Advertisement for orthosearch.org.uk
Results 1 - 20 of 315
Results per page:
Bone & Joint Research
Vol. 13, Issue 9 | Pages 485 - 496
13 Sep 2024
Postolka B Taylor WR Fucentese SF List R Schütz P

Aims. This study aimed to analyze kinematics and kinetics of the tibiofemoral joint in healthy subjects with valgus, neutral, and varus limb alignment throughout multiple gait activities using dynamic videofluoroscopy. Methods. Five subjects with valgus, 12 with neutral, and ten with varus limb alignment were assessed during multiple complete cycles of level walking, downhill walking, and stair descent using a combination of dynamic videofluoroscopy, ground reaction force plates, and optical motion capture. Following 2D/3D registration, tibiofemoral kinematics and kinetics were compared between the three limb alignment groups. Results. No significant differences for the rotational or translational patterns between the different limb alignment groups were found for level walking, downhill walking, or stair descent. Neutral and varus aligned subjects showed a mean centre of rotation located on the medial condyle for the loaded stance phase of all three gait activities. Valgus alignment, however, resulted in a centrally located centre of rotation for level and downhill walking, but a more medial centre of rotation during stair descent. Knee adduction/abduction moments were significantly influenced by limb alignment, with an increasing knee adduction moment from valgus through neutral to varus. Conclusion. Limb alignment was not reflected in the condylar kinematics, but did significantly affect the knee adduction moment. Variations in frontal plane limb alignment seem not to be a main modulator of condylar kinematics. The presented data provide insights into the influence of anatomical parameters on tibiofemoral kinematics and kinetics towards enhancing clinical decision-making and surgical restoration of natural knee joint motion and loading. Cite this article: Bone Joint Res 2024;13(9):485–496


The Journal of Bone & Joint Surgery British Volume
Vol. 55-B, Issue 4 | Pages 809 - 813
1 Nov 1973
Lowe LW Hannon MA

1. Seventy-three congenital club feet in fifty-one children have been reviewed between the ages of four and fourteen years to determine the incidence of residual adduction ofthe forefoot. 2. A radiological method of measuring metatarsus varus, based on the naviculo-metatarsal angle, is described. 3. On clinical examination 52 per cent of the feet had residual adduction of the forefoot, and metatarsus varus was present in 74 per cent of these. 4. There was no residual adduction in 48 per cent but only 45 per cent of these showed normal radiographic features. In the remainder various forms of spurious correction were seen. 5. For early treatment, detachment of the origin of the abductor hallucis muscle is recommended at the time of extended posterior release, with tenotomy of the tendon of insertion as an additional measure


The Journal of Bone & Joint Surgery British Volume
Vol. 69-B, Issue 5 | Pages 832 - 834
1 Nov 1987
Otremski I Salama R Khermosh O Wientroub S

Forty-four feet in 28 children previously treated by a one-stage posteromedial release operation (the Turco procedure) were reviewed clinically and radiologically to determine the cause of residual adduction of the forefoot. In 21 clinically adducted feet (48%) the main cause of residual deformity was metatarsus varus alone or metatarsus varus in spite of talonavicular overcorrection; in five feet the cause was talonavicular subluxation. There was no residual adduction in 23 feet (52%) but only 12 had normal radiographic measurements. In the remaining feet, various forms of spurious correction of metatarsus varus and talonavicular subluxation or both were seen, resulting in normal-looking feet. Recession of the origin of abductor hallucis and release of the short plantar muscles and fascia at the time of posteromedial release is recommended. The forefoot adduction was satisfactorily corrected in 91% of the feet subsequently operated on using this modified procedure


Bone & Joint Open
Vol. 5, Issue 10 | Pages 851 - 857
10 Oct 2024
Mouchantaf M Parisi M Secci G Biegun M Chelli M Schippers P Boileau P

