Advertisement for orthosearch.org.uk
Results 1 - 20 of 138
Results per page:
The Bone & Joint Journal
Vol. 97-B, Issue 11 | Pages 1539 - 1545
1 Nov 2015
Lenoir H Chammas M Micallef JP Lazerges C Waitzenegger T Coulet B

Determining and accurately restoring the flexion-extension axis of the elbow is essential for functional recovery after total elbow arthroplasty (TEA). We evaluated the effect of morphological features of the elbow on variations of alignment of the components at TEA. Morphological and positioning variables were compared by systematic CT scans of 22 elbows in 21 patients after TEA. There were five men and 16 women, and the mean age was 63 years (38 to 80). The mean follow-up was 22 months (11 to 44). The anterior offset and version of the humeral components were significantly affected by the anterior angulation of the humerus (p = 0.052 and p = 0.004, respectively). The anterior offset and version of the ulnar components were strongly significantly affected by the anterior angulation of the ulna (p < 0.001 and p < 0.001). The closer the anterior angulation of the ulna was to the joint, the lower the ulnar anterior offset (p = 0.030) and version of the ulnar component (p = 0.010). The distance from the joint to the varus angulation also affected the lateral offset of the ulnar component (p = 0.046). Anatomical variations at the distal humerus and proximal ulna affect the alignment of the components at TEA. This is explained by abutment of the stems of the components and is particularly severe when there are substantial deformities or the deformities are close to the joint. Cite this article: Bone Joint J 2015;97-B:1539–45


The Bone & Joint Journal
Vol. 102-B, Issue 12 | Pages 1629 - 1635
1 Dec 2020
Wang Q Sheng N Rui B Chen Y

Aims. The aim of this study was to explore why some calcar screws are malpositioned when a proximal humeral fracture is treated by internal fixation with a locking plate, and to identify risk factors for this phenomenon. Some suggestions can be made of ways to avoid this error. Methods. We retrospectively identified all proximal humeral fractures treated in our institution between October 2016 and October 2018 using the hospital information system. The patients’ medical and radiological data were collected, and we divided potential risk factors into two groups: preoperative factors and intraoperative factors. Preoperative factors included age, sex, height, weight, body mass index, proximal humeral bone mineral density, type of fracture, the condition of the medial hinge, and medial metaphyseal head extension. Intraoperative factors included the grade of surgeon, neck-shaft angle after reduction, humeral head height, restoration of medial support, and quality of reduction. Adjusted binary logistic regression and multivariate logistic regression models were used to identify pre- and intraoperative risk factors. Area under the curve (AUC) analysis was used to evaluate the discriminative ability of the multivariable model. Results. Data from 203 patients (63 males and 140 females) with a mean age of 62 years (22 to 89) were analyzed. In 49 fractures, the calcar screw was considered to be malpositioned; in 154 it was in the optimal position. The rate of malpositioning was therefore 24% (49/203). No preoperative risk factor was found for malpositioning of the calcar screws. Only the neck-shaft angle was found to be related to the risk of screw malpositioning in a multivariate model (with an AUC of 0.72). For the fractures in which the neck-shaft angle was reduced to between 130° and 150°, 91% (133/46) of calcar screws were in the optimal position. Conclusion. The neck-shaft angle is the key factor for the appropriate positioning of calcar screws when treating a proximal humeral fracture with a locking plate. We recommend reducing the angle to between 130° and 150°. Cite this article: Bone Joint J 2020;102-B(12):1629–1635


Bone & Joint Open
Vol. 5, Issue 10 | Pages 851 - 857
10 Oct 2024
Mouchantaf M Parisi M Secci G Biegun M Chelli M Schippers P Boileau P

