Advertisement for orthosearch.org.uk
Results 1 - 20 of 20
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 2 | Pages 356 - 361
1 Mar 1999
Giannoudis PV Smith RM Bellamy MC Morrison JF Dickson RA Guillou PJ

It has been suggested that reamed intramedullary nailing of the femur should be avoided in some patients with multiple injuries. We have studied prospectively the effect of femoral reaming on the inflammatory process as implicated in the pathogenesis of acute respiratory distress syndrome (ARDS) and multiple-organ failure (MOF). We studied changes in the levels of serum interleukin-6 (IL-6) (proinflammatory cytokine), neutrophil CD11b (C3) receptor expression (activated neutrophil adhesion molecule), serum soluble intracellular adhesion molecule (s-ICAM-1), serum soluble E-selectin (the soluble products of endothelial adhesion molecules) and plasma elastase (neutrophil protease) in a series of patients with femoral fractures treated by nailing. We have also compared reamed nailing with unreamed nailing. We found that the levels of serum IL-6 and elastase rose significantly during the nailing procedure indicating a measurable ‘second hit’. There was no clear response in leukocyte activation and no difference in the release of endothelial adhesion molecule markers. There was no significant difference between groups treated by reamed and unreamed nailing. Although clinically unremarkable, the one patient who died from ARDS was shown to be hyperstimulated after injury and again after nailing, suggesting the importance of an excessive inflammatory reaction in the pathogenesis of these serious problems. Our findings have shown that there is a second hit associated with femoral nailing and suggest that the degree of the inflammatory reaction may be important in the pathogenesis of ARDS and MOF


Bone & Joint 360
Vol. 12, Issue 5 | Pages 49 - 50
1 Oct 2023
Marson BA

This edition of Cochrane Corner looks at some of the work published by the Cochrane Collaboration, covering pharmacological interventions for the prevention of bleeding in people undergoing definitive fixation or joint replacement for hip, pelvic, and long bone fractures; interventions for reducing red blood cell transfusion in adults undergoing hip fracture surgery: an overview of systematic reviews; and pharmacological treatments for low back pain in adults: an overview of Cochrane Reviews


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 3 | Pages 393 - 399
1 Mar 2008
Morley JR Smith RM Pape HC MacDonald DA Trejdosiewitz LK Giannoudis PV

We have undertaken a prospective study in patients with a fracture of the femoral shaft requiring intramedullary nailing to test the hypothesis that the femoral canal could be a potential source of the second hit phenomenon. We determined the local femoral intramedullary and peripheral release of interleukin-6 (IL-6) after fracture and subsequent intramedullary reaming. In all patients, the fracture caused a significant increase in the local femoral concentrations of IL-6 compared to a femoral control group. The concentration of IL-6 in the local femoral environment was significantly higher than in the patients own matched blood samples from their peripheral circulation. The magnitude of the local femoral release of IL-6 after femoral fracture was independent of the injury severity score and whether the fracture was closed or open. In patients who underwent intramedullary reaming of the femoral canal a further significant local release of IL-6 was demonstrated, providing evidence that intramedullary reaming can cause a significant local inflammatory reaction


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 7 | Pages 998 - 1006
1 Jul 2012
Kodama A Kamei N Kamei G Kongcharoensombat W Ohkawa S Nakabayashi A Ochi M

For the treatment of ununited fractures, we developed a system of delivering magnetic labelled mesenchymal stromal cells (MSCs) using an extracorporeal magnetic device. In this study, we transplanted ferucarbotran-labelled and luciferase-positive bone marrow-derived MSCs into a non-healing femoral fracture rat model in the presence of a magnetic field. The biological fate of the transplanted MSCs was observed using luciferase-based bioluminescence imaging and we found that the number of MSC derived photons increased from day one to day three and thereafter decreased over time. The magnetic cell delivery system induced the accumulation of photons at the fracture site, while also retaining higher photon intensity from day three to week four. Furthermore, radiological and histological findings suggested improved callus formation and endochondral ossification. We therefore believe that this delivery system may be a promising option for bone regeneration


Bone & Joint 360
Vol. 9, Issue 1 | Pages 10 - 14
1 Feb 2020
Ibrahim M Reito A Pidgaiska O


Bone & Joint Research
Vol. 6, Issue 8 | Pages 481 - 488
1 Aug 2017
Caruso G Bonomo M Valpiani G Salvatori G Gildone A Lorusso V Massari L

Objectives

Intramedullary fixation is considered the most stable treatment for pertrochanteric fractures of the proximal femur and cut-out is one of the most frequent mechanical complications. In order to determine the role of clinical variables and radiological parameters in predicting the risk of this complication, we analysed the data pertaining to a group of patients recruited over the course of six years.