Aims. Optimal glenoid positioning in reverse shoulder arthroplasty (RSA) is crucial to provide impingement-free range of motion (ROM). Lateralization and inclination correction are not yet systematically used. Using planning software, we simulated the most used glenoid implant positions. The primary goal was to determine the configuration that delivers the best theoretical impingement-free ROM. Methods. With the use of a 3D planning software (Blueprint) for RSA, 41 shoulders in 41 consecutive patients (17 males and 24 females; means age 73 years (SD 7)) undergoing RSA were planned. For the same anteroposterior positioning and retroversion of the glenoid implant, four different glenoid baseplate configurations were used on each shoulder to compare ROM: 1) no correction of the RSA angle and no lateralization (C-L-); 2) correction of the RSA angle with medialization by inferior reaming (C+M+); 3) correction of the RSA angle without lateralization by superior compensation (C+L-); and 4) correction of the RSA angle and additional lateralization (C+L+). The same humeral inlay implant and positioning were used on the humeral side for the four different glenoid configurations with a 3 mm symmetric 135° inclined polyethylene liner. Results. The configuration with lateralization and correction of the RSA angle (C+L+) led to better ROM in flexion, extension, adduction, and external rotation (p ≤ 0.001). Only internal rotation was not significantly different between groups (p = 0.388). The configuration where correction of the inclination was done by medialization (C+M+) led to the worst ROM in adduction, extension, abduction, flexion, and external rotation of the shoulder. Conclusion. Our software study shows that, when using a 135° inlay reversed humeral implant, correcting glenoid inclination (RSA angle 0°) and lateralizing the glenoid component by using an angled bony or metallic augment of 8 to 10 mm provides optimal impingement-free ROM. Cite this article: Bone Jt Open 2024;5(10):851–857


Bone & Joint Open
Vol. 2, Issue 11 | Pages 988 - 996
26 Nov 2021
Mohtajeb M Cibere J Mony M Zhang H Sullivan E Hunt MA Wilson DR

Aims. Cam and pincer morphologies are potential precursors to hip osteoarthritis and important contributors to non-arthritic hip pain. However, only some hips with these pathomorphologies develop symptoms and joint degeneration, and it is not clear why. Anterior impingement between the femoral head-neck contour and acetabular rim in positions of hip flexion combined with rotation is a proposed pathomechanism in these hips, but this has not been studied in active postures. Our aim was to assess the anterior impingement pathomechanism in both active and passive postures with high hip flexion that are thought to provoke impingement. Methods. We recruited nine participants with cam and/or pincer morphologies and with pain, 13 participants with cam and/or pincer morphologies and without pain, and 11 controls from a population-based cohort. We scanned hips in active squatting and passive sitting flexion, adduction, and internal rotation using open MRI and quantified anterior femoroacetabular clearance using the β angle. Results. In squatting, we found significantly decreased anterior femoroacetabular clearance in painful hips with cam and/or pincer morphologies (mean -11.3° (SD 19.2°)) compared to pain-free hips with cam and/or pincer morphologies (mean 8.5° (SD 14.6°); p = 0.022) and controls (mean 18.6° (SD 8.5°); p < 0.001). In sitting flexion, adduction, and internal rotation, we found significantly decreased anterior clearance in both painful (mean -15.2° (SD 15.3°); p = 0.002) and painfree hips (mean -4.7° (SD 13°); p = 0.010) with cam and/pincer morphologies compared to the controls (mean 7.1° (SD 5.9°)). Conclusion. Our results support the anterior femoroacetabular impingement pathomechanism in hips with cam and/or pincer morphologies and highlight the effect of posture on this pathomechanism. Cite this article: Bone Jt Open 2021;2(11):988–996


Bone & Joint Research
Vol. 10, Issue 9 | Pages 594 - 601
24 Sep 2021
Karunaseelan KJ Dandridge O Muirhead-Allwood SK van Arkel RJ Jeffers JRT

