Morphological abnormalities are present in patients with developmental dysplasia of the hip (DDH). We studied and compared the pelvic anatomy and morphology between the affected hemipelvis with the unaffected side in patients with unilateral Crowe type IV DDH using 3D imaging and analysis. A total of 20 patients with unilateral Crowe-IV DDH were included in the study. The contralateral side was considered normal in all patients. A coordinate system based on the sacral base (SB) in a reconstructed pelvic model was established. The pelvic orientations (tilt, rotation, and obliquity) of the affected side were assessed by establishing a virtual anterior pelvic plane (APP). The bilateral coordinates of the anterior superior iliac spine (ASIS) and the centres of hip rotation were established, and parameters concerning size and volume were compared for both sides of the pelvis.Aims
Methods
The femoral head receives its blood supply primarily
from the medial femoral circumflex artery, with its deep branch being
the most important. In a previous study, we performed classical anatomical dissections
of 16 hips. We have extended our investigation with a radiological
study, in which we aimed to visualise the arteries supplying the
femoral head in healthy individuals. We analysed 55 CT angiographic
images of the hip. Using 64-row CT angiography, we identified three main arteries
supplying the femoral head: the deep branch of the medial femoral
circumflex artery and the posterior inferior nutrient artery originating
from the medial femoral circumflex artery, and the piriformis branch
of the inferior gluteal artery. CT angiography is a good method
for visualisation of the arteries supplying the femoral head. The
current radiological studies will provide information for further
investigation of vascularity after traumatic dislocation of the
hip, using CT angiography.
The cam-type deformity in femoroacetabular impingement
is a 3D deformity. Single measurements using radiographs, CT or
MRI may not provide a true estimate of the magnitude of the deformity.
We performed an analysis of the size and location of measurements
of the alpha angle (α°) using a CT technique which could be applied
to the 3D reconstructions of the hip. Analysis was undertaken in
42 patients (57 hips; 24 men and 18 women; mean age 38 years (16
to 58)) who had symptoms of femoroacetabular impingement related
to a cam-type abnormality. An α° of >
50° was considered a significant
indicator of cam-type impingement. Measurements of the α° were made
at different points around the femoral head/neck junction at intervals
of 30°: starting at the nine o’clock (posterior), ten, eleven and
twelve o’clock (superior), one, two and ending at three o’clock
(anterior) position. The mean maximum increased α° was 64.6° (50.8° to 86°). The two
o’clock position was the most common point to find an increased α°
(53 hips; 93%), followed by one o’clock (48 hips; 84%). The largest α°
for each hip was found most frequently at the two o’clock position
(46%), followed by the one o’clock position (39%). Generally, raised α angles
extend over three segments of the clock face. Single measurements of the α°, whether pre- or post-operative,
should be viewed with caution as they may not be representative
of the true size of the deformity and not define whether adequate
correction has been achieved following surgery. Cite this article:
Leg length discrepancy (LLD) is a common pre- and postoperative issue in total hip arthroplasty (THA) patients. The conventional technique for measuring LLD has historically been on a non-weightbearing anteroposterior pelvic radiograph; however, this does not capture many potential sources of LLD. The aim of this study was to determine if long-limb EOS radiology can provide a more reproducible and holistic measurement of LLD. In all, 93 patients who underwent a THA received a standardized preoperative EOS scan, anteroposterior (AP) radiograph, and clinical LLD assessment. Overall, 13 measurements were taken along both anatomical and functional axes and measured twice by an orthopaedic fellow and surgical planning engineer to calculate intraoperator reproducibility and correlations between measurements.Aims
Methods
Femoroacetabular impingement (FAI) patients report exacerbation of hip pain in deep flexion. However, the exact impingement location in deep flexion is unknown. The aim was to investigate impingement-free maximal flexion, impingement location, and if cam deformity causes hip impingement in flexion in FAI patients. A retrospective study involving 24 patients (37 hips) with FAI and femoral retroversion (femoral version (FV) < 5° per Murphy method) was performed. All patients were symptomatic (mean age 28 years (SD 9)) and had anterior hip/groin pain and a positive anterior impingement test. Cam- and pincer-type subgroups were analyzed. Patients were compared to an asymptomatic control group (26 hips). All patients underwent pelvic CT scans to generate personalized CT-based 3D models and validated software for patient-specific impingement simulation (equidistant method).Aims
