Advertisement for orthosearch.org.uk
Results 1 - 20 of 202
Results per page:
Bone & Joint Research
Vol. 2, Issue 11 | Pages 233 - 237
1 Nov 2013
Russell DF Deakin AH Fogg QA Picard F

Objectives. We performed in vitro validation of a non-invasive skin-mounted system that could allow quantification of anteroposterior (AP) laxity in the outpatient setting. Methods. A total of 12 cadaveric lower limbs were tested with a commercial image-free navigation system using trackers secured by bone screws. We then tested a non-invasive fabric-strap system. The lower limb was secured at 10° intervals from 0° to 60° of knee flexion and 100 N of force was applied perpendicular to the tibia. Acceptable coefficient of repeatability (CR) and limits of agreement (LOA) of 3 mm were set based on diagnostic criteria for anterior cruciate ligament (ACL) insufficiency. Results. Reliability and precision within the individual invasive and non-invasive systems was acceptable throughout the range of flexion tested (intra-class correlation coefficient 0.88, CR 1.6 mm). Agreement between the two systems was acceptable measuring AP laxity between full extension and 40° knee flexion (LOA 2.9 mm). Beyond 40° of flexion, agreement between the systems was unacceptable (LOA > 3 mm). Conclusions. These results indicate that from full knee extension to 40° flexion, non-invasive navigation-based quantification of AP tibial translation is as accurate as the standard validated commercial system, particularly in the clinically and functionally important range of 20° to 30° knee flexion. This could be useful in diagnosis and post-operative evaluation of ACL pathology. Cite this article: Bone Joint Res 2013;2:233–7


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 3 | Pages 425 - 430
1 Mar 2012
Picardo NE Blunn GW Shekkeris AS Meswania J Aston WJ Pollock RC Skinner JA Cannon SR Briggs TW

In skeletally immature patients, resection of bone tumours and reconstruction of the lower limb often results in leg-length discrepancy. The Stanmore non-invasive extendible endoprosthesis, which uses electromagnetic induction, allows post-operative lengthening without anaesthesia. Between 2002 and 2009, 55 children with a mean age of 11.4 years (5 to 16) underwent reconstruction with this prosthesis; ten patients (18.2%) died of disseminated disease and one child underwent amputation due to infection. We reviewed 44 patients after a mean follow-up of 41.2 months (22 to 104). The mean Musculoskeletal Tumor Society score was 24.7 (8 to 30) and the Toronto Extremity Salvage score was 92.3% (55.2% to 99.0%). There was no local recurrence of tumour. Complications developed in 16 patients (29.1%) and ten (18.2%) underwent revision. The mean length gained per patient was 38.6 mm (3.5 to 161.5), requiring a mean of 11.3 extensions (1 to 40), and ten component exchanges were performed in nine patients (16.4%) after attaining the maximum lengthening capacity of the implant. There were 11 patients (20%) who were skeletally mature at follow-up, ten of whom had equal leg lengths and nine had a full range of movement of the hip and knee. This is the largest reported series using non-invasive extendible endoprostheses after excision of primary bone tumours in skeletally immature patients. The technique produces a good functional outcome, with prevention of limb-length discrepancy at skeletal maturity


The Bone & Joint Journal
Vol. 100-B, Issue 12 | Pages 1640 - 1646
1 Dec 2018
Medellin MR Fujiwara T Clark R Jeys LM