Aims. In the native hip, the hip capsular ligaments tighten at the limits of range of hip motion and may provide a passive stabilizing force to protect the hip against edge loading. In this study we quantified the stabilizing force vectors generated by capsular ligaments at extreme range of motion (ROM), and examined their ability to prevent edge loading. Methods. Torque-rotation curves were obtained from nine cadaveric hips to define the rotational restraint contributions of the capsular ligaments in 36 positions. A ligament model was developed to determine the line-of-action and effective moment arms of the medial/lateral iliofemoral, ischiofemoral, and pubofemoral ligaments in all positions. The functioning ligament forces and stiffness were determined at 5 Nm rotational restraint. In each position, the contribution of engaged capsular ligaments to the joint reaction force was used to evaluate the net force vector generated by the capsule. Results. The medial and lateral arms of the iliofemoral ligament generated the highest inbound force vector in positions combining extension and adduction providing anterior stability. The ischiofemoral ligament generated the highest inbound force in flexion with adduction and internal rotation (FADIR), reducing the risk of posterior dislocation. In this position the hip joint reaction force moved 0.8° inbound per Nm of internal capsular restraint, preventing edge loading. Conclusion. The capsular ligaments contribute to keep the joint force vector inbound from the edge of the acetabulum at extreme ROM. Preservation and appropriate tensioning of these structures following any type of hip surgery may be crucial to minimizing complications related to joint instability. Cite this article: Bone Joint Res 2021;10(9):594–601


Bone & Joint Open
Vol. 3, Issue 10 | Pages 795 - 803
12 Oct 2022
Liechti EF Attinger MC Hecker A Kuonen K Michel A Klenke FM

Aims. Traditionally, total hip arthroplasty (THA) templating has been performed on anteroposterior (AP) pelvis radiographs. Recently, additional AP hip radiographs have been recommended for accurate measurement of the femoral offset (FO). To verify this claim, this study aimed to establish quantitative data of the measurement error of the FO in relation to leg position and X-ray source position using a newly developed geometric model and clinical data. Methods. We analyzed the FOs measured on AP hip and pelvis radiographs in a prospective consecutive series of 55 patients undergoing unilateral primary THA for hip osteoarthritis. To determine sample size, a power analysis was performed. Patients’ position and X-ray beam setting followed a standardized protocol to achieve reproducible projections. All images were calibrated with the KingMark calibration system. In addition, a geometric model was created to evaluate both the effects of leg position (rotation and abduction/adduction) and the effects of X-ray source position on FO measurement. Results. The mean FOs measured on AP hip and pelvis radiographs were 38.0 mm (SD 6.4) and 36.6 mm (SD 6.3) (p < 0.001), respectively. Radiological view had a smaller effect on FO measurement than inaccurate leg positioning. The model showed a non-linear relationship between projected FO and femoral neck orientation; at 30° external neck rotation (with reference to the detector plane), a true FO of 40 mm was underestimated by up to 20% (7.8 mm). With a neutral to mild external neck rotation (≤ 15°), the underestimation was less than 7% (2.7 mm). The effect of abduction and adduction was negligible. Conclusion. For routine THA templating, an AP pelvis radiograph remains the gold standard. Only patients with femoral neck malrotation > 15° on the AP pelvis view, e.g. due to external rotation contracture, should receive further imaging. Options include an additional AP hip view with elevation of the entire affected hip to align the femoral neck more parallel to the detector, or a CT scan in more severe cases. Cite this article: Bone Jt Open 2022;3(10):795–803


The Journal of Bone & Joint Surgery British Volume
Vol. 74-B, Issue 1 | Pages 157 - 158
1 Jan 1992
Bassi J Ahuja S Singh H


Bone & Joint Open
Vol. 4, Issue 6 | Pages 416 - 423
2 Jun 2023
Tung WS Donnelley C Eslam Pour A Tommasini S Wiznia D