Methods
The Birmingham Hip Resurfacing (BHR) arthroplasty has been used as a surgical treatment of coxarthrosis since 1997. We present 20-year results of 234 consecutive BHRs performed in our unit. Between 1999 and 2001, there were 217 patients: 142 males (65.4%), mean age 52 years (18 to 68) who had 234 implants (17 bilateral). They had patient-reported outcome measures collected, imaging (radiograph and ultrasound), and serum metal ion assessment. Survivorship analysis was performed using Kaplan-Meier estimates. Revision for any cause was considered as an endpoint for the analysis.Aims
Methods
United Classification System (UCS) B2 and B3 periprosthetic fractures in total hip arthroplasties (THAs) have been commonly managed with modular tapered stems. No study has evaluated the use of monoblock fluted tapered titanium stems for this indication. This study aimed to evaluate the effects of a monoblock stems on implant survivorship, postoperative outcomes, radiological outcomes, and osseointegration following treatment of THA UCS B2 and B3 periprosthetic fractures. A retrospective review was conducted of all patients who underwent revision THA (rTHA) for periprosthetic UCS B2 and B3 periprosthetic fracture who received a single design monoblock fluted tapered titanium stem at two large, tertiary care, academic hospitals. A total of 72 patients met inclusion and exclusion criteria (68 UCS B2, and four UCS B3 fractures). Primary outcomes of interest were radiological stem subsidence (> 5 mm), radiological osseointegration, and fracture union. Sub-analysis was also done for 46 patients with minimum one-year follow-up.Aims
Methods
A revision for periprosthetic joint infection (PJI) in total hip arthroplasty (THA) has a major effect on the patient’s quality of life, including walking capacity. The objective of this case control study was to investigate the histological and ultrastructural changes to the gluteus medius tendon (GMED) in patients revised due to a PJI, and to compare it with revision THAs without infection performed using the same lateral approach. A group of eight patients revised due to a PJI with a previous lateral approach was compared with a group of 21 revised THAs without infection, performed using the same approach. The primary variables of the study were the fibril diameter, as seen in transmission electron microscopy (TEM), and the total degeneration score (TDS), as seen under the light microscope. An analysis of bacteriology, classification of infection, and antibiotic treatment was also performed.Aims
Methods
Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype, is paramount for stability in total hip arthroplasty (THA). Despite a few studies on instability prediction, there is a notable gap in research utilizing artificial intelligence (AI). The objective of our pilot study was to evaluate the feasibility of developing an AI algorithm tailored to individual spinopelvic mechanics and patient phenotype for predicting impingement. This international, multicentre prospective cohort study across two centres encompassed 157 adults undergoing primary robotic arm-assisted THA. Impingement during specific flexion and extension stances was identified using the virtual range of motion (ROM) tool of the robotic software. The primary AI model, the Light Gradient-Boosting Machine (LGBM), used tabular data to predict impingement presence, direction (flexion or extension), and type. A secondary model integrating tabular data with plain anteroposterior pelvis radiographs was evaluated to assess for any potential enhancement in prediction accuracy.Aims
Methods
Successful cell therapy in hip osteonecrosis (ON) may help to avoid ON progression or total hip arthroplasty (THA), but the achieved bone regeneration is unclear. The aim of this study was to evaluate amount and location of bone regeneration obtained after surgical injection of expanded autologous mesenchymal stromal cells from the bone marrow (BM-hMSCs). A total of 20 patients with small and medium-size symptomatic stage II femoral head ON treated with 140 million BM-hMSCs through percutaneous forage in the EudraCT 2012-002010-39 clinical trial were retrospectively evaluated through preoperative and postoperative (three and 12 months) MRI. Then, 3D reconstruction of the original lesion and the observed postoperative residual damage after bone regeneration were analyzed and compared per group based on treatment efficacy.Aims