Aims. The aim of this study was to describe, analyze, and compare the survival, functional outcome, and complications of minimally invasive (MI) and non-invasive (NI) lengthening total femoral prostheses. Patients and Methods. A total of 24 lengthening total femoral prostheses, 11 MI and 13 NI, were implanted between 1991 and 2016. The characteristics, complications, and functional results were recorded. There were ten female patients and ten male patients. Their mean age at the time of surgery was 11 years (2 to 41). The mean follow-up was 13.2 years (seven months to 29.25 years). A survival analysis was performed, and the failures were classified according to the Modified Henderson System. Results. The overall implant survival was 79% at five, ten, and 20 years for MI prostheses, and 84% at five years and 70% at ten years for NI prostheses. At the final follow-up, 13 prostheses did not require further surgery. The overall complication rate was 46%. The mean revision-free implant survival for MI and NI prostheses was 59 months and 49 months, respectively. There were no statistically significant differences in the overall implant survival, revision-free survival, or the distribution of complications between the two types of prosthesis. Infection rates were also comparable in the groups (9% vs 7%; p = 0.902). The rate of leg-length discrepancy was 54% in MI prostheses and 23% in NI prostheses. In those with a MI prosthesis, there was a smaller mean range of movement of the knee (0° to 62° vs 0° to 83°; p = 0.047), the flexion contracture took a longer mean time to resolve after lengthening (3.3 months vs 1.07 months; p < 0.001) and there was a lower mean Musculoskeletal Tumor Society (MSTS) score (24.7 vs 27; p = 0.295). Conclusion. The survival and complications of MI and NI lengthening total femoral prostheses are comparable. However, patients with NI prosthesis have more accurate correction of leg-length discrepancy, a better range of movement of the knee and an improved overall function


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 10 | Pages 1360 - 1365
1 Oct 2009
Sewell MD Spiegelberg BGI Hanna SA Aston WJS Meswania JM Blunn GW Henry C Cannon SR Briggs TWR

We describe the application of a non-invasive extendible endoprosthetic replacement in skeletally-mature patients undergoing revision for failed joint replacement with resultant limb-length inequality after malignant or non-malignant disease. This prosthesis was developed for tumour surgery in skeletally-immature patients but has now been adapted for use in revision procedures to reconstruct the joint or facilitate an arthrodesis, replace bony defects and allow limb length to be restored gradually in the post-operative period. We record the short-term results in nine patients who have had this procedure after multiple previous reconstructive operations. In six, the initial reconstruction had been performed with either allograft or endoprosthetic replacement for neoplastic disease and in three for non-neoplastic disease. The essential components of the prosthesis are a magnetic disc, a gearbox and a drive screw which allows painless lengthening of the prosthesis using the principle of electromagnetic induction. The mean age of the patients was 37 years (18 to 68) with a mean follow-up of 34 months (12 to 62). They had previously undergone a mean of six (2 to 14) open procedures on the affected limb before revision with the non-invasive extendible endoprosthesis. The mean length gained was 56 mm (19 to 107) requiring a mean of nine (3 to 20) lengthening episodes performed in the outpatient department. There was one case of recurrent infection after revision of a previously infected implant and one fracture of the prosthesis after a fall. No amputations were performed. Planned exchange of the prosthesis was required in three patients after attainment of the maximum lengthening capacity of the implant. There was no failure of the lengthening mechanism. The Mean Musculoskeletal Tumour Society rating score was 22 of 30 available points (18 to 28). The use of a non-invasive extendible endoprosthesis in this manner provided patients with good functional results and restoration of leg-length equality, without the need for multiple open lengthening procedures


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 2 | Pages 265 - 269
1 Feb 2012
Hwang N Grimer RJ Carter SR Tillman RM Abudu A Jeys LM

We reviewed our initial seven-year experience with a non-invasive extendible prosthesis in 34 children with primary bone tumours. The distal femur was replaced in 25 cases, total femur in five, proximal femur in one and proximal tibia in three. The mean follow-up was 44 months (15 to 86) and 27 patients (79%) remain alive. The prostheses were lengthened by an electromagnetic induction mechanism in an outpatient setting and a mean extension of 32 mm (4 to 80) was achieved without anaesthesia. There were lengthening complications in two children: failed lengthening in one and the formation of scar tissue in the other. Deep infection developed in six patients (18%) and local recurrence in three. A total of 11 patients required further surgery to the leg. Amputation was necessary in five patients (20%) and a two-stage revision in another. There were no cases of loosening, but two patients had implant breakage and required revision. The mean Musculoskeletal Tumor Society functional score was 85% (60% to 100%) at last known follow-up. These early results demonstrate that the non-invasive extendible prosthesis allows successful lengthening without surgical intervention, but the high incidence of infection is a cause for concern