Aims. Computer-assisted 3D preoperative planning software has the potential to improve postoperative stability in total hip arthroplasty (THA). Commonly, preoperative protocols simulate two functional positions (standing and relaxed sitting) but do not consider other common positions that may increase postoperative impingement and possible dislocation. This study investigates the feasibility of simulating commonly encountered positions, and positions with an increased risk of impingement, to lower postoperative impingement risk in a CT-based 3D model. Methods. A robotic arm-assisted arthroplasty planning platform was used to investigate 11 patient positions. Data from 43 primary THAs were used for simulation. Sacral slope was retrieved from patient preoperative imaging, while angles of hip flexion/extension, hip external/internal rotation, and hip abduction/adduction for tested positions were derived from literature or estimated with a biomechanical model. The hip was placed in the described positions, and if impingement was detected by the software, inspection of the impingement type was performed. Results. In flexion, an overall impingement rate of 2.3% was detected for flexed-seated, squatting, forward-bending, and criss-cross-sitting positions, and 4.7% for the ankle-over-knee position. In extension, most hips (60.5%) were found to impinge at or prior to 50° of external rotation (pivoting). Many of these impingement events were due to a prominent ischium. The mean maximum external rotation prior to impingement was 45.9° (15° to 80°) and 57.9° (20° to 90°) prior to prosthetic impingement. No impingement was found in standing, sitting, crossing ankles, seiza, and downward dog. Conclusion. This study demonstrated that positions of daily living tested in a CT-based 3D model show high rates of impingement. Simulating additional positions through 3D modelling is a low-cost method of potentially improving outcomes without compromising patient safety. By incorporating CT-based 3D modelling of positions of daily living into routine preoperative protocols for THA, there is the potential to lower the risk of postoperative impingement events. Cite this article: Bone Jt Open 2023;4(6):416–423


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 129 - 134
1 Jul 2021
Ayekoloye CI Abu Qa'oud M Radi M Leon SA Kuzyk P Safir O Gross AE

Aims. Improvements in functional results and long-term survival are variable following conversion of hip fusion to total hip arthroplasty (THA) and complications are high. The aim of the study was to analyze the clinical and functional results in patients who underwent conversion of hip fusion to THA using a consistent technique and uncemented implants. Methods. A total of 39 hip fusion conversions to THA were undertaken in 38 patients by a single surgeon employing a consistent surgical technique and uncemented implants. Parameters assessed included Harris Hip Score (HHS) for function, range of motion (ROM), leg length discrepancy (LLD), satisfaction, and use of walking aid. Radiographs were reviewed for loosening, subsidence, and heterotopic ossification (HO). Postoperative complications and implant survival were assessed. Results. At mean 12.2 years (2 to 24) follow-up, HHS improved from mean 34.2 (20.8 to 60.5) to 75 (53.6 to 94.0; p < 0.001). Mean postoperative ROM was flexion 77° (50° to 95°), abduction 30° (10° to 40°), adduction 20° (5° to 25°), internal rotation 18° (2° to 30°), and external rotation 17° (5° to 30°). LLD improved from mean -3.36 cm (0 to 8) to postoperative mean -1.14 cm (0 to 4; p < 0.001). Postoperatively, 26 patients (68.4%) required the use of a walking aid. Complications included one (2.5%) dislocation, two (5.1%) partial sciatic nerve injuries, one (2.5%) deep periprosthetic joint infection, two instances of (5.1%) acetabular component aseptic loosening, two (5.1%) periprosthetic fractures, and ten instances of HO (40%), of which three (7.7%) were functionally limiting and required excision. Kaplan-Meier Survival was 97.1% (95% confidence interval (CI) 91.4% to 100%) at ten years and 88.2% (95% CI 70.96 to 100) at 15 years with implant revision for aseptic loosening as endpoint and 81.7% (95% CI 70.9% to 98.0%) at ten years and 74.2% (95% CI 55.6 to 92.8) at 15 years follow-up with implant revision for all cause failure as endpoint. Conclusion. The use of an optimal and consistent surgical technique and cementless implants can result in significant functional improvement, low complication rates, long-term implant survival, and high patient satisfaction following conversion of hip fusion to THA. The possibility of requiring a walking aid should be discussed with the patient before surgery. Cite this article: Bone Joint J 2021;103-B(7 Supple B):129–134


Bone & Joint Research
Vol. 8, Issue 8 | Pages 357 - 366
1 Aug 2019
Lädermann A Tay E Collin P Piotton S Chiu C Michelet A Charbonnier C

