Advertisement for orthosearch.org.uk
Results 1 - 20 of 550
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 7 | Pages 751 - 758
1 Jul 2024
Yaxier N Zhang Y Song J Ning B

Aims. Given the possible radiation damage and inaccuracy of radiological investigations, particularly in children, ultrasound and superb microvascular imaging (SMI) may offer alternative methods of evaluating new bone formation when limb lengthening is undertaken in paediatric patients. The aim of this study was to assess the use of ultrasound combined with SMI in monitoring new bone formation during limb lengthening in children. Methods. In this retrospective cohort study, ultrasound and radiograph examinations were performed every two weeks in 30 paediatric patients undergoing limb lengthening. Ultrasound was used to monitor new bone formation. The number of vertical vessels and the blood flow resistance index were compared with those from plain radiographs. Results. We categorized the new bone formation into three stages: stage I (early lengthening), in which there was no obvious callus formation on radiographs and ultrasound; stage II (lengthening), in which radiographs showed low-density callus formation with uneven distribution and three sub-stages could be identified on ultrasound: in Ia punctate callus was visible; in IIb there was linear callus formation which was not yet connected and in IIc there was continuous linear callus. In stage III (healing), the bone ends had united, the periosteum was intact, and the callus had disappeared, as confirmed on radiographs, indicating healed bone. A progressive increase in the number of vertical vessels was noted in the early stages, peaking during stages IIb and IIc, followed by a gradual decline (p < 0.001). Delayed healing involved patients with a prolonged stage IIa or those who regressed to stage IIa from stages IIb or IIc during lengthening. Conclusion. We found that the formation of new bone in paediatric patients undergoing limb lengthening could be reliably evaluated using ultrasound when combined with the radiological findings. This combination enabled an improved assessment of the prognosis, and adjustments to the lengthening protocol. While SMI offered additional insights into angiogenesis within the new bone, its role primarily contributed to the understanding of the microvascular environment rather than directly informing adjustments of treatment. Cite this article: Bone Joint J 2024;106-B(7):751–758


Bone & Joint Research
Vol. 10, Issue 12 | Pages 767 - 779
8 Dec 2021
Li Y Yang Y Wang M Zhang X Bai S Lu X Li Y Waldorff EI Zhang N Lee WY Li G

Aims. Distraction osteogenesis (DO) is a useful orthopaedic procedure employed to lengthen and reshape bones by stimulating bone formation through controlled slow stretching force. Despite its promising applications, difficulties are still encountered. Our previous study demonstrated that pulsed electromagnetic field (PEMF) treatment significantly enhances bone mineralization and neovascularization, suggesting its potential application. The current study compared a new, high slew rate (HSR) PEMF signal, with different treatment durations, with the standard Food and Drug Administration (FDA)-approved signal, to determine if HSR PEMF is a better alternative for bone formation augmentation. Methods. The effects of a HSR PEMF signal with three daily treatment durations (0.5, one, and three hours/day) were investigated in an established rat DO model with comparison of an FDA-approved classic signal (three hrs/day). PEMF treatments were applied to the rats daily for 35 days, starting from the distraction phase until termination. Radiography, micro-CT (μCT), biomechanical tests, and histological examinations were employed to evaluate the quality of bone formation. Results. All rats tolerated the treatment well and no obvious adverse effects were found. By comparison, the HSR signal (three hrs/day) treatment group achieved the best healing outcome, in that endochondral ossification and bone consolidation were enhanced. In addition, HSR signal treatment (one one hr/day) had similar effects to treatment using the classic signal (three three hrs/day), indicating that treatment duration could be significantly shortened with the HSR signal. Conclusion. HSR signal may significantly enhance bone formation and shorten daily treatment duration in DO, making it a potential candidate for a new clinical protocol for patients undergoing DO treatments. Cite this article: Bone Joint Res 2021;10(12):767–779


The Journal of Bone & Joint Surgery British Volume
Vol. 47-B, Issue 1 | Pages 157 - 180
1 Feb 1965
Lee WR Marshall JH Sissons HA