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 11 | Pages 1488 - 1494
1 Nov 2007
Gorodetskyi IG Gorodnichenko AI Tursin PS Reshetnyak VK Uskov ON

We undertook a trial on 60 patients with AO 31A2 fractures of the hip who were randomised after stabilisation of the fracture into two equal groups, one of which received post-operative treatment using a non-invasive interactive neurostimulation device and the other with a sham device. All other aspects of their rehabilitation were the same. The treatment was continued for ten days after operation. Outcome measurements included the use of a visual analogue scale for pain, the brief pain inventory and Ketorolac for post-operative control of pain, and an overall assessment of outcome by the surgeon. There were significantly better results for the patients receiving treatment by active electrical stimulation (repeated measures analysis of variance, p < 0.001). The findings of this pilot trial justify a larger study to determine if these results are more generally applicable


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 5 | Pages 649 - 654
1 May 2006
Gupta A Meswania J Pollock R Cannon SR Briggs TWR Taylor S Blunn G

We report our early experience with the use of a non-invasive distal femoral expandable endoprosthesis in seven skeletally immature patients with osteosarcoma of the distal femur. The patients had a mean age of 12.1 years (9 to 15) at the time of surgery. The prosthesis was lengthened at appropriate intervals in outpatient clinics, without anaesthesia, using the principle of electromagnetic induction. The patients were functionally evaluated using the Musculoskeletal Tumour Society scoring system. The mean follow-up was 20.2 months (14 to 30). The prostheses were lengthened by a mean of 25 mm (4.25 to 55) and maintained a mean knee flexion of 110° (100° to 120°). The mean Musculoskeletal Tumour Society score was 68% (11 to 29). Complications developed in two patients; one developed a flexion deformity of 25° at the knee joint, which was subsequently overcome and one died of disseminated disease. The early results from patients treated with this device have been encouraging. The implant avoids multiple surgical procedures, general anaesthesia and assists in maintaining leg-length equality


The Journal of Bone & Joint Surgery British Volume
Vol. 62-B, Issue 4 | Pages 465 - 470
1 Nov 1980
de Haas W Watson J Morrison D

A non-invasive method of electrical stimulation of healing in ununited fractures of the tibia by pulsed magnetic fileds has been evaluated. In a series of 17 patients all but two of the fractures united within 4 to 10 months, with an average time of just under six months. The method is sufficiently promising to merit further clinical investigation


The Journal of Bone & Joint Surgery British Volume
Vol. 66-B, Issue 4 | Pages 529 - 534
1 Aug 1984
Hammer R Edholm P Lindholm B

The stability of union following the conservative treatment of tibial shaft fractures has been examined in 157 patients by a non-invasive method. With this technique it is possible to ascertain when the fragments are united and whether the strength of union is sufficient for full weight-bearing without protection. The mean time required for union was 14.0 +/- 9.2 weeks, with a range of 4 to 48 weeks. In 31 cases union was judged to be delayed; in 22 of these, intended operations were avoided because repeated stability determinations indicated progressive union. Of nine fracture variables examined, the only ones which significantly affected the time required to achieve union were the age and the weight of the patient. Irrelevant factors were the type and level of the fracture, the energy of trauma, soft-tissue injury and the presence of multiple injuries


The Bone & Joint Journal
Vol. 100-B, Issue 3 | Pages 370 - 377
1 Mar 2018
Gilg MM Gaston CL Jeys L Abudu A Tillman RM Stevenson JD Grimer RJ Parry MC

Aims

The use of a noninvasive growing endoprosthesis in the management of primary bone tumours in children is well established. However, the efficacy of such a prosthesis in those requiring a revision procedure has yet to be established. The aim of this series was to present our results using extendable prostheses for the revision of previous endoprostheses.