Methods

A total of 571 patients were included in this study, which analysed the incidence of cut-out in relation to several clinical variables: age; gender; the AO Foundation and Orthopaedic Trauma Association classification system (AO/OTA); type of nail; cervical-diaphyseal angle; surgical wait times; anti-osteoporotic medication; complete post-operative weight bearing; and radiological parameters (namely the lag-screw position with respect to the femoral head, the Cleveland system, the tip-apex distance (TAD), and the calcar-referenced tip-apex distance (CalTAD)).


Bone & Joint Research
Vol. 6, Issue 10 | Pages 602 - 609
1 Oct 2017
Jin A Cobb J Hansen U Bhattacharya R Reinhard C Vo N Atwood R Li J Karunaratne A Wiles C Abel R

Objectives

Bisphosphonates (BP) are the first-line treatment for preventing fragility fractures. However, concern regarding their efficacy is growing because bisphosphonate is associated with over-suppression of remodelling and accumulation of microcracks. While dual-energy X-ray absorptiometry (DXA) scanning may show a gain in bone density, the impact of this class of drug on mechanical properties remains unclear. We therefore sought to quantify the mechanical strength of bone treated with BP (oral alendronate), and correlate data with the microarchitecture and density of microcracks in comparison with untreated controls.

Methods

Trabecular bone from hip fracture patients treated with BP (n = 10) was compared with naïve fractured (n = 14) and non-fractured controls (n = 6). Trabecular cores were synchrotron scanned and micro-CT scanned for microstructural analysis, including quantification of bone volume fraction, microarchitecture and microcracks. The specimens were then mechanically tested in compression.


Bone & Joint Research
Vol. 6, Issue 8 | Pages 489 - 498
1 Aug 2017
Mifuji K Ishikawa M Kamei N Tanaka R Arita K Mizuno H Asahara T Adachi N Ochi M

Objectives

The objective of this study was to investigate the therapeutic effect of peripheral blood mononuclear cells (PBMNCs) treated with quality and quantity control culture (QQ-culture) to expand and fortify angiogenic cells on the acceleration of fracture healing.

Methods

Human PBMNCs were cultured for seven days with the QQ-culture method using a serum-free medium containing five specific cytokines and growth factors. The QQ-cultured PBMNCs (QQMNCs) obtained were counted and characterised by flow cytometry and real-time polymerase chain reaction (RT-PCR). Angiogenic and osteo-inductive potentials were evaluated using tube formation assays and co-culture with mesenchymal stem cells with osteo-inductive medium in vitro. In order to evaluate the therapeutic potential of QQMNCs, cells were transplanted into an immunodeficient rat femur nonunion model. The rats were randomised into three groups: control; PBMNCs; and QQMNCs. The fracture healing was evaluated radiographically and histologically.


Bone & Joint Research
Vol. 7, Issue 2 | Pages 173 - 178
1 Feb 2018
Peng X Wu X Zhang J Zhang G Li G Pan X

Osteoporosis is a systemic skeletal disorder characterized by reduced bone mass and deterioration of bone microarchitecture, which results in increased bone fragility and fracture risk. Casein kinase 2-interacting protein-1 (CKIP-1) is a protein that plays an important role in regulation of bone formation. The effect of CKIP-1 on bone formation is mainly mediated through negative regulation of the bone morphogenetic protein pathway. In addition, CKIP-1 has an important role in the progression of osteoporosis. This review provides a summary of the recent studies on the role of CKIP-1 in osteoporosis development and treatment.

Cite this article: X. Peng, X. Wu, J. Zhang, G. Zhang, G. Li, X. Pan. The role of CKIP-1 in osteoporosis development and treatment. Bone Joint Res 2018;7:173–178. DOI: 10.1302/2046-3758.72.BJR-2017-0172.R1.