1. In two dogs, approximately one to two years and three to four months of age, an experimental comparison was made between the calcium accretion rate as defined by the Bauer-Carlsson-Lindquist equation, and the bone formation rate determined by double tetracycline labelling. 2. The overall calcium accretion rate was determined from the specific activity of the blood plasma, and the urinary and faecal excretion of isotope, following an intravenous tracer dose of Ca. 45. A time of five days after injection was used for the calculation of accretion rates, but data for shorter times of calculation are included. 3. Local accretion rates were obtained for different parts of the skeleton by determining the specific activities of bone samples at the end of the experiment. 4. The amount of isotope the uptake of which was not related to new bone formation (the diffuse component) was determined autoradiographically. 5. Local values for appositional growth rate and bone formation rate were obtained, using sections of undecalcified bone specimens, by measuring the linear separation between two tetracycline bone markers and the area of new bone enclosed by them. 6. In the older dog, the measurements for cortical bone showed that the accretion rate was two to three times as great as the bone formation rate: the observed diffuse component was sufficient to account for the greater part of this difference. Measurement of the bone formation rate for cancellous bone presented difficulties, but the approximate values obtained suggested that the accretion rate and the bone formation rate were of about the same order for this tissue. 7. In the younger dog, the bone formation rate could be determined only in cortical bone: at the sites studied, the values for the accretion rate and the bone formation rate did not differ by more than 20 per cent. It is suggested that this is due partly to the low specific activity of the diffuse component in this young animal, and partly to the relatively large amounts of new bone formed during the period of the experiment. 8. Despite the important differences between the rates of calcium accretion and bone formation that were found to exist in regions where there was only a small amount of new bone formation, there was a strong correlation between the two rates. The value of the accretion rate as a parameter of bone metabolism is clear


Bone & Joint Research
Vol. 5, Issue 10 | Pages 500 - 511
1 Oct 2016
Raina DB Gupta A Petersen MM Hettwer W McNally M Tägil M Zheng M Kumar A Lidgren L

Objectives. We have observed clinical cases where bone is formed in the overlaying muscle covering surgically created bone defects treated with a hydroxyapatite/calcium sulphate biomaterial. Our objective was to investigate the osteoinductive potential of the biomaterial and to determine if growth factors secreted from local bone cells induce osteoblastic differentiation of muscle cells. Materials and Methods. We seeded mouse skeletal muscle cells C2C12 on the hydroxyapatite/calcium sulphate biomaterial and the phenotype of the cells was analysed. To mimic surgical conditions with leakage of extra cellular matrix (ECM) proteins and growth factors, we cultured rat bone cells ROS 17/2.8 in a bioreactor and harvested the secreted proteins. The secretome was added to rat muscle cells L6. The phenotype of the muscle cells after treatment with the media was assessed using immunostaining and light microscopy. Results. C2C12 cells differentiated into osteoblast-like cells expressing prominent bone markers after seeding on the biomaterial. The conditioned media of the ROS 17/2.8 contained bone morphogenetic protein-2 (BMP-2 8.4 ng/mg, standard deviation (. sd. ) 0.8) and BMP-7 (50.6 ng/mg, . sd. 2.2). In vitro, this secretome induced differentiation of skeletal muscle cells L6 towards an osteogenic lineage. Conclusion. Extra cellular matrix proteins and growth factors leaking from a bone cavity, along with a ceramic biomaterial, can synergistically enhance the process of ectopic ossification. The overlaying muscle acts as an osteoinductive niche, and provides the required cells for bone formation. Cite this article: D. B. Raina, A. Gupta, M. M. Petersen, W. Hettwer, M. McNally, M. Tägil, M-H. Zheng, A. Kumar, L. Lidgren. Muscle as an osteoinductive niche for local bone formation with the use of a biphasic calcium sulphate/hydroxyapatite biomaterial. Bone Joint Res 2016;5:500–511. DOI: 10.1302/2046-3758.510.BJR-2016-0133.R1


Bone & Joint Research
Vol. 1, Issue 6 | Pages 125 - 130
1 Jun 2012
Bøe BG Støen RØ Solberg LB Reinholt FP Ellingsen JE Nordsletten L