Objectives. To date, no study has considered the impact of acromial morphology on shoulder range of movement (ROM). The purpose of our study was to evaluate the effects of lateralization of the centre of rotation (COR) and neck-shaft angle (NSA) on shoulder ROM after reverse shoulder arthroplasty (RSA) in patients with different scapular morphologies. Methods. 3D computer models were constructed from CT scans of 12 patients with a critical shoulder angle (CSA) of 25°, 30°, 35°, and 40°. For each model, shoulder ROM was evaluated at a NSA of 135° and 145°, and lateralization of 0 mm, 5 mm, and 10 mm for seven standardized movements: glenohumeral abduction, adduction, forward flexion, extension, internal rotation with the arm at 90° of abduction, as well as external rotation with the arm at 10° and 90° of abduction. Results. CSA did not seem to influence ROM in any of the models, but greater lateralization achieved greater ROM for all movements in all configurations. Internal and external rotation at 90° of abduction were impossible in most configurations, except in models with a CSA of 25°. Conclusion. Postoperative ROM following RSA depends on multiple patient and surgical factors. This study, based on computer simulation, suggests that CSA has no influence on ROM after RSA, while lateralization increases ROM in all configurations. Furthermore, increasing subacromial space is important to grant sufficient rotation at 90° of abduction. In summary, increased lateralization of the COR and increased subacromial space improve ROM in all CSA configurations. Cite this article: A. Lädermann, E. Tay, P. Collin, S. Piotton, C-H Chiu, A. Michelet, C. Charbonnier. Effect of critical shoulder angle, glenoid lateralization, and humeral inclination on range of movement in reverse shoulder arthroplasty. Bone Joint Res 2019;8:378–386. DOI: 10.1302/2046-3758.88.BJR-2018-0293.R1


Bone & Joint Research
Vol. 7, Issue 6 | Pages 379 - 387
1 Jun 2018
Hansen L De Raedt S Jørgensen PB Mygind-Klavsen B Kaptein B Stilling M

Objectives. To validate the precision of digitally reconstructed radiograph (DRR) radiostereometric analysis (RSA) and the model-based method (MBM) RSA with respect to benchmark marker-based (MM) RSA for evaluation of kinematics in the native hip joint. Methods. Seven human cadaveric hemipelves were CT scanned and bone models were segmented. Tantalum beads were placed in the pelvis and proximal femoral bone. RSA recordings of the hips were performed during flexion, adduction and internal rotation. Stereoradiographic recordings were all analyzed with DRR, MBM and MM. Migration results for the MBM and DRR with respect to MM were compared. Precision was assessed as systematic bias (mean difference) and random variation (Pitman’s test for equal variance). Results. A total of 288 dynamic RSA images were analyzed. Systematic bias for DRR and MBM with respect to MM in translations (p < 0.018 mm) and rotations (p < 0.009°) were approximately 0. Pitman’s test showed lower random variation in all degrees of freedom for DRR compared with MBM (p < 0.001). Conclusion. Systematic error was approximately 0 for both DRR or MBM. However, precision of DRR was statistically significantly better than MBM. Since DRR does not require marker insertion it can be used for investigation of preoperative hip kinematics in comparison with the postoperative results after joint preserving hip surgery. . Cite this article: L. Hansen, S. De Raedt, P. B. Jørgensen, B. Mygind-Klavsen, B. Kaptein, M. Stilling. Marker free model-based radiostereometric analysis for evaluation of hip joint kinematics: A validation study. Bone Joint Res 2018;7:379–387. DOI: 10.1302/2046-3758.76.BJR-2017-0268.R1


Bone & Joint Research
Vol. 6, Issue 8 | Pages 514 - 521
1 Aug 2017
Mannering N Young T Spelman T Choong PF

Objectives. Whilst gait speed is variable between healthy and injured adults, the extent to which speed alone alters the 3D in vivo knee kinematics has not been fully described. The purpose of this prospective study was to understand better the spatiotemporal and 3D knee kinematic changes induced by slow compared with normal self-selected walking speeds within young healthy adults. Methods. A total of 26 men and 25 women (18 to 35 years old) participated in this study. Participants walked on a treadmill with the KneeKG system at a slow imposed speed (2 km/hr) for three trials, then at a self-selected comfortable walking speed for another three trials. Paired t-tests, Wilcoxon signed-rank tests, Mann-Whitney U tests and Spearman’s rank correlation coefficients were conducted using Stata/IC 14 to compare kinematics of slow versus self-selected walking speed. Results. Both cadence and step length were reduced during slow gait compared with normal gait. Slow walking reduced flexion during standing (10.6° compared with 13.7°; p < 0.0001), and flexion range of movement (ROM) (53.1° compared with 57.3°; p < 0.0001). Slow walking also induced less adduction ROM (8.3° compared with 10.0°; p < 0.0001), rotation ROM (11.4. °. compared with 13.6. °. ; p < 0.0001), and anteroposterior translation ROM (8.5 mm compared with 10.1 mm; p < 0.0001). Conclusion. The reduced spatiotemporal measures, reduced flexion during stance, and knee ROM in all planes induced by slow walking demonstrate a stiff knee gait, similar to that previously demonstrated in osteoarthritis. Further research is required to determine if these characteristics induced in healthy knees by slow walking provide a valid model of osteoarthritic gait. Cite this article: N. Mannering, T. Young, T. Spelman, P. F. Choong. Three-dimensional knee kinematic analysis during treadmill gait: Slow imposed speed versus normal self-selected speed. Bone Joint Res 2017;6:514–521. DOI: 10.1302/2046-3758.68.BJR-2016-0296.R1


