal tumours of the pelvis and limbs and, where appropriate, their subsequent reconstruction. We also highlight circumstances in which navigation should be used with caution.

We resected a musculoskeletal tumour from 18 patients (15 male, three female, mean age of 30 years (13 to 75) using commercially available computer navigation software (Orthomap 3D) and assessed its impact on the accuracy of our surgery. Of nine pelvic tumours, three had a biological reconstruction with extracorporeal irradiation, four underwent endoprosthetic replacement (EPR) and two required no bony reconstruction. There were eight tumours of the bones of the limbs. Four diaphyseal tumours underwent biological reconstruction. Two patients with a sarcoma of the proximal femur and two with a sarcoma of the proximal humerus underwent extra-articular resection and, where appropriate, EPR. One soft-tissue sarcoma of the adductor compartment which involved the femur was resected and reconstructed using an EPR. Computer navigation was used to aid reconstruction in eight patients.

Histological examination of the resected specimens revealed tumour-free margins in all patients. Post-operative radiographs and CT showed that the resection and reconstruction had been carried out as planned in all patients where navigation was used. In two patients, computer navigation had to be abandoned and the operation was completed under CT and radiological control.

The use of computer navigation in musculoskeletal oncology allows accurate identification of the local anatomy and can define the extent of the tumour and proposed resection margins. Furthermore, it helps in reconstruction of limb length, rotation and overall alignment after resection of an appendicular tumour.

Cite this article: Bone Joint J 2015;97-B:258–64.


The Bone & Joint Journal
Vol. 95-B, Issue 10 | Pages 1417 - 1424
1 Oct 2013
Jeys L Matharu GS Nandra RS Grimer RJ

We hypothesised that the use of computer navigation-assisted surgery for pelvic and sacral tumours would reduce the risk of an intralesional margin. We reviewed 31 patients (18 men and 13 women) with a mean age of 52.9 years (13.5 to 77.2) in whom computer navigation-assisted surgery had been carried out for a bone tumour of the pelvis or sacrum. There were 23 primary malignant bone tumours, four metastatic tumours and four locally advanced primary tumours of the rectum. The registration error when using computer navigation was <  1 mm in each case. There were no complications related to the navigation, which allowed the preservation of sacral nerve roots (n = 13), resection of otherwise inoperable disease (n = 4) and the avoidance of hindquarter amputation (n = 3). The intralesional resection rate for primary tumours of the pelvis and sacrum was 8.7% (n = 2): clear bone resection margins were achieved in all cases. At a mean follow-up of 13.1 months (3 to 34) three patients (13%) had developed a local recurrence. The mean time alive from diagnosis was 16.8 months (4 to 48).

Computer navigation-assisted surgery is safe and has reduced our intralesional resection rate for primary tumours of the pelvis and sacrum. We recommend this technique as being worthy of further consideration for this group of patients.

Cite this article: Bone Joint J 2013;95-B:1417–24.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 698 - 703
1 May 2005
Katagiri H Takahashi M Wakai K Sugiura H Kataoka T Nakanishi K

Between 1992 and 1999, we treated 350 patients with skeletal metastases. A multivariable analysis of the patients was conducted using the Cox proportional hazards model. We identified five significant prognostic factors for survival, namely, the site of the primary lesion, the performance status (Eastern Cooperative Oncology Group status 3 or 4), the presence of visceral or cerebral metastases, any previous chemotherapy, and multiple skeletal metastases. The score for each significant factor was derived from the corresponding estimated regression coefficients (natural logarithm of the hazard ratio). The prognostic score was calculated by adding all the scores for individual factors.

The rate of survival was 31% at six months and 11% at one year for the patients with a prognostic score of 6 or more. By contrast, patients with a prognostic score of 2 or less had a rate of survival of 98% at six months and 89% at one year. This scoring system can be used to determine the optimal treatment for patients with pathological fractures or epidural compression.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 7 | Pages 943 - 947
1 Jul 2007
Wong KC Kumta SM Chiu KH Antonio GE Unwin P Leung KS

The use of a navigation system in musculoskeletal tumour surgery enables the integration of pre-operative CT and MRI images to generate a precise three-dimensional anatomical model of the site and the extent of the tumour.

We carried out six consecutive resections of musculoskeletal tumour in five patients using an existing commercial computer navigation system. There were three women and two men with a mean age of 41 years (24 to 47). Reconstruction was performed using a tumour prosthesis in three lesions and a vascularised fibular graft in one. No reconstruction was needed in two cases. The mean follow-up was 6.9 months (3.5 to 10). The mean duration of surgery was 28 minutes (13 to 50). Examination of the resected specimens showed clear margins in all the tumour lesions and a resection that was exactly as planned.