Aims. Optimal glenoid positioning in reverse shoulder arthroplasty (RSA) is crucial to provide impingement-free range of motion (ROM). Lateralization and inclination correction are not yet systematically used. Using planning software, we simulated the most used glenoid implant positions. The primary goal was to determine the configuration that delivers the best theoretical impingement-free ROM. Methods. With the use of a 3D planning software (Blueprint) for RSA, 41 shoulders in 41 consecutive patients (17 males and 24 females; means age 73 years (SD 7)) undergoing RSA were planned. For the same anteroposterior positioning and retroversion of the glenoid implant, four different glenoid baseplate configurations were used on each shoulder to compare ROM: 1) no correction of the RSA angle and no lateralization (C-L-); 2) correction of the RSA angle with medialization by inferior reaming (C+M+); 3) correction of the RSA angle without lateralization by superior compensation (C+L-); and 4) correction of the RSA angle and additional lateralization (C+L+). The same humeral inlay implant and positioning were used on the humeral side for the four different glenoid configurations with a 3 mm symmetric 135° inclined polyethylene liner. Results. The configuration with lateralization and correction of the RSA angle (C+L+) led to better ROM in flexion, extension, adduction, and external rotation (p ≤ 0.001). Only internal rotation was not significantly different between groups (p = 0.388). The configuration where correction of the inclination was done by medialization (C+M+) led to the worst ROM in adduction, extension, abduction, flexion, and external rotation of the shoulder. Conclusion. Our software study shows that, when using a 135° inlay reversed humeral implant, correcting glenoid inclination (RSA angle 0°) and lateralizing the glenoid component by using an angled bony or metallic augment of 8 to 10 mm provides optimal impingement-free ROM. Cite this article: Bone Jt Open 2024;5(10):851–857


Bone & Joint Open
Vol. 3, Issue 10 | Pages 826 - 831
28 Oct 2022
Jukes C Dirckx M Bellringer S Chaundy W Phadnis J

Aims. The conventionally described mechanism of distal biceps tendon rupture (DBTR) is of a ‘considerable extension force suddenly applied to a resisting, actively flexed forearm’. This has been commonly paraphrased as an ‘eccentric contracture to a flexed elbow’. Both definitions have been frequently used in the literature with little objective analysis or citation. The aim of the present study was to use video footage of real time distal biceps ruptures to revisit and objectively define the mechanism of injury. Methods. An online search identified 61 videos reporting a DBTR. Videos were independently reviewed by three surgeons to assess forearm rotation, elbow flexion, shoulder position, and type of muscle contraction being exerted at the time of rupture. Prospective data on mechanism of injury and arm position was also collected concurrently for 22 consecutive patients diagnosed with an acute DBTR in order to corroborate the video analysis. Results. Four videos were excluded, leaving 57 for final analysis. Mechanisms of injury included deadlift, bicep curls, calisthenics, arm wrestling, heavy lifting, and boxing. In all, 98% of ruptures occurred with the arm in supination and 89% occurred at 0° to 10° of elbow flexion. Regarding muscle activity, 88% occurred during isometric contraction, 7% during eccentric contraction, and 5% during concentric contraction. Interobserver correlation scores were calculated as 0.66 to 0.89 using the free-marginal Fleiss Kappa tool. The prospectively collected patient data was consistent with the video analysis, with 82% of injuries occurring in supination and 95% in relative elbow extension. Conclusion. Contrary to the classically described injury mechanism, in this study the usual arm position during DBTR was forearm supination and elbow extension, and the muscle contraction was typically isometric. This was demonstrated for both video analysis and ‘real’ patients across a range of activities leading to rupture. Cite this article: Bone Jt Open 2022;3(10):826–831


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 970 - 977
1 Sep 2024
De Rus Aznar I Ávila Lafuente JL Hachem A Díaz Heredia J Kany J Elhassan B Ruiz Ibán MÁ