Objectives. An experimental rabbit model was used to test the null hypothesis, that there is no difference in new bone formation around uncoated titanium discs compared with coated titanium discs when implanted into the muscles of rabbits. Methods. A total of three titanium discs with different surface and coating (1, porous coating; 2, porous coating + Bonemaster (Biomet); and 3, porous coating + plasma-sprayed hydroxyapatite) were implanted in 12 female rabbits. Six animals were killed after six weeks and the remaining six were killed after 12 weeks. The implants with surrounding tissues were embedded in methyl methacrylate and grinded sections were stained with Masson-Goldners trichrome and examined by light microscopy of coded sections. Results. Small amounts of bone were observed scattered along the surface of five of the 12 implants coated with porous titanium, and around one out of 12 porous coated surfaces with Bonemaster. No bone formation could be detected around porous coated implants with plasma-sprayed hydroxyapatite. Conclusion. Porous titanium coating is to some degree osteoinductive in muscles


The Journal of Bone & Joint Surgery British Volume
Vol. 46-B, Issue 4 | Pages 764 - 771
1 Nov 1964
Landry M Fleisch H

1. The effect of immobilisation on bone formation has been investigated in the rat. As chlortetracycline has the property of being deposited preferentially in areas of newly deposited bone, its uptake can be used as a reflection of osseous formation. 2. One hind limb of albino rats was immobilised either by section of the second, third and fourth lumbar nerve trunks or by section of tendo calcaneus and ligamentum patellae. The incorporation of chlortetracycline was determined quantitatively in the femur and tibia of both hind limbs at intervals after immobilisation. 3. Tetracycline uptake is expressed in terms of bone weight, this being most important in order to obtain correct values. 4. A comparison between the tetracycline uptake and the weight of the bones gives information about the rate of bone destruction. 5. In animals immobilised by nerve section three phases can be distinguished: a first phase with diminished bone formation, a second with increased formation and increased destruction and a third phase with diminished bone formation. Both mechanisms, decreased formation and increased destruction, are therefore important in the production of immobilisation osteoporosis; their relative importance depending upon the duration of the immobilisation. 6. In animals immobilised by tendon section the mechanical function becomes restored in the second week as a result of healing: this explains the rapid compensation for the initial loss of weight of the bones accompanied by a marked increase in tetracycline uptake. 7. These results are discussed and compared with information in the literature. Variations in bone formation and destruction rates with time could explain the varied results reported by other authors


Bone & Joint Research
Vol. 6, Issue 1 | Pages 14 - 21
1 Jan 2017
Osagie-Clouard L Sanghani A Coathup M Briggs T Bostrom M Blunn G

Intermittently administered parathyroid hormone (PTH 1-34) has been shown to promote bone formation in both human and animal studies. The hormone and its analogues stimulate both bone formation and resorption, and as such at low doses are now in clinical use for the treatment of severe osteoporosis. By varying the duration of exposure, parathyroid hormone can modulate genes leading to increased bone formation within a so-called ‘anabolic window’. The osteogenic mechanisms involved are multiple, affecting the stimulation of osteoprogenitor cells, osteoblasts, osteocytes and the stem cell niche, and ultimately leading to increased osteoblast activation, reduced osteoblast apoptosis, upregulation of Wnt/β-catenin signalling, increased stem cell mobilisation, and mediation of the RANKL/OPG pathway. Ongoing investigation into their effect on bone formation through ‘coupled’ and ‘uncoupled’ mechanisms further underlines the impact of intermittent PTH on both cortical and cancellous bone. Given the principally catabolic actions of continuous PTH, this article reviews the skeletal actions of intermittent PTH 1-34 and the mechanisms underlying its effect. Cite this article: L. Osagie-Clouard, A. Sanghani, M. Coathup, T. Briggs, M. Bostrom, G. Blunn. Parathyroid hormone 1-34 and skeletal anabolic action: The use of parathyroid hormone in bone formation. Bone Joint Res 2017;6:14–21. DOI: 10.1302/2046-3758.61.BJR-2016-0085.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 11 | Pages 1606 - 1613
1 Nov 2010
Oshima S Ishikawa M Mochizuki Y Kobayashi T Yasunaga Y Ochi M

