Implant-associated infection is a major source
of morbidity in orthopaedic surgery. There has been extensive research
into the development of materials that prevent biofilm formation,
and hence, reduce the risk of infection. Silver
Nanotechnology is the study, production and controlled
manipulation of materials with a grain size <
100 nm. At this
level, the laws of classical mechanics fall away and those of quantum
mechanics take over, resulting in unique behaviour of matter in
terms of melting point, conductivity and reactivity. Additionally,
and likely more significant, as grain size decreases, the ratio
of surface area to volume drastically increases, allowing for greater interaction
between implants and the surrounding cellular environment. This
favourable increase in surface area plays an important role in mesenchymal
cell differentiation and ultimately bone–implant interactions. Basic science and translational research have revealed important
potential applications for nanotechnology in orthopaedic surgery,
particularly with regard to improving the interaction between implants
and host bone. Nanophase materials more closely match the architecture
of native trabecular bone, thereby greatly improving the osseo-integration
of orthopaedic implants. Nanophase-coated prostheses can also reduce
bacterial adhesion more than conventionally surfaced prostheses.
Nanophase selenium has shown great promise when used for tumour
reconstructions, as has nanophase silver in the management of traumatic
wounds. Nanophase silver may significantly improve healing of peripheral
nerve injuries, and nanophase gold has powerful anti-inflammatory
effects on tendon inflammation. Considerable advances must be made in our understanding of the
potential health risks of production, implantation and wear patterns
of nanophase devices before they are approved for clinical use.
Their potential, however, is considerable, and is likely to benefit
us all in the future. Cite this article:
The number of arthroplasties being undertaken
is expected to grow year on year, and periprosthetic joint infections will
be an increasing socioeconomic burden. The challenge to prevent
and eradicate these infections has resulted in the emergence of
several new strategies, which are discussed in this review. Cite this article:
Salubrinal is a synthetic agent that elevates phosphorylation
of eukaryotic translation initiation factor 2 alpha (eIF2α) and
alleviates stress to the endoplasmic reticulum. Previously, we reported
that in chondrocytes, Salubrinal attenuates expression and activity
of matrix metalloproteinase 13 (MMP13) through downregulating nuclear
factor kappa B (NFκB) signalling. We herein examine whether Salubrinal
prevents the degradation of articular cartilage in a mouse model
of osteoarthritis (OA). OA was surgically induced in the left knee of female mice. Animal
groups included age-matched sham control, OA placebo, and OA treated
with Salubrinal or Guanabenz. Three weeks after the induction of
OA, immunoblotting was performed for NFκB p65 and p-NFκB p65. At
three and six weeks, the femora and tibiae were isolated and the sagittal
sections were stained with Safranin O.Objectives
Methods