Rotator cuff pathology is the main cause of shoulder pain and dysfunction in older adults. When a rotator cuff tear involves the subscapularis tendon, the symptoms are usually more severe and the prognosis after surgery must be guarded. Isolated subscapularis tears represent 18% of all rotator cuff tears and arthroscopic repair is a good alternative primary treatment. However, when the tendon is deemed irreparable, tendon transfers are the only option for younger or high-functioning patients. The aim of this review is to describe the indications, biomechanical principles, and outcomes which have been reported for tendon transfers, which are available for the treatment of irreparable subscapularis tears. The best tendon to be transferred remains controversial. Pectoralis major transfer was described more than 30 years ago to treat patients with failed surgery for instability of the shoulder. It has subsequently been used extensively to manage irreparable subscapularis tendon tears in many clinical settings. Although pectoralis major reproduces the position and orientation of the subscapularis in the coronal plane, its position in the axial plane – anterior to the rib cage – is clearly different and does not allow it to function as an ideal transfer. Consistent relief of pain and moderate recovery of strength and function have been reported following the use of this transfer. In an attempt to improve on these results, latissimus dorsi tendon transfer was proposed as an alternative and the technique has evolved from an open to an arthroscopic procedure. Satisfactory relief of pain and improvements in functional shoulder scores have recently been reported following its use. Both pectoralis minor and upper trapezius transfers have also been used in these patients, but the outcomes that have been reported do not support their widespread use. Cite this article: Bone Joint J 2024;106-B(9):970–977


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1100 - 1110
1 Oct 2024
Arenas-Miquelez A Barco R Cabo Cabo FJ Hachem A

Bone defects are frequently observed in anterior shoulder instability. Over the last decade, knowledge of the association of bone loss with increased failure rates of soft-tissue repair has shifted the surgical management of chronic shoulder instability. On the glenoid side, there is no controversy about the critical glenoid bone loss being 20%. However, poor outcomes have been described even with a subcritical glenoid bone defect as low as 13.5%. On the humeral side, the Hill-Sachs lesion should be evaluated concomitantly with the glenoid defect as the two sides of the same bipolar lesion which interact in the instability process, as described by the glenoid track concept. We advocate adding remplissage to every Bankart repair in patients with a Hill-Sachs lesion, regardless of the glenoid bone loss. When critical or subcritical glenoid bone loss occurs in active patients (> 15%) or bipolar off-track lesions, we should consider anterior glenoid bone reconstructions. The techniques have evolved significantly over the last two decades, moving from open procedures to arthroscopic, and from screw fixation to metal-free fixation. The new arthroscopic techniques of glenoid bone reconstruction procedures allow precise positioning of the graft, identification, and treatment of concomitant injuries with low morbidity and faster recovery. Given the problems associated with bone resorption and metal hardware protrusion, the new metal-free techniques for Latarjet or free bone block procedures seem a good solution to avoid these complications, although no long-term data are yet available. Cite this article: Bone Joint J 2024;106-B(10):1100–1110


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1165 - 1175
1 Oct 2024
Frost Teilmann J Petersen ET Thillemann TM Hemmingsen CK Olsen Kipp J Falstie-Jensen T Stilling M

Aims. The aim of this study was to evaluate the kinematics of the elbow following increasing length of the radius with implantation of radial head arthroplasties (RHAs) using dynamic radiostereometry (dRSA). Methods. Eight human donor arms were examined by dRSA during motor-controlled flexion and extension of the elbow with the forearm in an unloaded neutral position, and in pronation and supination with and without a 10 N valgus or varus load, respectively. The elbows were examined before and after RHA with stem lengths of anatomical size, + 2 mm, and + 4 mm. The ligaments were maintained intact by using a step-cut lateral humeral epicondylar osteotomy, allowing the RHAs to be repeatedly exchanged. Bone models were obtained from CT scans, and specialized software was used to match these models with the dRSA recordings. The flexion kinematics of the elbow were described using anatomical coordinate systems to define translations and rotations with six degrees of freedom. Results. The greatest kinematic changes in the elbows were seen with the longest, + 4 mm, implant, which imposed a mean joint distraction of 2.8 mm in the radiohumeral joint and of 1.1 mm in the ulnohumeral joint, an increased mean varus angle of up to 2.4° for both the radius and the ulna, a mean shift of the radius of 2.0 mm in the ulnar direction, and a mean shift of the ulna of 1.0 mm posteriorly. Conclusion. The kinematics of the elbow deviated increasingly from those of the native joint with a 2 mm to a 4 mm lengthening of the radius. This confirms the importance of restoring the natural length of the radius when undertaking RHA. Cite this article: Bone Joint J 2024;106-B(10):1165–1175


