Aims. The Exeter short stem was designed for patients with Dorr type A femora and short-term results are promising. The aim of this study was to evaluate the minimum five-year stem migration pattern of Exeter short stems in comparison with Exeter standard stems. Methods. In this case-control study, 25 patients (22 female) at mean age of 78 years (70 to 89) received
Objectives. Favourable results for collarless polished tapered stems have been reported, and cement creep due to taper slip may be a contributing factor. However, the ideal
Aims. The aim of this study is to report the long-term outcomes of instrumented femoral revisions with impaction allograft bone grafting (IBG) using the X-change femoral revision system at 30 years after introduction of the technique. Methods. We updated the outcomes of our previous study, based on 208 consecutive revisions using IBG and the X-change femoral revision system in combination with a
Aims. This aim of this study was to assess the reliability and validity of the Unified Classification System (UCS) for postoperative periprosthetic femoral fractures (PFFs) around
The original forged Müller straight stem (CoNiCr) has shown excellent ten- to 15-year results. We undertook a long-term survival analysis with special emphasis on radiological changes within a 20-year period of follow-up. In all, 165 primary total hip replacements, undertaken between July 1984 and June 1987 were followed prospectively. Clinical follow-up included a standardised clinical examination, and radiological assessment was based on a standardised anteroposterior radiograph of the pelvis, which was studied for the presence of osteolysis, debonding and cortical atrophy. Survival of the stem with revision for any reason was 81% (95% confidence interval (CI), 76 to 86) at 20 years and for aseptic loosening 87% (95% CI, 82 to 90). At the 20-year follow-up, 15 of the surviving 36 stems showed no radiological changes. Debonding (p = 0.005), osteolysis (p = 0.003) and linear polyethylene wear (p = 0.016) were associated with aseptic loosening, whereas cortical atrophy was not associated with failure (p = 0.008). The 20-year results of the Müller straight stem are comparable to those of other successful cemented systems with similar follow-up. Radiological changes are frequently observed, but with a low incidence of progression, and rarely result in revision. Cortical atrophy appears to be an effect of ageing and not a sign of loosening of the femoral component.
The aim of this study was to obtain detailed long-term data on the cement-bone interface in patients with
Cemented titanium stems in hip arthroplasty are associated with proximal cement-stem debonding and early failure. This was well publicised with the 3M Capital hip. However, corrosion in this setting has been reported with only one stem design and is less widely accepted. We present a series of 12 cemented titanium Furlong Straight Stems which required revision at a mean of 78 months for thigh pain. At revision the stems were severely corroded in a pattern which was typical of crevice corrosion. Symptoms were eliminated after revision to an all-stainless steel femoral prosthesis of the same design. We discuss the likely causes for the corrosion. The combination of a titanium
The radiological features of the cement mantle around total hip replacements (THRs) have been used to assess aseptic loosening. In this case-control study we investigated the risk of failure of THR as predictable by a range of such features using data from patients recruited to the Trent Regional Arthroplasty Study (TRAS). An independent radiological assessment was undertaken on Charnley THRs with aseptic loosening within five years of surgery and on a control group from the TRAS database. Chi-squared tests were used to test the probability of obtaining the observed data by chance, and odds ratios were calculated to estimate the strength of association for different features. Several features were associated with a clinically important increase (>
twofold) in the risk of loosening, which was statistically significant for four features (p <
0.01). Inadequate cementation (Barrack C and D grades) was the most significant feature, with an estimated odds ratio of 9.5 (95% confidence interval 3.2 to 28.4, p <
0.0001) for failure.
Previously, radiostereometric analysis following hip revision performed using impacted morsellised allograft bone and a
Aims. Periprosthetic fracture (PF) after primary total hip arthroplasty
(THA) is an uncommon but potentially devastating complication. This
study aims to investigate the influence of
The aims of this study were to evaluate the incidence of reoperation (all cause and specifically for periprosthetic femoral fracture (PFF)) and mortality, and associated risk factors, following a hemiarthroplasty incorporating a cemented collarless polished taper slip stem (PTS) for management of an intracapsular hip fracture. This retrospective study included hip fracture patients aged 50 years and older treated with Exeter (PTS) bipolar hemiarthroplasty between 2019 and 2022. Patient demographics, place of domicile, fracture type, delirium status, American Society of Anesthesiologists (ASA) grade, length of stay, and mortality were collected. Reoperation and mortality were recorded up to a median follow-up of 29.5 months (interquartile range 12 to 51.4). Cox regression was performed to evaluate independent risk factors associated with reoperation and mortality.Aims
Methods
We describe the results at five years of a prospective study of a new tri-tapered polished, cannulated,
We describe three prostheses with
The removal of well-fixed bone cement from the femoral canal during revision of a total hip replacement (THR) can be difficult and risks the loss of excessive bone stock and perforation or fracture of the femoral shaft. Retaining the cement mantle is attractive, yet the technique of cement-in-cement revision is not widely practised. We have used this procedure at our hospital since 1989. The stems were removed to gain a better exposure for acetabular revision, to alter version or leg length, or for component incompatibility. We studied 136 hips in 134 patients and followed them up for a mean of eight years (5 to 15). A further revision was required in 35 hips (25.7%), for acetabular loosening in 26 (19.1%), sepsis in four, instability in three, femoral fracture in one and stem fracture in one. No femoral stem needed to be re-revised for aseptic loosening. A cement-in-cement revision of the femoral stem is a reliable technique in the medium term. It also reduces the risk of perforation or fracture of the femoral shaft.