We used interconnected porous calcium hydroxyapatite ceramic to bridge a rabbit ulnar defect. Two weeks after inducing the defect we percutaneously injected rabbit bone marrow-derived mesenchymal stromal cells labelled with ferumoxide. The contribution of an external magnetic targeting system to attract these cells into the ceramic and their effect on subsequent bone formation were evaluated. This technique significantly facilitated the infiltration of ferumoxide-labelled cells into ceramic and significantly contributed to the enhancement of bone formation even in the chronic phase. As such, it is potentially of clinical use to treat fractures, bone defects, delayed union and nonunion


Bone & Joint Research
Vol. 11, Issue 6 | Pages 386 - 397
22 Jun 2022
Zhu D Fang H Yu H Liu P Yang Q Luo P Zhang C Gao Y Chen Y

Aims

Alcoholism is a well-known detrimental factor in fracture healing. However, the underlying mechanism of alcohol-inhibited fracture healing remains poorly understood.

Methods

MicroRNA (miR) sequencing was performed on bone mesenchymal stem cells (BMSCs). The effects of alcohol and miR-19a-3p on vascularization and osteogenic differentiation were analyzed in vitro using BMSCs and human umbilical vein endothelial cells (HUVECs). An in vivo alcohol-fed mouse model of femur fracture healing was also established, and radiological and histomorphometric analyses were used to evaluate the role of miR-19a-3p. The binding of miR-19a-3p to forkhead box F2 (FOXF2) was analyzed using a luciferase reporter assay.


The Journal of Bone & Joint Surgery British Volume
Vol. 75-B, Issue 1 | Pages 96 - 106
1 Jan 1993
Eyres K Bell M Kanis J

We measured the extent and rate of new bone formation over an 18-month period before, during and after the lengthening of ten leg segments in six patients aged between 8 and 18 years, using dual-energy X-ray absorptiometry (DEXA). New bone formation could be identified within one week of the start of distraction. As lengthening proceeded, the bone density of the gap fell, reaching minimum values at the time of maximal distraction. Consolidation of the regenerating bone was started 1 to 2 weeks later in the tibia, and 2.5 to 3.0 weeks later in the femur. The rate of mineral accretion in new bone was significantly greater in the tibia than in the femur (16 +/- 1.86%/month, and 11 +/- 1.1%/month respectively; mean +/- SEM). There was significant osteoporosis distal to the osteotomy, more in the tibia than in the femur, particularly on the side of the fixator. The bone mineral density of the distal segment remained low at the time of fixator removal (44.2 +/- 5.58% and 61.0 +/- 4.2% of the control values at the tibia and femur respectively) and was only partially reversed by subsequent weight-bearing. We conclude that dual-energy X-ray absorptiometry provides an objective and quantitative assessment of new bone formation during leg lengthening. The technique also allows the measurement of the distraction gap and the assessment of leg alignment from the high-resolution images. Its use may decrease the requirements for conventional radiography


The Journal of Bone & Joint Surgery British Volume
Vol. 73-B, Issue 2 | Pages 255 - 257
1 Mar 1991
Goel A Sharp D

The relationship between heterotopic bone formation and the morphological type of osteoarthritis was examined after 43 hip replacements. Of the 43 hips studied, nine were atrophic, 19 were normotrophic, and 15 were hypertrophic. The incidence of heterotopic bone formation in the atrophic type was 11%, in the normotrophic type 32%, and in the hypertrophic type 87%. The difference between each type was statistically significant (p less than 0.001)


Bone & Joint Research
Vol. 7, Issue 2 | Pages 173 - 178
1 Feb 2018
Peng X Wu X Zhang J Zhang G Li G Pan X