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1284 - 1292
1 Nov 2024
Moroder P Poltaretskyi S Raiss P Denard PJ Werner BC Erickson BJ Griffin JW Metcalfe N Siegert P

Aims. The objective of this study was to compare simulated range of motion (ROM) for reverse total shoulder arthroplasty (rTSA) with and without adjustment for scapulothoracic orientation in a global reference system. We hypothesized that values for simulated ROM in preoperative planning software with and without adjustment for scapulothoracic orientation would be significantly different. Methods. A statistical shape model of the entire humerus and scapula was fitted into ten shoulder CT scans randomly selected from 162 patients who underwent rTSA. Six shoulder surgeons independently planned a rTSA in each model using prototype development software with the ability to adjust for scapulothoracic orientation, the starting position of the humerus, as well as kinematic planes in a global reference system simulating previously described posture types A, B, and C. ROM with and without posture adjustment was calculated and compared in all movement planes. Results. All movement planes showed significant differences when comparing protocols with and without adjustment for posture. The largest mean difference was seen in external rotation, being 62° (SD 16°) without adjustment compared to 25° (SD 9°) with posture adjustment (p < 0.001), with the highest mean difference being 49° (SD 15°) in type C. Mean extension was 57° (SD 18°) without adjustment versus 24° (SD 11°) with adjustment (p < 0.001) and the highest mean difference of 47° (SD 18°) in type C. Mean abducted internal rotation was 69° (SD 11°) without adjustment versus 31° (SD 6°) with posture adjustment (p < 0.001), showing the highest mean difference of 51° (SD 11°) in type C. Conclusion. The present study demonstrates that accounting for scapulothoracic orientation has a significant impact on simulated ROM for rTSA in all motion planes, specifically rendering vastly lower values for external rotation, extension, and high internal rotation. The substantial differences observed in this study warrant a critical re-evaluation of all previously published studies that examined component choice and placement for optimized ROM in rTSA using conventional preoperative planning software. Cite this article: Bone Joint J 2024;106-B(11):1284–1292


The Bone & Joint Journal
Vol. 105-B, Issue 11 | Pages 1189 - 1195
1 Nov 2023
Kim JS Kim SH Kim SC Park JH Kim HG Lee SM Yoo JC

Aims. The aim of this study was to compare the clinical and radiological outcomes of reverse shoulder arthroplasty (RSA) using small and standard baseplates in Asian patients, and to investigate the impact of a mismatch in the sizes of the glenoid and the baseplate on the outcomes. Methods. This was retrospective analysis of 50 and 33 RSAs using a standard (33.8 mm, ST group) and a small (29.5 mm, SM group) baseplate of the Equinoxe reverse shoulder system, which were undertaken between January 2017 and March 2021. Radiological evaluations included the size of the glenoid, the β-angle, the inclination of the glenoid component, inferior overhang, scapular notching, the location of the central cage in the baseplate within the vault and the mismatch in size between the glenoid and baseplate. Clinical evaluations included the range of motion (ROM) and functional scores. In subgroup analysis, comparisons were performed between those in whom the vault of the glenoid was perforated (VP group) and those in whom it was not perforated (VNP group). Results. Perforation of the vault of the glenoid (p = 0.018) and size mismatch in height (p < 0.001) and width (p = 0.013) were significantly more frequent in the ST group than in the SM group. There was no significant difference in the clinical scores and ROM in the two groups, two years postoperatively (all p > 0.05). In subgroup analysis, the VP group had significantly less inferior overhang (p = 0.009), more scapular notching (p = 0.018), and more size mismatch in height (p < 0.001) and width (p = 0.025) than the VNP group. Conclusion. In Asian patients with a small glenoid, using a 29.5 mm small baseplate at the time of RSA was more effective in reducing size mismatch between the glenoid and the baseplate, decreasing the incidence of perforation of the glenoid vault, and achieving optimal positioning of the baseplate compared with the use of a 33.8 mm standard baseplate. However, longer follow-up is required to assess the impact of these findings on the clinical outcomes. Cite this article: Bone Joint J 2023;105-B(11):1189–1195