Patients and Methods

All patients who had a noninvasive growing endoprosthesis inserted at the time of a revision procedure were identified from our database. A total of 21 patients (seven female patients, 14 male) with a mean age of 20.4 years (10 to 41) at the time of revision were included. The indications for revision were mechanical failure, trauma or infection with a residual leg-length discrepancy. The mean follow-up was 70 months (17 to 128). The mean shortening prior to revision was 44 mm (10 to 100). Lengthening was performed in all but one patient with a mean lengthening of 51 mm (5 to 140).


The Bone & Joint Journal
Vol. 95-B, Issue 6 | Pages 738 - 746
1 Jun 2013
Palmer AJR Brown CP McNally EG Price AJ Tracey I Jezzard P Carr AJ Glyn-Jones S

Treatment for osteoarthritis (OA) has traditionally focused on joint replacement for end-stage disease. An increasing number of surgical and pharmaceutical strategies for disease prevention have now been proposed. However, these require the ability to identify OA at a stage when it is potentially reversible, and detect small changes in cartilage structure and function to enable treatment efficacy to be evaluated within an acceptable timeframe. This has not been possible using conventional imaging techniques but recent advances in musculoskeletal imaging have been significant. In this review we discuss the role of different imaging modalities in the diagnosis of the earliest changes of OA. The increasing number of MRI sequences that are able to non-invasively detect biochemical changes in cartilage that precede structural damage may offer a great advance in the diagnosis and treatment of this debilitating condition.

Cite this article: Bone Joint J 2013;95-B:738–46.


The Bone & Joint Journal
Vol. 98-B, Issue 12 | Pages 1697 - 1703
1 Dec 2016
Gilg MM Gaston CL Parry MC Jeys L Abudu A Tillman RM Carter SR Grimer RJ

Aims

Extendible endoprostheses have been available for more than 30 years and have become more sophisticated with time. The latest generation is ‘non-invasive’ and can be lengthened with an external magnetic force. Early results have shown a worryingly high rate of complications such as infection. This study investigates the incidence of complications and the need for further surgery in a cohort of patients with a non-invasive growing endoprosthesis.

Patients and Methods

Between 2003 and June 2014, 50 children (51 prostheses) had a non-invasive growing prosthesis implanted for a primary bone sarcoma. The minimum follow-up was 24 months for those who survived. Their mean age was 10.4 years (6 to 14). The incidence of complications and further surgery was documented.


Bone & Joint Research
Vol. 12, Issue 9 | Pages 580 - 589
20 Sep 2023
Dai X Liu B Hou Q Dai Q Wang D Xie B Sun Y Wang B

Aims. The aim of this study was to investigate the global and local impact of fat on bone in obesity by using the diet-induced obese (DIO) mouse model. Methods. In this study, we generated a diet-induced mouse model of obesity to conduct lipidomic and 3D imaging assessments of bone marrow fat, and evaluated the correlated bone adaptation indices and bone mechanical properties. Results. Our results indicated that bone mass was reduced and bone mechanical properties were impaired in DIO mice. Lipidomic sequencing and bioinformatic analysis identified 373 differential lipids, 176 of which were upregulated and 197 downregulated. Functional enrichment analysis revealed a significant downregulation of the pathways: fat digestion and absorption (ko04975) and lipolysis regulation in adipocytes (ko04923) in DIO mice, leading to local fat accumulation. The use of 3D imaging confirmed the increase in fat accumulation within the bone marrow cavity of obese mice. Conclusion. Our study sheds light on the intricate interplay between fat and bone, and provides a non-toxic and non-invasive method for measuring marrow adipose tissue. Cite this article: Bone Joint Res 2023;12(9):580–589


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 9 - 16
1 Jul 2021
Hadden WJ Ibrahim M Taha M Ure K Liu Y Paish ADM Holdsworth DW Abdelbary H