The Bone & Joint Journal
Vol. 97-B, Issue 4 | Pages 484 - 491
1 Apr 2015
van Arkel RJ Amis AA Cobb JP Jeffers JRT

In this in vitro study of the hip joint we examined which soft tissues act as primary and secondary passive rotational restraints when the hip joint is functionally loaded. A total of nine cadaveric left hips were mounted in a testing rig that allowed the application of forces, torques and rotations in all six degrees of freedom. The hip was rotated throughout a complete range of movement (ROM) and the contributions of the iliofemoral (medial and lateral arms), pubofemoral and ischiofemoral ligaments and the ligamentum teres to rotational restraint was determined by resecting a ligament and measuring the reduced torque required to achieve the same angular position as before resection. The contribution from the acetabular labrum was also measured. Each of the capsular ligaments acted as the primary hip rotation restraint somewhere within the complete ROM, and the ligamentum teres acted as a secondary restraint in high flexion, adduction and external rotation. The iliofemoral lateral arm and the ischiofemoral ligaments were primary restraints in two-thirds of the positions tested. Appreciation of the importance of these structures in preventing excessive hip rotation and subsequent impingement/instability may be relevant for surgeons undertaking both hip joint preserving surgery and hip arthroplasty. Cite this article: Bone Joint J 2015; 97-B:484–91


Bone & Joint Research
Vol. 12, Issue 12 | Pages 712 - 721
4 Dec 2023
Dantas P Gonçalves SR Grenho A Mascarenhas V Martins J Tavares da Silva M Gonçalves SB Guimarães Consciência J

Aims

Research on hip biomechanics has analyzed femoroacetabular contact pressures and forces in distinct hip conditions, with different procedures, and used diverse loading and testing conditions. The aim of this scoping review was to identify and summarize the available evidence in the literature for hip contact pressures and force in cadaver and in vivo studies, and how joint loading, labral status, and femoral and acetabular morphology can affect these biomechanical parameters.

Methods

We used the PRISMA extension for scoping reviews for this literature search in three databases. After screening, 16 studies were included for the final analysis.


The Bone & Joint Journal
Vol. 99-B, Issue 4_Supple_B | Pages 41 - 48
1 Apr 2017
Fernquest S Arnold C Palmer A Broomfield J Denton J Taylor A Glyn-Jones S

Aims. The aim of this study was to examine the real time in vivo kinematics of the hip in patients with cam-type femoroacetabular impingement (FAI). Patients and Methods. A total of 50 patients (83 hips) underwent 4D dynamic CT scanning of the hip, producing real time osseous models of the pelvis and femur being moved through flexion, adduction, and internal rotation. The location and size of the cam deformity and its relationship to the angle of flexion of the hip and pelvic tilt, and the position of impingement were recorded. Results. In these patients with cam-type FAI, there was significant correlation between the alpha angle and flexion to the point of impingement (mean 41.36°; 14.32° to 57.95°) (R = -0.5815 and p = < 0.001). Patients with a large cam deformity (alpha angle > 78°) had significantly less flexion to the point of impingement (mean 36.30°; 14.32° to 55.18°) than patients with a small cam deformity (alpha angle 60° to 78°) (mean 45.34°; 27.25° to 57.95°) (p = < 0.001). Conclusion. This study has shown that cam-type impingement can occur early in flexion (40°), particularly in patients with large anterior deformities. These patients risk chondrolabral damage during routine activities such as walking, and going up stairs. These findings offer important insights into the cause of the symptoms, the mechanisms of screening and the forms of treatment available for these patients. Cite this article: Bone Joint J 2017;99-B(4 Supple B):41–8