Bone & Joint 360
Vol. 6, Issue 5 | Pages 39 - 40
1 Oct 2017
Das A


Bone & Joint Research
Vol. 6, Issue 6 | Pages 385 - 390
1 Jun 2017
Yang Y Lin S Wang B Gu W Li G

Objectives

Distraction osteogenesis (DO) mobilises bone regenerative potential and avoids the complications of other treatments such as bone graft. The major disadvantage of DO is the length of time required for bone consolidation. Mesenchymal stem cells (MSCs) have been used to promote bone formation with some good results.

Methods

We hereby review the published literature on the use of MSCs in promoting bone consolidation during DO.


Bone & Joint Research
Vol. 4, Issue 2 | Pages 23 - 28
1 Feb 2015
Auston DA Werner FW Simpson RB

Objectives

This study tests the biomechanical properties of adjacent locked plate constructs in a femur model using Sawbones. Previous studies have described biomechanical behaviour related to inter-device distances. We hypothesise that a smaller lateral inter-plate distance will result in a biomechanically stronger construct, and that addition of an anterior plate will increase the overall strength of the construct.

Methods

Sawbones were plated laterally with two large-fragment locking compression plates with inter-plate distances of 10 mm or 1 mm. Small-fragment locking compression plates of 7-hole, 9-hole, and 11-hole sizes were placed anteriorly to span the inter-plate distance. Four-point bend loading was applied, and the moment required to displace the constructs by 10 mm was recorded.


The Bone & Joint Journal
Vol. 97-B, Issue 1 | Pages 141 - 144
1 Jan 2015
Hughes AW Clark D Carlino W Gosling O Spencer RF

Reported rates of dislocation in hip hemiarthroplasty (HA) for the treatment of intra-capsular fractures of the hip, range between 1% and 10%. HA is frequently performed through a direct lateral surgical approach. The aim of this study is to determine the contribution of the anterior capsule to the stability of a cemented HA through a direct lateral approach.

A total of five whole-body cadavers were thawed at room temperature, providing ten hip joints for investigation. A Thompson HA was cemented in place via a direct lateral approach. The cadavers were then positioned supine, both knee joints were disarticulated and a digital torque wrench was attached to the femur using a circular frame with three half pins. The wrench applied an external rotation force with the hip in extension to allow the hip to dislocate anteriorly. Each hip was dislocated twice; once with a capsular repair and once without repairing the capsule. Stratified sampling ensured the order in which this was performed was alternated for the paired hips on each cadaver.

Comparing peak torque force in hips with the capsule repaired and peak torque force in hips without repair of the capsule, revealed a significant difference between the ‘capsule repaired’ (mean 22.96 Nm, standard deviation (sd) 4.61) and the ‘capsule not repaired’ group (mean 5.6 Nm, sd 2.81) (p < 0.001). Capsular repair may help reduce the risk of hip dislocation following HA.

Cite this article: Bone Joint J 2015;97-B:141–4.


Bone & Joint Research
Vol. 2, Issue 6 | Pages 102 - 111
1 Jun 2013
Patel RA Wilson RF Patel PA Palmer RM

Objectives

To review the systemic impact of smoking on bone healing as evidenced within the orthopaedic literature.

Methods

A protocol was established and studies were sourced from five electronic databases. Screening, data abstraction and quality assessment was conducted by two review authors. Prospective and retrospective clinical studies were included. The primary outcome measures were based on clinical and/or radiological indicators of bone healing. This review specifically focused on non-spinal orthopaedic studies.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 6 | Pages 823 - 827
1 Jun 2006
White TO Clutton RE Salter D Swann D Christie J Robinson CM

The stress response to trauma is the summation of the physiological response to the injury (the ‘first hit’) and by the response to any on-going physiological disturbance or subsequent trauma surgery (the ‘second hit’).

Our animal model was developed in order to allow the study of each of these components of the stress response to major trauma. High-energy, comminuted fracture of the long bones and severe soft-tissue injuries in this model resulted in a significant tropotropic (depressor) cardiovascular response, transcardiac embolism of medullary contents and activation of the coagulation system. Subsequent stabilisation of the fractures using intramedullary nails did not significantly exacerbate any of these responses.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 2 | Pages 264 - 270
1 Feb 2009
Hasegawa T Miwa M Sakai Y Niikura T Kurosaka M Komori T