Osteoporosis is a systemic skeletal disorder characterized by reduced bone mass and deterioration of bone microarchitecture, which results in increased bone fragility and fracture risk. Casein kinase 2-interacting protein-1 (CKIP-1) is a protein that plays an important role in regulation of bone formation. The effect of CKIP-1 on bone formation is mainly mediated through negative regulation of the bone morphogenetic protein pathway. In addition, CKIP-1 has an important role in the progression of osteoporosis. This review provides a summary of the recent studies on the role of CKIP-1 in osteoporosis development and treatment. Cite this article: X. Peng, X. Wu, J. Zhang, G. Zhang, G. Li, X. Pan. The role of CKIP-1 in osteoporosis development and treatment. Bone Joint Res 2018;7:173–178. DOI: 10.1302/2046-3758.72.BJR-2017-0172.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 39-B, Issue 1 | Pages 134 - 144
1 Feb 1957
Scott JH

1. Bones consist essentially of bundles of collagenous fibres united by a cementing substance in which the inorganic material lies in the form of minute plate-like crystals. 2. During weight bearing and muscle action bones as a whole are deformed to a variable extent. Periods of deformation are followed by periods of relaxed pressure during which the bones tend to return to their normal form. 3. These variations in deformation and elastic recoil set up alternating pressures and tensions within the bones along the bone cyrstal encrusted fibres which make up the trabeculae, lamellae and Haversian systems, and these alternating phases of compression and tension stimulate the activity of osteoblasts so that bone formation predominates over bone resorption. 4. These alterations of pressure and tension are intermittent and reciprocal in nature and do not, as postulated by the trajectorial theory, involve different trabeculae, nor is it necessary to consider whether tension or pressure is the more important phase in determining bone deposition. 5. The pressure exerted by cysts, tumours, erupting teeth, etc., is of a quite different nature, as is the response to trauma or callus formation in the healing of fractures. These processes are essentially vascular phenomena involving localised areas of bony tissue and not bones as mechanical units


The Journal of Bone & Joint Surgery British Volume
Vol. 38-B, Issue 1 | Pages 327 - 333
1 Feb 1956
Saville PD

1. A case of polyarteritis nodosa is reported, the presenting manifestation of which was subperiosteal new bone formation in both legs. 2. The effect of cortisone on the symptoms is recorded. 3. The histology is reported after biopsy of bone and adjacent tissue. 4. Skeletal involvement in polyarteritis nodosa is believed to be hitherto unrecorded


The Journal of Bone & Joint Surgery British Volume
Vol. 46-B, Issue 2 | Pages 244 - 250
1 May 1964
Ball J Grayzel AI

1. Three patients with localised periosteal new bone formation associated with periosteal arteritis and other evidence of systemic lupus erythematosus are described. 2. Systemic steroid therapy was valuable in the management of this condition


The Journal of Bone & Joint Surgery British Volume
Vol. 49-B, Issue 1 | Pages 146 - 153
1 Feb 1967
Lee WR

1 . Normal and diseased bone was obtained by biopsy from five patients suffering from Paget's disease. The tissue was studied by histology, microradiography and quantitative fluorescence microscopy using tetracycline markers. Study of the morphological changes showed that two of the biopsies could be regarded as normal, while one was osteoporotic; two biopsy specimens were in the porotic phase of Paget's disease and the remaining five were in the sclerotic phase. 2. The tetracycline markers were used to measure the linear rate at which bone was deposited on individual surfaces (appositional growth rate) in µ per day and the percentage volume of new bone added to the total volume of bone per day (bone formation rate). The values obtained for appositional growth rate in all the biopsies were of the order of 1 µ per day, but slightly higher values were obtained in the diseased tissue of each individual. The bone formation rate in normal bone from the proximal femur was about 0·04 per cent per day, about 0·13 per cent per day in the porotic phase, and about 0·4 per cent per day in the sclerotic phase of Paget's disease. 3. Although these values must be accepted with some reservation, there seems to be no doubt that there is an upper limit of about 1 µ per day to the rate of deposition of bone on an individual bone surface; this suggests that in Paget's disease the osteoblast behaves as a normal cell


The Journal of Bone & Joint Surgery British Volume
Vol. 48-B, Issue 3 | Pages 499 - 503
1 Aug 1966
Rosborough D

1. A patient with ectopic bone in the upper arm associated with multiple congenital anomalies is reported. 2. The previous cases of congenital abnormalities in patients with ectopic bone formation have been indicated and the problem of etiology has been discussed