The Bone & Joint Journal
Vol. 102-B, Issue 9 | Pages 1194 - 1199
14 Sep 2020
Lee H Kim E Kim Y

Aims. The purpose of this study was to identify the changes in untreated long head of the biceps brachii tendon (LHBT) after a rotator cuff tear and to evaluate the factors related to the changes. Methods. A cohort of 162 patients who underwent isolated supraspinatus with the preservation of LHBT was enrolled and evaluated. The cross-sectional area (CSA) of the LHBT on MRI was measured in the bicipital groove, and preoperative to postoperative difference was calculated at least 12 months postoperatively. Second, postoperative changes in the LHBT including intratendinous signal change, rupture, dislocation, or superior labral lesions were evaluated with seeking of factors that were correlated with the changes or newly developed lesions after rotator cuff repair. Results. The postoperative CSA (12.5 mm. 2. (SD 8.3) was significantly larger than preoperative CSA (11.5 mm. 2. (SD 7.5); p = 0.005). In total, 32 patients (19.8%) showed morphological changes in the untreated LHBT 24 months after rotator cuff repair. Univariate regression analysis revealed that the factor chiefly related to the change in LHBT status was an eccentric LHBT position within the groove found on preoperative MRI (p = 0.011). Multivariate analysis using logistic regression also revealed that an eccentric LHBT position was a factor related to postoperative change in untreated LHBTs (p = 0.011). Conclusion. The CSA of the LHBT inside the biceps groove increased after rotator cuff repair. The preoperative presence of an eccentrically positioned LHBT was associated with further changes of the tendon itself after rotator cuff repair. Cite this article: Bone Joint J 2020;102-B(9):1194–1199


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1133 - 1140
1 Oct 2024
Olsen Kipp J Petersen ET Falstie-Jensen T Frost Teilmann J Zejden A Jellesen Åberg R de Raedt S Thillemann TM Stilling M

Aims

This study aimed to quantify the shoulder kinematics during an apprehension-relocation test in patients with anterior shoulder instability (ASI) and glenoid bone loss using the radiostereometric analysis (RSA) method. Kinematics were compared with the patient’s contralateral healthy shoulder.

Methods

A total of 20 patients with ASI and > 10% glenoid bone loss and a healthy contralateral shoulder were included. RSA imaging of the patient’s shoulders was performed during a repeated apprehension-relocation test. Bone volume models were generated from CT scans, marked with anatomical coordinate systems, and aligned with the digitally reconstructed bone projections on the RSA images. The glenohumeral joint (GHJ) kinematics were evaluated in the anteroposterior and superoinferior direction of: the humeral head centre location relative to the glenoid centre; and the humeral head contact point location on the glenoid.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1301 - 1305
1 Nov 2024
Prajapati A Thakur RPS Gulia A Puri A

Aims

Reconstruction after osteoarticular resection of the proximal ulna for tumours is technically difficult and little has been written about the options that are available. We report a series of four patients who underwent radial neck to humeral trochlea transposition arthroplasty following proximal ulnar osteoarticular resection.

Methods

Between July 2020 and July 2022, four patients with primary bone tumours of the ulna underwent radial neck to humeral trochlea transposition arthroplasty. Their mean age was 28 years (12 to 41). The functional outcome was assessed using the range of motion (ROM) of the elbow, rotation of the forearm and stability of the elbow, the Musculoskeletal Tumor Society score (MSTS), and the nine-item abbreviated version of the Disabilities of the Arm, Shoulder and Hand questionnaire (QuickDASH-9) score.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1273 - 1283
1 Nov 2024
Mahmud H Wang D Topan-Rat A Bull AMJ Heinrichs CH Reilly P Emery R Amis AA Hansen UN

Aims

The survival of humeral hemiarthroplasties in patients with relatively intact glenoid cartilage could theoretically be extended by minimizing the associated postoperative glenoid erosion. Ceramic has gained attention as an alternative to metal as a material for hemiarthroplasties because of its superior tribological properties. The aim of this study was to assess the in vitro wear performance of ceramic and metal humeral hemiarthroplasties on natural glenoids.