Methods
Spinopelvic pathology increases the risk for instability following total hip arthroplasty (THA), yet few studies have evaluated how pathology varies with age or sex. The aims of this study were: 1) to report differences in spinopelvic parameters with advancing age and between the sexes; and 2) to determine variation in the prevalence of THA instability risk factors with advancing age. A multicentre database with preoperative imaging for 15,830 THA patients was reviewed. Spinopelvic parameter measurements were made by experienced engineers, including anterior pelvic plane tilt (APPT), spinopelvic tilt (SPT), sacral slope (SS), lumbar lordosis (LL), and pelvic incidence (PI). Lumbar flexion (LF), sagittal spinal deformity, and hip user index (HUI) were calculated using parameter measurements.Aims
Methods
The aim of this study was to evaluate the reliability and validity of a patient-specific algorithm which we developed for predicting changes in sagittal pelvic tilt after total hip arthroplasty (THA). This retrospective study included 143 patients who underwent 171 THAs between April 2019 and October 2020 and had full-body lateral radiographs preoperatively and at one year postoperatively. We measured the pelvic incidence (PI), the sagittal vertical axis (SVA), pelvic tilt, sacral slope (SS), lumbar lordosis (LL), and thoracic kyphosis to classify patients into types A, B1, B2, B3, and C. The change of pelvic tilt was predicted according to the normal range of SVA (0 mm to 50 mm) for types A, B1, B2, and B3, and based on the absolute value of one-third of the PI-LL mismatch for type C patients. The reliability of the classification of the patients and the prediction of the change of pelvic tilt were assessed using kappa values and intraclass correlation coefficients (ICCs), respectively. Validity was assessed using the overall mean error and mean absolute error (MAE) for the prediction of the change of pelvic tilt.Aims
Methods
In this study, we aimed to visualize the spatial distribution characteristics of femoral head necrosis using a novel measurement method. We retrospectively collected CT imaging data of 108 hips with non-traumatic osteonecrosis of the femoral head from 76 consecutive patients (mean age 34.3 years (SD 8.1), 56.58% male (n = 43)) in two clinical centres. The femoral head was divided into 288 standard units (based on the orientation of units within the femoral head, designated as N[Superior], S[Inferior], E[Anterior], and W[Posterior]) using a new measurement system called the longitude and latitude division system (LLDS). A computer-aided design (CAD) measurement tool was also developed to visualize the measurement of the spatial location of necrotic lesions in CT images. Two orthopaedic surgeons independently performed measurements, and the results were used to draw 2D and 3D heat maps of spatial distribution of necrotic lesions in the femoral head, and for statistical analysis.Aims
Methods
Hip dysplasia (HD) leads to premature osteoarthritis. Timely detection and correction of HD has been shown to improve pain, functional status, and hip longevity. Several time-consuming radiological measurements are currently used to confirm HD. An artificial intelligence (AI) software named HIPPO automatically locates anatomical landmarks on anteroposterior pelvis radiographs and performs the needed measurements. The primary aim of this study was to assess the reliability of this tool as compared to multi-reader evaluation in clinically proven cases of adult HD. The secondary aims were to assess the time savings achieved and evaluate inter-reader assessment. A consecutive preoperative sample of 130 HD patients (256 hips) was used. This cohort included 82.3% females (n = 107) and 17.7% males (n = 23) with median patient age of 28.6 years (interquartile range (IQR) 22.5 to 37.2). Three trained readers’ measurements were compared to AI outputs of lateral centre-edge angle (LCEA), caput-collum-diaphyseal (CCD) angle, pelvic obliquity, Tönnis angle, Sharp’s angle, and femoral head coverage. Intraclass correlation coefficients (ICC) and Bland-Altman analyses were obtained.Aims
Methods
Navigation devices are designed to improve a surgeon’s accuracy in positioning the acetabular and femoral components in total hip arthroplasty (THA). The purpose of this study was to both evaluate the accuracy of an optical computer-assisted surgery (CAS) navigation system and determine whether preoperative spinopelvic mobility (categorized as hypermobile, normal, or stiff) increased the risk of acetabular component placement error. A total of 356 patients undergoing primary THA were prospectively enrolled from November 2016 to March 2018. Clinically relevant error using the CAS system was defined as a difference of > 5° between CAS and 3D radiological reconstruction measurements for acetabular component inclination and anteversion. Univariate and multiple logistic regression analyses were conducted to determine whether hypermobile (Aims