The haematoma occurring at the site of a fracture is known to play an important role in bone healing. We have recently shown the presence of progenitor cells in human fracture haematoma and demonstrated that they have the capacity for multilineage mesenchymal differentiation. There have been many studies which have shown that low-intensity pulsed ultrasound (LIPUS) stimulates the differentiation of a variety of cells, but none has investigated the effects of LIPUS on cells derived from human fracture tissue including human fracture haematoma-derived progenitor cells (HCs). In this in vitro study, we investigated the effects of LIPUS on the osteogenic activity of HCs. Alkaline phosphatase activity, osteocalcin secretion, the expression of osteoblast-related genes and the mineralisation of HCs were shown to be significantly higher when LIPUS had been applied but without a change in the proliferation of the HCs. These findings provide evidence in favour of the use of LIPUS in the treatment of fractures.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 1 | Pages 124 - 130
1 Jan 2009
Deuel CR Jamali AA Stover SM Hazelwood SJ

Bone surface strains were measured in cadaver femora during loading prior to and after resurfacing of the hip and total hip replacement using an uncemented, tapered femoral component. In vitro loading simulated the single-leg stance phase during walking. Strains were measured on the medial and the lateral sides of the proximal aspect and the mid-diaphysis of the femur. Bone surface strains following femoral resurfacing were similar to those in the native femur, except for proximal shear strains, which were significantly less than those in the native femur. Proximomedial strains following total hip replacement were significantly less than those in the native and the resurfaced femur.

These results are consistent with previous clinical evidence of bone loss after total hip replacement, and provide support for claims of bone preservation after resurfacing arthroplasty of the hip.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 9 | Pages 1253 - 1260
1 Sep 2007
Karachalios T Boursinos L Poultsides L Khaldi L Malizos KN

We have evaluated the effect of the short-term administration of low therapeutic doses of modern COX-2 inhibitors on the healing of fractures.

A total of 40 adult male New Zealand rabbits were divided into five groups. A mid-diaphyseal osteotomy of the right ulna was performed and either normal saline, prednisolone, indometacin, meloxicam or rofecoxib was administered for five days. Radiological, biomechanical and histomorphometric evaluation was performed at six weeks.

In the group in which the highly selective anti-COX-2 agent, rofecoxib, was used the incidence of radiologically-incomplete union was similar to that in the control group. All the biomechanical parameters were statistically significantly lower in both the prednisolone and indometacin (p = 0.01) and in the meloxicam (p = 0.04) groups compared with the control group. Only the fracture load values were found to be statistically significantly lower (p = 0.05) in the rofecoxib group. Histomorphometric parameters were adversely affected in all groups with the specimens of the rofecoxib group showing the least negative effect.

Our findings indicated that the short-term administration of low therapeutic doses of a highly selective COX-2 inhibitor had a minor negative effect on bone healing.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 5 | Pages 686 - 692
1 May 2007
Bolland BJRF New AMR Madabhushi SPG Oreffo ROC Dunlop DG

The complications of impaction bone grafting in revision hip replacement includes fracture of the femur and subsidence of the prosthesis. In this in vitro study we aimed to investigate whether the use of vibration, combined with a perforated tamp during the compaction of morsellised allograft would reduce peak loads and hoop strains in the femur as a surrogate marker of the risk of fracture and whether it would also improve graft compaction and prosthetic stability.

We found that the peak loads and hoop strains transmitted to the femoral cortex during graft compaction and subsidence of the stem in subsequent mechanical testing were reduced. This innovative technique has the potential to reduce the risk of intra-operative fracture and to improve graft compaction and therefore prosthetic stability.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 10 | Pages 1434 - 1438
1 Oct 2005
Eckardt H Ding M Lind M Hansen ES Christensen KS Hvid I

The re-establishment of vascularity is an early event in fracture healing; upregulation of angiogenesis may therefore promote the formation of bone. We have investigated the capacity of vascular endothelial growth factor (VEGF) to stimulate the formation of bone in an experimental atrophic nonunion model.

Three groups of eight rabbits underwent a standard nonunion operation. This was followed by interfragmentary deposition of 100 μg VEGF, carrier alone or autograft.

After seven weeks, torsional failure tests and callus size confirmed that VEGF-treated osteotomies had united whereas the carrier-treated osteotomies failed to unite. The biomechanical properties of the groups treated with VEGF and autograft were identical. There was no difference in bone blood flow.

We considered that VEGF stimulated the formation of competent bone in an environment deprived of its normal vascularisation and osteoprogenitor cell supply. It could be used to enhance the healing of fractures predisposed to nonunion.