The Journal of Bone & Joint Surgery British Volume
Vol. 40-B, Issue 2 | Pages 282 - 311
1 May 1958
Geiser M Trueta J

1. In five series of experiments in eighty-two rabbits we succeeded in causing rarefaction of the calcaneum of all the animals soon after it was relieved from muscular compressing forces; new bone was generated when the calcaneum was subjected again to the stresses and strains of muscle contraction. 2. We found evidence that during muscle action pressure forces are transmitted through the bone, and that the presence or absence of these pressure forces conditions the balance between bone formation and bone removal. 3. In the calcaneum of the rabbit lack of muscular action seems to be the most important factor inducing osteoporosis. It is possible that the origin of post-traumatic osteoporosis has the same basis. 4. In our experiments bone rarefaction was characterised by a great increase in the vascularity of the bone; this increase ceased when the bone reached its final precarious bone density. Thus, vascular over-activity accompanied the removal of bone; but bone reconstruction was also seen to be accompanied by a more localised increase in vascularity. 5. From our experiments we cannot suggest that the inhibition of muscle contraction accompanying Sudeck's syndrome is responsible for this disorder, because we were unable in our animals to cause any of the other signs characteristic of Sudeck's bone atrophy. But the constancy with which we caused bone atrophy by the removal of muscle action may possibly help to explain the mechanism of bone absorption accompanying Sudeck's disease


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 510 - 516
1 Apr 2011
Sugata Y Sotome S Yuasa M Hirano M Shinomiya K Okawa A

Several bisphosphonates are now available for the treatment of osteoporosis. Porous hydroxyapatite/collagen (HA/Col) composite is an osteoconductive bone substitute which is resorbed by osteoclasts. The effects of the bisphosphonate alendronate on the formation of bone in porous HA/Col and its resorption by osteoclasts were evaluated using a rabbit model. Porous HA/Col cylinders measuring 6 mm in diameter and 8 mm in length, with a pore size of 100 μm to 500 μm and 95% porosity, were inserted into a defect produced in the lateral femoral condyles of 72 rabbits. The rabbits were divided into four groups based on the protocol of alendronate administration: the control group did not receive any alendronate, the pre group had alendronate treatment for three weeks prior to the implantation of the HA/Col, the post group had alendronate treatment following implantation until euthanasia, and the pre+post group had continuous alendronate treatment from three weeks prior to surgery until euthanasia. All rabbits were injected intravenously with either saline or alendronate (7.5 μg/kg) once a week. Each group had 18 rabbits, six in each group being killed at three, six and 12 weeks post-operatively. Alendronate administration suppressed the resorption of the implants. Additionally, the mineral densities of newly formed bone in the alendronate-treated groups were lower than those in the control group at 12 weeks post-operatively. Interestingly, the number of osteoclasts attached to the implant correlated with the extent of bone formation at three weeks. In conclusion, the systemic administration of alendronate in our rabbit model at a dose-for-weight equivalent to the clinical dose used in the treatment of osteoporosis in Japan affected the mineral density and remodelling of bone tissue in implanted porous HA/Col composites


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 8 | Pages 1200 - 1208
1 Nov 2004
Borden M Attawia M Khan Y El-Amin SF Laurencin CT

We have evaluated in vivo a novel, polymer-based, matrix for tissue engineering of bone. A segmental defect of 15 mm was created in the ulna of New Zealand white rabbits to determine the regenerative properties of a porous polylactide-co-glycolide matrix alone and in combination with autogenous marrow and/or the osteoinductive protein, BMP-7. In this study four implant groups were used: 1) matrix alone; 2) matrix with autogenous marrow; 3) matrix with 20 μg of BMP-7; and 4) matrix with 20 μg of BMP-7 and autogenous marrow. The results showed that the degree of bone formation was dependent on the properties of the graft material. The osteoconductive sintered matrix structure showed significant formation of bone at the implant-bone interface. The addition of autogenous marrow increased the penetration of new bone further into the central area of the matrix and also increased the degree of revascularisation. The osteoinductive growth factor BMP-7 induced penetration of new bone throughout the entire structure of the implant. The most effective treatment was with the combination of marrow cells and osteoinductive BMP-7