Aims. The aims of this study were to develop an in vivo model of periprosthetic joint infection (PJI) in cemented hip hemiarthroplasty, and to monitor infection and biofilm formation in real-time. Methods. Sprague-Dawley rats underwent cemented hip hemiarthroplasty via the posterior approach with pre- and postoperative gait assessments. Infection with Staphylococcus aureus Xen36 was monitored with in vivo photoluminescent imaging in real-time. Pre- and postoperative gait analyses were performed and compared. Postmortem micro (m) CT was used to assess implant integration; field emission scanning electron microscopy (FE-SEM) was used to assess biofilm formation on prosthetic surfaces. Results. All animals tolerated surgery well, with preservation of gait mechanics and weightbearing in control individuals. Postoperative in vivo imaging demonstrated predictable evolution of infection with logarithmic signal decay coinciding with abscess formation. Postmortem mCT qualitative volumetric analysis showed high contact area and both cement-bone and cement-implant interdigitation. FE-SEM revealed biofilm formation on the prosthetic head. Conclusion. This study demonstrates the utility of a new, high-fidelity model of in vivo PJI using cemented hip hemiarthroplasty in rats. Inoculation with bioluminescent bacteria allows for non-invasive, real-time monitoring of infection. Cite this article: Bone Joint J 2021;103-B(7 Supple B):9–16


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1331 - 1340
3 Oct 2020
Attard V Li CY Self A Mann DA Borthwick LA O’Connor P Deehan DJ Kalson NS

Aims. Stiffness is a common complication after total knee arthroplasty (TKA). Pathogenesis is not understood, treatment options are limited, and diagnosis is challenging. The aim of this study was to investigate if MRI can be used to visualize intra-articular scarring in patients with stiff, painful knee arthroplasties. Methods. Well-functioning primary TKAs (n = 11), failed non-fibrotic TKAs (n = 5), and patients with a clinical diagnosis of fibrosis. 1. (n = 8) underwent an MRI scan with advanced metal suppression (Slice Encoding for Metal Artefact Correction, SEMAC) with gadolinium contrast. Fibrotic tissue (low intensity on T1 and T2, low-moderate post-contrast enhancement) was quantified (presence and tissue thickness) in six compartments: supra/infrapatella, medial/lateral gutters, and posterior medial/lateral. Results. Fibrotic tissue was identified in all patients studied. However, tissue was significantly thicker in fibrotic patients (4.4 mm ± 0.2 mm) versus non-fibrotic (2.5 mm ± 0.4 mm) and normal TKAs (1.9 mm ± 0.2 mm, p = < 0.05). Significant (> 4 mm thick) tissue was seen in 26/48 (54%) of compartments examined in the fibrotic group, compared with 17/30 (57%) non-fibrotic, and 10/66 (15%) normal TKAs. Although revision surgery did improve range of movement (ROM) in all fibrotic patients, clinically significant restriction remained post-surgery. Conclusion. Stiff TKAs contain intra-articular fibrotic tissue that is identifiable by MRI. Studies should evaluate whether MRI is useful for surgical planning of debridement, and as a non-invasive measurement tool following interventions for stiffness caused by fibrosis. Revision for stiffness can improve ROM, but outcomes are sub-optimal and new treatments are required. Cite this article: Bone Joint J 2020;102-B(10):1331–1340


Bone & Joint Research
Vol. 10, Issue 1 | Pages 41 - 50
1 Jan 2021
Wong RMY Choy VMH Li J Li TK Chim YN Li MCM Cheng JCY Leung K Chow SK Cheung WH