Methods
Pelvic tilt (PT) can significantly change the functional orientation of the acetabular component and may differ markedly between patients undergoing total hip arthroplasty (THA). Patients with stiff spines who have little change in PT are considered at high risk for instability following THA. Femoral component position also contributes to the limits of impingement-free range of motion (ROM), but has been less studied. Little is known about the impact of combined anteversion on risk of impingement with changing pelvic position. We used a virtual hip ROM (vROM) tool to investigate whether there is an ideal functional combined anteversion for reduced risk of hip impingement. We collected PT information from functional lateral radiographs (standing and sitting) and a supine CT scan, which was then input into the vROM tool. We developed a novel vROM scoring system, considering both seated flexion and standing extension manoeuvres, to quantify whether hips had limited ROM and then correlated the vROM score to component position.Aims
Methods
The aims of this study were to develop an in vivo model of periprosthetic joint infection (PJI) in cemented hip hemiarthroplasty, and to monitor infection and biofilm formation in real-time. Sprague-Dawley rats underwent cemented hip hemiarthroplasty via the posterior approach with pre- and postoperative gait assessments. Infection with Aims
Methods
The aim of this study was to determine the association between knee alignment and the vertical orientation of the femoral neck in relation to the floor. This could be clinically important because changes of femoral neck orientation might alter chondral joint contact zones and joint reaction forces, potentially inducing problems like pain in pre-existing chondral degeneration. Further, the femoral neck orientation influences the ischiofemoral space and a small ischiofemoral distance can lead to impingement. We hypothesized that a valgus knee alignment is associated with a more vertical orientation of the femoral neck in standing position, compared to a varus knee. We further hypothesized that realignment surgery around the knee alters the vertical orientation of the femoral neck. Long-leg standing radiographs of patients undergoing realignment surgery around the knee were used. The hip-knee-ankle angle (HKA) and the vertical orientation of the femoral neck in relation to the floor were measured, prior to surgery and after osteotomy-site-union. Linear regression was performed to determine the influence of knee alignment on the vertical orientation of the femoral neck.Aims
Methods
Spinopelvic mobility plays an important role in functional acetabular component position following total hip arthroplasty (THA). The primary aim of this study was to determine if spinopelvic hypermobility persists or resolves following THA. Our second aim was to identify patient demographic or radiological factors associated with hypermobility and resolution of hypermobility after THA. This study investigated patients with preoperative posterior hypermobility, defined as a change in sacral slope (SS) from standing to sitting (ΔSSstand-sit) ≥ 30°. Radiological spinopelvic parameters, including SS, pelvic incidence (PI), lumbar lordosis (LL), PI-LL mismatch, anterior pelvic plane tilt (APPt), and spinopelvic tilt (SPT), were measured on preoperative imaging, and at
six weeks and a minimum of
one year postoperatively. The severity of bilateral hip osteoarthritis (OA) was graded using Kellgren-Lawrence criteria.Aims
Methods
Acetabular edge-loading was a cause of increased wear rates in metal-on-metal hip arthroplasties, ultimately contributing to their failure. Although such wear patterns have been regularly reported in retrieval analyses, this study aimed to determine their in vivo location and investigate their relationship with acetabular component positioning. 3D CT imaging was combined with a recently validated method of mapping bearing surface wear in retrieved hip implants. The asymmetrical stabilizing fins of Birmingham hip replacements (BHRs) allowed the co-registration of their acetabular wear maps and their computational models, segmented from CT scans. The in vivo location of edge-wear was measured within a standardized coordinate system, defined using the anterior pelvic plane.Aims
Methods