The Bone & Joint Journal
Vol. 96-B, Issue 5 | Pages 580 - 589
1 May 2014
Nakahara I Takao M Sakai T Miki H Nishii T Sugano N

To confirm whether developmental dysplasia of the hip has a risk of hip impingement, we analysed maximum ranges of movement to the point of bony impingement, and impingement location using three-dimensional (3D) surface models of the pelvis and femur in combination with 3D morphology of the hip joint using computer-assisted methods. Results of computed tomography were examined for 52 hip joints with DDH and 73 normal healthy hip joints. DDH shows larger maximum extension (p = 0.001) and internal rotation at 90° flexion (p < 0.001). Similar maximum flexion (p = 0.835) and external rotation (p = 0.713) were observed between groups, while high rates of extra-articular impingement were noticed in these directions in DDH (p < 0.001). Smaller cranial acetabular anteversion (p = 0.048), centre-edge angles (p < 0.001), a circumferentially shallower acetabulum, larger femoral neck anteversion (p < 0.001), and larger alpha angle were identified in DDH. Risk of anterior impingement in retroverted DDH hips is similar to that in retroverted normal hips in excessive adduction but minimal in less adduction. These findings might be borne in mind when considering the possibility of extra-articular posterior impingement in DDH being a source of pain, particularly for patients with a highly anteverted femoral neck. Cite this article: Bone Joint J 2014;96-B:580–9


The Bone & Joint Journal
Vol. 105-B, Issue 4 | Pages 455 - 464
15 Mar 2023
de Joode SGCJ Meijer R Samijo S Heymans MJLF Chen N van Rhijn LW Schotanus MGM

Aims

Multiple secondary surgical procedures of the shoulder, such as soft-tissue releases, tendon transfers, and osteotomies, are described in brachial plexus birth palsy (BPBP) patients. The long-term functional outcomes of these procedures described in the literature are inconclusive. We aimed to analyze the literature looking for a consensus on treatment options.

Methods

A systematic literature search in healthcare databases (PubMed, Embase, the Cochrane library, CINAHL, and Web of Science) was performed from January 2000 to July 2020, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. The quality of the included studies was assessed with the Cochrane ROBINS-I risk of bias tool. Relevant trials studying BPBP with at least five years of follow-up and describing functional outcome were included.


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 59 - 66
1 Mar 2024
Karunaseelan KJ Nasser R Jeffers JRT Cobb JP

Aims

Surgical approaches that claim to be minimally invasive, such as the direct anterior approach (DAA), are reported to have a clinical advantage, but are technically challenging and may create more injury to the soft-tissues during joint exposure. Our aim was to quantify the effect of soft-tissue releases on the joint torque and femoral mobility during joint exposure for hip resurfacing performed via the DAA.

Methods

Nine fresh-frozen hip joints from five pelvis to mid-tibia cadaveric specimens were approached using the DAA. A custom fixture consisting of a six-axis force/torque sensor and motion sensor was attached to tibial diaphysis to measure manually applied torques and joint angles by the surgeon. Following dislocation, the torques generated to visualize the acetabulum and proximal femur were assessed after sequential release of the joint capsule and short external rotators.


Aims

To systematically review the efficacy of split tendon transfer surgery on gait-related outcomes for children and adolescents with cerebral palsy (CP) and spastic equinovarus foot deformity.

Methods

Five databases (CENTRAL, CINAHL, PubMed, Embase, Web of Science) were systematically screened for studies investigating split tibialis anterior or split tibialis posterior tendon transfer for spastic equinovarus foot deformity, with gait-related outcomes (published pre-September 2022). Study quality and evidence were assessed using the Methodological Index for Non-Randomized Studies, the Risk of Bias In Non-Randomized Studies of Interventions, and the Grading of Recommendations Assessment, Development and Evaluation.