Aims. Fibrinolysis plays a key transition step from haematoma formation to angiogenesis and fracture healing. Low-magnitude high-frequency vibration (LMHFV) is a non-invasive biophysical modality proven to enhance fibrinolytic factors. This study investigates the effect of LMHFV on fibrinolysis in a clinically relevant animal model to accelerate osteoporotic fracture healing. Methods. A total of 144 rats were randomized to four groups: sham control; sham and LMHFV; ovariectomized (OVX); and ovariectomized and LMHFV (OVX-VT). Fibrinolytic potential was evaluated by quantifying fibrin, tissue plasminogen activator (tPA), and plasminogen activator inhibitor-1 (PAI-1) along with healing outcomes at three days, one week, two weeks, and six weeks post-fracture. Results. All rats achieved healing, and x-ray relative radiopacity for OVX-VT was significantly higher compared to OVX at week 2. Martius Scarlet Blue (MSB) staining revealed a significant decrease of fibrin content in the callus in OVX-VT compared with OVX on day 3 (p = 0.020). Mean tPA from muscle was significantly higher for OVX-VT compared to OVX (p = 0.020) on day 3. Mechanical testing revealed the mean energy to failure was significantly higher for OVX-VT at 37.6 N mm (SD 8.4) and 71.9 N mm (SD 30.7) compared with OVX at 5.76 N mm (SD 7.1) (p = 0.010) and 17.7 N mm (SD 11.5) (p = 0.030) at week 2 and week 6, respectively. Conclusion. Metaphyseal fracture healing is enhanced by LMHFV, and one of the important molecular pathways it acts on is fibrinolysis. LMHFV is a promising intervention for osteoporotic metaphyseal fracture healing. The improved mechanical properties, acceleration of fracture healing, and safety justify its role into translation to future clinical studies. Cite this article: Bone Joint Res 2021;10(1):41–50


The Bone & Joint Journal
Vol. 100-B, Issue 6 | Pages 787 - 797
1 Jun 2018
Shuler MS Roskosky M Kinsey T Glaser D Reisman W Ogburn C Yeoman C Wanderman NR Freedman B

Aims. The aim of this study was to evaluate near-infrared spectroscopy (NIRS) as a continuous, non-invasive monitor for acute compartment syndrome (ACS). Patients and Methods. NIRS sensors were placed on 86 patients with, and 23 without (controls), severe leg injury. NIRS values were recorded for up to 48 hours. Longitudinal data were analyzed using summary and graphical methods, bivariate comparisons, and multivariable multilevel modelling. Results. Mean NIRS values in the anterior, lateral, superficial posterior, and deep posterior compartments were between 72% and 78% in injured legs, between 69% and 72% in uninjured legs, and between 71% and 73% in bilaterally uninjured legs. In patients without ACS, the values were typically > 3% higher in injured compartments. All seven limbs with ACS had at least one compartment where NIRS values were 3% or more below a reference uninjured control compartment. Missing data were encountered in many instances. Conclusion. NIRS oximetry might be used to aid the assessment and management of patients with ACS. Sustained hyperaemia is consistent with the absence of ACS in injured legs. Loss of the hyperaemic differential warrants heightened surveillance. NIRS values in at least one injured compartment(s) were > 3% below the uninjured contralateral compartment(s) in all seven patients with ACS. Additional interventional studies are required to validate the use of NIRS for ACS monitoring. Cite this article: Bone Joint J 2018;100-B:787–97


Bone & Joint Research
Vol. 6, Issue 6 | Pages 376 - 384
1 Jun 2017
Stentz-Olesen K Nielsen ET De Raedt S Jørgensen PB Sørensen OG Kaptein BL Andersen MS Stilling M