We performed a case–control study to compare
the rates of further surgery, revision and complications, operating time
and survival in patients who were treated with either an uncemented
hydroxyapatite-coated Corail bipolar femoral stem or a cemented
Exeter stem for a displaced intracapsular fracture of the hip. The
mean age of the patients in the uncemented group was 82.5 years
(53 to 97) and in the cemented group was 82.7 years (51 to 99) We used
propensity score matching, adjusting for age, gender and the presence
or absence of dementia and comorbidities, to produce a matched cohort
receiving an Exeter stem (n = 69) with which to compare the outcome of
patients receiving a Corail stem (n = 69). The Corail had a significantly
lower all-cause rate of further surgery (p = 0.016; odds ratio (OR)
0.18, 95% CI 0.04 to 0.84) and number of hips undergoing major further
surgery (p = 0.029; OR 0.13, 95% CI 0.01 to 1.09). The mean operating
time was significantly less for the Corail group than for the cemented Exeter
group (59 min [12 to 136] Cite this article:
Polished, tapered stems are now widely used for cemented total hip replacement and many such designs have been introduced. However, a change in stem geometry may have a profound influence on stability. Stems with a wide, rectangular proximal section may be more stable than those which are narrower proximally. We examined the influence of proximal geometry on stability by comparing the two-year migration of the Exeter stem with a more recent design, the CPS-Plus, which has a wider shoulder and a more rectangular cross-section. The hypothesis was that these design features would increase rotational stability. Both stems subsided approximately 1 mm relative to the femur during the first two years after implantation. The Exeter stem was found to rotate into valgus (mean 0.2°,
We have compared prospectively the incidence of loosening of 20 femoral stems with a matt surface with that of 20 polished stems of an otherwise identical tapered, non-modular design of Exeter hip replacement. The stems were inserted using the same technique at operation and radiographs showed no difference in the adequacy of the cement mantle or of fixation. All the patients were reviewed regularly and none was lost to follow-up. After a minimum follow-up of nine years, four matt but no polished stems had been revised for aseptic loosening. Polished stems subsided slightly within the cement mantle early, but did not loosen.
Femoral impaction bone allografting has been developed as a means of restoring bone stock in revision total hip replacement. We report the results of 75 consecutive patients (75 hips) with a mean age of 68 years (35 to 87) who underwent impaction grafting using the Exeter collarless, polished, tapered femoral stem between 1992 and 1998. The mean follow-up period was 10.5 years (6.3 to 14.1). The median pre-operative bone defect score was 3 (interquartile range (IQR) 2 to 3) using the Endo-Klinik classification. The median subsidence at one year post-operatively was 2 mm (IQR 1 to 3). At the final review the median Harris hip score was 80.6 (IQR 67.6 to 88.9) and the median subsidence 2 mm (IQR 1 to 4). Incorporation of the allograft into trabecular bone and secondary remodelling were noted radiologically at the final follow-up in 87% (393 of 452 zones) and 40% (181 of 452 zones), respectively. Subsidence of the Exeter stem correlated with the pre-operative Endo-Klinik bone loss score (p = 0.037). The degree of subsidence at one year had a strong association with long-term subsidence (p <
0.001). There was a significant correlation between previous revision surgery and a poor Harris Hip score (p = 0.028), and those who had undergone previous revision surgery for infection had a higher risk of complications (p = 0.048). Survivorship at 10.5 years with any further femoral operation as the end-point was 92% (95% confidence interval 82 to 97).
We describe the survivorship of the Exeter femoral component in a District General Hospital. Between 1994 and 1996, 230 Exeter Universal cemented femoral components were implanted in 215 patients who were reviewed at a mean of 11.2 years (10 to 13). We used one acetabular implant, the Elite Ogee component, in 218 of the 230 hips. During the period of this study 76 patients (79 hips) died. Of the remaining 139 patients (151 hips), 121 were able to attend for radiological analysis at a minimum of ten years. One patient was lost to follow-up. No femoral component was revised for aseptic loosening. Three hips were revised for deep infection and six acetabular components required revision, four for loosening and two for recurrent dislocation. Taking the ‘worst-case scenario’ including the one patient lost to follow-up, the overall survival rate was 94.4% at 13 years. Our results confirm excellent medium-term results for the Exeter Universal femoral component, implanted in a general setting. The excellent survival of this femoral component, when used in combination with the Ogee acetabular component, suggests that this is a successful pairing.
Aims. Hip arthroplasty does not always restore normal anatomy. This is due to inaccurate surgery or lack of stem sizes. We evaluated the aptitude of four total hip arthroplasty systems to restore an anatomical and medialized hip rotation centre. Methods. Using 3D templating software in 49 CT scans of non-deformed femora, we virtually implanted: 1) small uncemented calcar-guided stems with two offset options (Optimys, Mathys), 2) uncemented straight stems with two offset options (Summit, DePuy Synthes), 3)