Methods

Intact right cadaveric shoulders from donors aged between 50 and 65 years were assigned to a ceramic group (n = 8, four male cadavers) and a metal group (n = 9, four male cadavers). A dedicated shoulder wear simulator was used to simulate daily activity by replicating the relevant joint motion and loading profiles. During testing, the joint was kept lubricated with diluted calf serum at room temperature. Each test of wear was performed for 500,000 cycles at 1.2 Hz. At intervals of 125,000 cycles, micro-CT scans of each glenoid were taken to characterize and quantify glenoid wear by calculating the change in the thickness of its articular cartilage.


Bone & Joint Open
Vol. 5, Issue 10 | Pages 929 - 936
22 Oct 2024
Gutierrez-Naranjo JM Salazar LM Kanawade VA Abdel Fatah EE Mahfouz M Brady NW Dutta AK

Aims

This study aims to describe a new method that may be used as a supplement to evaluate humeral rotational alignment during intramedullary nail (IMN) insertion using the profile of the perpendicular peak of the greater tuberosity and its relation to the transepicondylar axis. We called this angle the greater tuberosity version angle (GTVA).

Methods

This study analyzed 506 cadaveric humeri of adult patients. All humeri were CT scanned using 0.625 × 0.625 × 0.625 mm cubic voxels. The images acquired were used to generate 3D surface models of the humerus. Next, 3D landmarks were automatically calculated on each 3D bone using custom-written C++ software. The anatomical landmarks analyzed were the transepicondylar axis, the humerus anatomical axis, and the peak of the perpendicular axis of the greater tuberosity. Lastly, the angle between the transepicondylar axis and the greater tuberosity axis was calculated and defined as the GTVA.


Bone & Joint Open
Vol. 5, Issue 10 | Pages 818 - 824
2 Oct 2024
Moroder P Herbst E Pawelke J Lappen S Schulz E

Aims

The liner design is a key determinant of the constraint of a reverse total shoulder arthroplasty (rTSA). The aim of this study was to compare the degree of constraint of rTSA liners between different implant systems.

Methods

An implant company’s independent 3D shoulder arthroplasty planning software (mediCAD 3D shoulder v. 7.0, module v. 2.1.84.173.43) was used to determine the jump height of standard and constrained liners of different sizes (radius of curvature) of all available companies. The obtained parameters were used to calculate the stability ratio (degree of constraint) and angle of coverage (degree of glenosphere coverage by liner) of the different systems. Measurements were independently performed by two raters, and intraclass correlation coefficients were calculated to perform a reliability analysis. Additionally, measurements were compared with parameters provided by the companies themselves, when available, to ensure validity of the software-derived measurements.


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 912 - 919
1 Aug 2023
Cunningham LJ Walton M Bale S Trail IA

Aims

Reverse total shoulder arthroplasty (rTSA) can be used in complex cases when the glenoid requires reconstruction. In this study, a baseplate with composite bone autograft and a central trabecular titanium peg was implanted, and its migration was assessed for two years postoperatively using radiostereometric analysis (RSA).

Methods

A total of 14 patients who underwent a rTSA with an autograft consented to participate. Of these, 11 had a primary rTSA using humeral head autograft and three had a revision rTSA with autograft harvested from the iliac crest. The mean age of the patients was 66 years (39 to 81). Tantalum beads were implanted in the scapula around the glenoid. RSA imaging (stereographic radiographs) was undertaken immediately postoperatively and at three, six, 12, and 24 months. Analysis was completed using model-based RSA software. Outcomes were collected preoperatively and at two years postoperatively, including the Oxford Shoulder Score, the American Shoulder and Elbow Score, and a visual analogue score for pain. A Constant score was also obtained for the assessment of strength and range of motion.