Objectives. Static radiostereometric analysis (RSA) using implanted markers is considered the most accurate system for the evaluation of prosthesis migration. By using CT bone models instead of markers, combined with a dynamic RSA system, a non-invasive measurement of joint movement is enabled. This method is more accurate than current 3D skin marker-based tracking systems. The purpose of this study was to evaluate the accuracy of the CT model method for measuring knee joint kinematics in static and dynamic RSA using the marker method as the benchmark. Methods. Bone models were created from CT scans, and tantalum beads were implanted into the tibia and femur of eight human cadaver knees. Each specimen was secured in a fixture, static and dynamic stereoradiographs were recorded, and the bone models and marker models were fitted to the stereoradiographs. Results. Results showed a mean difference between the two methods in all six degrees of freedom for static RSA to be within -0.10 mm/° and 0.08 mm/° with a 95% limit of agreement (LoA) ranging from ± 0.49 to 1.26. Dynamic RSA had a slightly larger range in mean difference of -0.23 mm/° to 0.16 mm/° with LoA ranging from ± 0.75 to 1.50. Conclusions. In a laboratory-controlled setting, the CT model method combined with dynamic RSA may be an alternative to previous marker-based methods for kinematic analyses. Cite this article: K. Stentz-Olesen, E. T. Nielsen, S. De Raedt, P. B. Jørgensen, O. G. Sørensen, B. L. Kaptein, M. S. Andersen, M. Stilling. Validation of static and dynamic radiostereometric analysis of the knee joint using bone models from CT data. Bone Joint Res 2017;6:376–384. DOI: 10.1302/2046-3758.66.BJR-2016-0113.R3


Bone & Joint Research
Vol. 13, Issue 6 | Pages 279 - 293
7 Jun 2024
Morris JL Letson HL McEwen PC Dobson GP

Aims

Adenosine, lidocaine, and Mg2+ (ALM) therapy exerts differential immuno-inflammatory responses in males and females early after anterior cruciate ligament (ACL) reconstruction (ACLR). Our aim was to investigate sex-specific effects of ALM therapy on joint tissue repair and recovery 28 days after surgery.

Methods

Male (n = 21) and female (n = 21) adult Sprague-Dawley rats were randomly divided into ALM or Saline control treatment groups. Three days after ACL rupture, animals underwent ACLR. An ALM or saline intravenous infusion was commenced prior to skin incision, and continued for one hour. An intra-articular bolus of ALM or saline was also administered prior to skin closure. Animals were monitored to 28 days, and joint function, pain, inflammatory markers, histopathology, and tissue repair markers were assessed.


Bone & Joint Research
Vol. 5, Issue 9 | Pages 379 - 386
1 Sep 2016
Pahuta M Smolders JM van Susante JL Peck J Kim PR Beaule PE

Objectives. Alarm over the reported high failure rates for metal-on-metal (MoM) hip implants as well as their potential for locally aggressive Adverse Reactions to Metal Debris (ARMDs) has prompted government agencies, internationally, to recommend the monitoring of patients with MoM hip implants. Some have advised that a blood ion level >7 µg/L indicates potential for ARMDs. We report a systematic review and meta-analysis of the performance of metal ion testing for ARMDs. Methods. We searched MEDLINE and EMBASE to identify articles from which it was possible to reconstruct a 2 × 2 table. Two readers independently reviewed all articles and extracted data using explicit criteria. We computed a summary receiver operating curve using a Bayesian random-effects hierarchical model. Results. Our literature search returned 575 unique articles; only six met inclusion criteria defined a priori. The discriminative capacity of ion tests was homogeneous across studies but that there was substantial cut-point heterogeneity. Our best estimate of the “true” area under curve (AUC) for metal ion testing is 0.615, with a 95% credible interval of 0.480 to 0.735, thus we can state that the probability that metal ion testing is actually clinically useful with an AUC ≥ 0.75 is 1.7%. Conclusion. Metal ion levels are not useful as a screening test for identifying high risk patients because ion testing will either lead to a large burden of false positive patients, or otherwise marginally modify the pre-test probability. With the availability of more accurate non-invasive tests, we did not find any evidence for using blood ion levels to diagnose symptomatic patients. Cite this article: M. Pahuta, J. M. Smolders, J. L. van Susante, J. Peck, P. R. Kim, P. E. Beaule. Blood metal ion levels are not a useful test for adverse reactions to metal debris: a systematic review and meta-analysis. Bone Joint Res 2016;5:379–386. DOI: 10.1302/2046-3758.59.BJR-2016-0027.R1