Bone & Joint Open
Vol. 4, Issue 8 | Pages 567 - 572
3 Aug 2023
Pasache Lozano RDP Valencia Ramón EA Johnston DG Trenholm JAI

Aims

The aim of this study is to evaluate the change in incidence rate of shoulder arthroplasty, indications, and surgeon volume trends associated with these procedures between January 2003 and April 2021 in the province of Nova Scotia, Canada.

Methods

A total of 1,545 patients between 2005 and 2021 were analyzed. Patients operated on between 2003 and 2004 were excluded due to a lack of electronic records. Overall, 84.1% of the surgeries (n = 1,299) were performed by two fellowship-trained upper limb surgeons, with the remainder performed by one of the 14 orthopaedic surgeons working in the province.


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 964 - 969
1 Sep 2024
Wang YC Song JJ Li TT Yang D Lv ZB Wang ZY Zhang ZM Luo Y

Aims

To propose a new method for evaluating paediatric radial neck fractures and improve the accuracy of fracture angulation measurement, particularly in younger children, and thereby facilitate planning treatment in this population.

Methods

Clinical data of 117 children with radial neck fractures in our hospital from August 2014 to March 2023 were collected. A total of 50 children (26 males, 24 females, mean age 7.6 years (2 to 13)) met the inclusion criteria and were analyzed. Cases were excluded for the following reasons: Judet grade I and Judet grade IVb (> 85° angulation) classification; poor radiograph image quality; incomplete clinical information; sagittal plane angulation; severe displacement of the ulna fracture; and Monteggia fractures. For each patient, standard elbow anteroposterior (AP) view radiographs and corresponding CT images were acquired. On radiographs, Angle P (complementary to the angle between the long axis of the radial head and the line perpendicular to the physis), Angle S (complementary to the angle between the long axis of the radial head and the midline through the proximal radial shaft), and Angle U (between the long axis of the radial head and the straight line from the distal tip of the capitellum to the coronoid process) were identified as candidates approximating the true coronal plane angulation of radial neck fractures. On the coronal plane of the CT scan, the angulation of radial neck fractures (CTa) was measured and served as the reference standard for measurement. Inter- and intraobserver reliabilities were assessed by Kappa statistics and intraclass correlation coefficient (ICC).


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1125 - 1132
1 Oct 2024
Luengo-Alonso G Valencia M Martinez-Catalan N Delgado C Calvo E

Aims

The prevalence of osteoarthritis (OA) associated with instability of the shoulder ranges between 4% and 60%. Articular cartilage is, however, routinely assessed in these patients using radiographs or scans (2D or 3D), with little opportunity to record early signs of cartilage damage. The aim of this study was to assess the prevalence and localization of chondral lesions and synovial damage in patients undergoing arthroscopic surgery for instablility of the shoulder, in order to classify them and to identify risk factors for the development of glenohumeral OA.

Methods

A total of 140 shoulders in 140 patients with a mean age of 28.5 years (15 to 55), who underwent arthroscopic treatment for recurrent glenohumeral instability, were included. The prevalence and distribution of chondral lesions and synovial damage were analyzed and graded into stages according to the division of the humeral head and glenoid into quadrants. The following factors that might affect the prevalence and severity of chondral damage were recorded: sex, dominance, age, age at the time of the first dislocation, number of dislocations, time between the first dislocation and surgery, preoperative sporting activity, Beighton score, type of instability, and joint laxity.


The Bone & Joint Journal
Vol. 105-B, Issue 6 | Pages 663 - 667
1 Jun 2023
Youn S Rhee SM Cho S Kim C Lee J Rhee YG

Aims

The aim of this study was to investigate the outcomes of arthroscopic decompression of calcific tendinitis performed without repairing the rotator cuff defect.

Methods

A total of 99 patients who underwent treatment between December 2013 and August 2019 were retrospectively reviewed. Visual analogue scale (VAS) and American Shoulder and Elbow Surgeons (ASES) scores were reviewed pre- and postoperatively according to the location, size, physical characteristics, and radiological features of the calcific deposits. Additionally, the influence of any residual calcific deposits shown on postoperative radiographs was explored. The healing rate of the unrepaired cuff defect was determined by reviewing the 29 patients who had follow-up MRIs.